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Abstract 

Background Using human mobility as a proxy for social interaction, previous studies revealed bidirectional asso-
ciations between COVID-19 incidence and human mobility. For example, while an increase in COVID-19 cases may 
affect mobility to decrease due to lockdowns or fear, conversely, an increase in mobility can potentially amplify social 
interactions, thereby contributing to an upsurge in COVID-19 cases. Nevertheless, these bidirectional relationships 
exhibit variations in their nature, evolve over time, and lack generalizability across different geographical contexts. 
Consequently, a systematic approach is required to detect functional, spatial, and temporal variations within the intri-
cate relationship between disease incidence and mobility.

Methods We introduce a spatial time series workflow to investigate the bidirectional associations between human 
mobility and disease incidence, examining how these associations differ across geographic space and throughout dif-
ferent waves of a pandemic. By utilizing daily COVID-19 cases and mobility flows at the county level during three 
pandemic waves in the US, we conduct bidirectional Granger causality tests for each county and wave. Furthermore, 
we employ dynamic time warping to quantify the similarity between the trends of disease incidence and mobility, 
enabling us to map the spatial distribution of trends that are either similar or dissimilar.

Results Our analysis reveals significant bidirectional associations between COVID-19 incidence and mobility, and we 
develop a typology to explain the variations in these associations across waves and counties. Overall, COVID-19 inci-
dence exerts a greater influence on mobility than vice versa, but the correlation between the two variables exhibits 
a stronger connection during the initial wave and weakens over time. Additionally, the relationship between COVID-
19 incidence and mobility undergoes changes in direction and significance for certain counties across different 
waves. These shifts can be attributed to alterations in disease control measures and the presence of evolving con-
founding factors that differ both spatially and temporally.

Conclusions This study provides insights into the spatial and temporal dynamics of the relationship between COVID-
19 incidence and human mobility across different waves. Understanding these variations is crucial for informing 
the development of more targeted and effective healthcare policies and interventions, particularly at the city 
or county level where such policies must be implemented. Although we study the association between mobility 
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and COVID-19 incidence, our workflow can be applied to investigate the associations between the time series trends 
of various infectious diseases and relevant contributing factors, which play a role in disease transmission.

Keywords COVID-19, Human mobility, Granger causality, Dynamic time warping, Spatial time series analysis

Introduction
As COVID-19 transmits through exposure to respira-
tory fluids from infected people, non-pharmaceutical 
interventions (NPIs) that limit human social interac-
tions, such as travel restrictions and nonessential busi-
ness closures, were implemented to delay the spread of 
COVID-19. To ensure the effectiveness of the NPIs, prior 
studies examined the relationship between human social 
interactions and COVID-19 transmission. As a proxy 
to measure human social interactions, human mobil-
ity data captured from anonymized mobile phone loca-
tion records have been widely used in efforts combatting 
COVID-19 [1–3]. Previous studies found positive cor-
relations between human mobility and COVID-19 inci-
dence [4, 5]. For example, as there were a greater number 
of travels within and into a city, COVID-19 incidence of 
that city increased, especially in the early phase of the 
outbreak [6]. On the other hand, as COVID-19 cases 
increased faster, daily travel distances were reduced 
more quickly [7]. Furthermore, the relationship between 
human mobility and disease incidence was found to be 
non-stationary in time [1, 8, 9] and across geographic 
space including small scales such as census tracts [10, 
11]. Identifying these spatial and temporal variations is 
important because they help reveal confounding fac-
tors and processes that alter the disease dynamics. For 
instance, a severe pandemic situation may intensify 
the practice of social distancing, which could directly 
reduce human mobility, while risk perception and the 
fear of infection caused by such severity could indirectly 
decrease mobility by making individuals stay more at 
home [12, 13]. While the existing studies have revealed 
the spatially and temporally varying relationship between 
disease incidence and human mobility, only a few stud-
ies have focused on the fact that both disease incidence 
and mobility may influence each other [13, 14]. Also, 
such bidirectional relationships are still not generaliz-
able across all geographies and may also change over 
time. Ultimately, there is a lack of a systematic approach 
to identify the complex bidirectional associations among 
disease incidence and mobility.

In this study, we introduce a spatial time series analy-
sis workflow to investigate the complex bidirectional 
associations between human mobility and disease inci-
dence, examining how these associations evolve over 
time (across different waves) and vary across diverse 
geographical regions. Using different phases of the 

COVID-19 pandemic as our case study, we construct 
daily time series data for COVID-19 cases derived from 
U.S. COVID Risk and Vaccine Tracker [15] and human 
mobility flows at the county level in the U.S. derived from 
anonymized and aggregated mobile phone location data 
from SafeGraph [16]. To capture potential social interac-
tions resulting from people’s movements, we aggregate 
mobility flows within and into each county, encompass-
ing not only intra-county movements but also flows 
from other counties across the country [9]. By employing 
two-way Granger causality tests, we examine the associa-
tions between the time series trends of COVID-19 cases 
and mobility flows, capturing bidirectional relationships 
between these variables. We develop a typology to iden-
tify and explain how the relationship between disease 
incidence and mobility changes in terms of significance, 
directionality, and spatiotemporal variability across dif-
ferent waves for each county of the U.S. Furthermore, 
we utilize dynamic time warping to quantify the similar-
ity between the trends of disease incidence and mobility, 
enabling us to map the geographical variations in these 
trends.

Related work
With the outbreak of COVID-19, NPIs such as lock-
downs and stay-at-home orders have been implemented 
in the U.S. since mid-March 2020, which resulted in a 
substantial decrease in human mobility. Here, human 
mobility is a proxy for social interactions and spatial 
colocation of individuals that allow the transmission of 
the disease. Specifically, a significant decrease in travel 
time [17] and a long-term reduction of long-distance 
mobility were caused by NPIs, and specifically, lock-
downs [5]. Findings of previous studies suggested that 
lockdowns limited human mobility and thus helped flat-
ten the curve of COVID-19. Studies conducted at the 
global or national scale revealed that human mobility 
and COVID-19 incidence were positively correlated [6, 
18]. However, it is challenging to elucidate their correla-
tions since COVID-19 cases and human mobility affect 
each other simultaneously [13]. Moreover, the interac-
tions between COVID-19 incidence and human mobility 
may vary by geography and time. In addition to revealing 
a universal correlation between mobility and COVID-19 
incidence at the global or national level, several studies 
analyzed human mobility flows at finer scales (e.g., cen-
sus block, county, state) using mobile phone location 
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data and found local variations in their association [7, 
10, 11]. At the state level, Gao et  al. [7] examined the 
changes in human mobility according to a stay-at-home 
order and found that the relationship between mobility 
and COVID-19 incidence varied across different states. 
Similarly, but at a finer scale, a case study analyzing two 
distinct counties revealed that the associations between 
the spread of COVID-19 and human mobility varied sub-
stantially across areas even within the same county [10].

Temporal variations in the association between 
COVID-19 incidence and human mobility have also 
been examined. Katragadda et al. [19] showed that both 
local population mobility and visitors’ mobility elevate 
the COVID-19 transmission risk, and the way how these 
two types of mobility may affect the disease transmis-
sion varies across states and phases of the COVID-19 
pandemic. This study revealed that the influence of local 
mobility on disease transmission was predominant in 
the early stage of the pandemic and became weaker over 
time. Xiong et al. [9] also revealed that the degree of cor-
relation between COVID-19 cases and human mobility 
varied over time at the county level in the Xiong et  al. 
[9] grouped the counties into two categories—whether 
lock-downed or reopened, but did not focus on spatial 
heterogeneities in the time series correlation between 
disease incidence and mobility. However, understand-
ing both spatial and temporal heterogeneities simulta-
neously is necessary since time series correlation may 
vary geographically, even at small scales. Jewell et  al. 
[1] demonstrated time-varying relationships between 
human mobility and COVID-19 incidence across differ-
ent regions. This study provides evidence of spatial and 
temporal variations in the relationship between mobility 
and COVID-19 incidence, however, it is focused on one 
direction of the relationship (i.e., how mobility affects 
COVID-19 incidence). There is lack of a systematic 
approach to assess those heterogeneities across different 
directions of the relationship between disease incidence 
and mobility.

Many factors, such as risk perception, fear of infec-
tion, trust in the healthcare system, main occupation, 
and means of transport, also affect COVID-19 incidence 
directly or indirectly [12, 13, 17]. For example, Borkowski 
et al. [17] uncovered that larger families decreased their 
mobility more than smaller families. As they also found 
that people decreased traveling as they were more afraid 
of getting infected, bigger household sizes may increase 
the risk of infection and make people reduce mobil-
ity. Prior studies also found that the local variations in 
COVID-19 incidence were significantly affected by pop-
ulation distribution, age structures, and racial hetero-
geneity [10, 11]. These previous studies suggest that the 
COVID-19 incidence has spatial and temporal variations 

depending on not only human mobility flows but also 
complex sociodemographic processes and factors, espe-
cially in highly populated metropolitan areas. Although 
it is perhaps impossible to reveal the causal factors that 
alter the relationship between mobility and disease, 
in this article, our goal is to capture the non-stationary 
relationships that could help us develop hypotheses for 
explaining the complex relationship between social inter-
actions and disease dynamics.

Methods
We introduce a spatial time series analysis workflow to 
examine the bidirectional associations between human 
mobility and disease incidence and how such associa-
tions may vary over time and across different geographies 
at the county level in the U.S. Our workflow consists of 
four major steps (Fig.  1). We first process the COVID-
19 data to get daily new COVID-19 cases trend at the 
county level for three waves of the pandemic. We also 
estimate daily human mobility flows into and within each 
county using anonymous mobile phone location data. 
Then, we perform two-way Granger causality tests for 
each county to determine if there are any significant bidi-
rectional associations between the time series trends of 
daily COVID-19 cases and mobility flows. Finally, we use 
the dynamic time warping method to identify the form 
of the relationship, either positive or negative associa-
tion, and measure the magnitude of such association by 
standardizing the DTW measure. Although we study the 
association between human mobility and disease inci-
dence using COVID-19 as a case study, our workflow is 
generic and can be applied to study time series associa-
tions between two different spatiotemporal phenomena.

Case study and data
We use COVID-19 cases and human mobility flows 
of each county in the contiguous U.S. We collect the 
COVID-19 case data from COVID Risk and Vaccine 
Tracker [15], which is open to public through API. They 
provide many metrics, including daily new COVID-19 
cases for every county in the U.S. We then smooth daily 
number of new COVID-19 cases by applying 7-day mov-
ing average. For human mobility data, we use the data 
derived from anonymous and aggregated SafeGraph 
mobile phone location data [16]. We estimate human 
mobility flows between every pair of counties by extrap-
olating the sample SafeGraph data, which we describe 
more details in the next section. The time periods used 
in this study are the first wave is from April 1st, 2020, to 
May 31st, 2020; the second wave is from June 1st, 2020, 
to August 31st, 2020; and the third wave is from Novem-
ber 1st, 2020, to January 31st, 2021. These time peri-
ods are defined while considering seasonality, covering 
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the peaks of the COVID-19 case trend, and keeping the 
length of each period similar. For the spatial time series 
analysis, we use counties in metropolitan statistical areas. 
We also filter out counties whose average number of 
COVID-19 cases during our study period is less than the 
median value of the cases of all counties. This is to avoid 
the problems due to data sparsity since spatial time series 
analysis requires data to be disaggregated by both spa-
tially and temporally.

Estimating human mobility flows between counties
We obtain the mobility data from SafeGraph [16]. Data 
consist of the number of trips between every pair of 
census block groups derived from anonymous mobile 
phone locations, and each visit is a flow from one block 
group to another or an internal trip within a block group. 
The sample corresponds to approximately 10% of all 
mobile phone users. To estimate the population mobility 
between an origin block group O and a destination group 
D, we apply the following equation [20]:

Mobility from origin block group O to destination 
block group D is estimated by multiplying the number of 
devices that moved from O to D with the population of 
O divided by the number of devices in O. This formula 
provides a bulk estimate of the population mobility based 
on the assumption that populations who are not captured 
in the sample data had the same mobility behaviors as the 
captured populations do. We then aggregate block group 
to block group population flows into to county-to-county 

Mobility(O,D) = Devices(O,D)× Population(O)/Devices(O)

flows. Once we obtain mobility flows between every pair 
of counties, we compute inflow and within-flow meas-
ures for each county.

where inflow is the sum of all incoming flows into a 
county, and within-flow is the sum of mobility flows 
within a county (i.e., flows whose origin and destination 
county are the same). We are able to compute the flows 
that happen within a county since the original flow data 
is acquired at the block group level. flowji denotes the 
number of visitors from origin county i to destination 
county j , and n denotes the number of origin counties.

In this study, we use the sum of inflows and within-
flows in a county as a mobility measure. These two met-
rics capture distinct aspects of human mobility. Inflow 
measures the movement of people from other counties 
into the target county, while within-county flow tracks 
the movement of individuals already residing within the 
county. To understand the full scope of potential dis-
ease spread, it’s essential to consider both these types of 
movement. Inflows can introduce the virus and its new 
variants into the county, while within-county movement 
can facilitate the spread within the local population. The 
nature of inflow and within flow movements is likely to 
be different. Inflow movements are often influenced by 
factors like commuting for work, tourism, or regional 
events, which can vary significantly based on geographic, 
economic, or seasonal factors. On the other hand, within 

Inflowi =

n∑

j �=i

flowji Withinflowi = flowii

Fig. 1 Spatial time series workflow
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flows are typically related to not only commuting but 
also daily life activities such as shopping, school, and 
social gatherings. Therefore, we include both inflows 
and within-flows to avoid bias in our understanding 
of the relationship between mobility flows and disease 
incidence.

Finally, we apply a 7-day moving average smoothing to 
our daily mobility measure (sum of inflows and within-
flows) for each county to reduce daily fluctuations and 
sampling issues. This approach aligns our mobility data 
processing with the 7-day average smoothing used for 
COVID-19 case counts, ensuring consistency in our 
analysis.

Examining bidirectional associations between two time 
series across space and time
To investigate the associations between two time series 
trends, we use the Granger causality test. Granger causal-
ity tells us whether the past values of one variable could be 
used to forecast or explain the changes in another variable 
in the time series. The statistical test for Granger causal-
ity evaluates whether variable A can improve the predic-
tion of another variable B in the time series. The test also 
accounts for the case that a single variable can predict its 
own trend. Thus, the test evaluates whether information 
from both A and B predicts B better than B predicting its 
own trend. Granger causality shows whether two variables 
are associated in their time series and is different from 
cause-and-effect relationships. The Granger causality test 
is useful in our study since it provides statistical evidence 
of whether COVID-19 cases and human mobility have any 
significant relationships. We should note that unlike actual 
causality, which implies a direct cause-effect relationship, 
Granger causality in time series analysis merely suggests 
that one variable can be used to forecast another, without 
implying a true causal link.

Testing the stationarity of data and identifying the optimal 
lag
There are multiple steps for running the Granger causal-
ity tests for spatial time series data. First, we examine if 
time series data are stationary to eliminate the possibil-
ity of temporal autocorrelation that would skew the test 
results. The Granger causality test assumes that two 
time series to be analyzed are stationary because nonsta-
tionary data may produce misleading and spurious cor-
relations [21]. Stationary time series data should have 
constant mean and variance without seasonal trends. We 
use the Augmented Dickey–Fuller (ADF) test [22] which 
is one of the most popular statistical methods to test time 
series stationarity. If the ADF test result shows that the 
data is not stationary, data transformation such as dif-
ferencing can be applied. For example, one can use the 

differences between consecutive values (i.e., change of 
the values from one time point to the next), which help 
stabilize the mean and eliminate seasonal trends. The sta-
tionarity of transformed time series data also needs to be 
tested to perform the Granger causality test. Second, we 
determine the lag which is a time gap between two time 
series to be incorporated into the analysis. We decide the 
optimal lag based on the Akaike information criterion 
(AIC) [23] which is a commonly used estimator of the 
optimal lag length in time series analysis. AIC evaluates 
how well the model explains the data, and generally, AIC 
score is lower as a model fits better.

Identifying significant time series correlations using 
the Granger causality test
Using the stationary time series data and the optimal 
lag determined in the previous steps, we perform the 
Granger causality test. The model with two stationary 
time series Xt and Yt can be illustrated mathematically 
with the following equation [24]:

where m is the maximum lag, a and b are coefficients (i.e., 
the effect of lag j ), and ε is noise. In this study, we test 
two null hypotheses for each pair of spatial time series 
data: (1) COVID-19 cases do not Granger-cause mobil-
ity flows, and (2) Mobility flows do not Granger-cause 
COVID-19 cases. We reject the null hypotheses if a 
p-value for a Chi-Square test is less than 0.05. We per-
form the test in both directions since the results of the 
two tests are independent. Therefore, by testing these two 
hypotheses, we define four different cases in bidirectional 
relationships: (1) COVID-19 incidence Granger-causes 
human mobility, (2) human mobility Granger-causes 
COVID-19 incidence, (3) Both COVID-19 incidence and 
mobility Granger-causes each other simultaneously, and 
(4) There is no significant relationship between the trends 
of mobility and COVID-19. Furthermore, to examine 
spatial and temporal variations, these two hypotheses are 
tested for each county and each of three waves separately.

Measuring similarities of two time series by county
Although the Granger causality test examines if each 
county has a statistically significant correlation between 
COVID-19 infection and human mobility, it does not tell 
us whether two time-series trends of human mobility 
and COVID-19 cases have a positive or negative corre-
lation. We cannot quantify the magnitude of their corre-
lation using the Granger causality test, either. Therefore, 
we use the dynamic time warping (DTW) method to 
measure the similarity between COVID-19 cases and 

Xt =

m∑

j=1

ajXt−j +

m∑

j=1

bjYt−j + εt
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human mobility flows and map the spatial distribution of 
the similar and dissimilar time series trends [25]. DTW 
compares two or more time series by handling different 
lengths, noise, shifts, and amplitude changes [26, 27]. 
DTW computes a distance measure between two time 
series, which becomes smaller as those two series have 
more similar trends. Before computing DTW distances, 
we normalize all series using the min–max approach and 
rescale them to have a fixed range of [0, 1]. Normalization 
allows us to compare DTW values of different counties 
(i.e., spatial time series to each other by standardizing dif-
ferent ranges of values and units in different time series 
data. Thus, we calculate a DTW distance between the 
standardized human mobility and COVID-19 time series 
for each county to investigate the similarity between the 
two variables.

Results
Time series association between COVID‑19 incidence 
and human mobility
Before conducting time series analysis, we first filtered 
the counties among the 588 metropolitan statistical areas 
that had an average number of COVID-19 cases greater 
than the median number of cases of all counties during 
our study period. By differencing the data and conduct-
ing the ADF test, we identified 425 counties that had 
stationary time series for both COVID-19 cases and 
human mobility. Then, to find an optimal lag length for 
the Granger causality test, we computed AIC for each 
county and then calculated the mean of AIC values of all 
counties for each wave. As a result, in all three waves, the 
curve of mean AIC values of counties flattens around lags 
of seven and eight days, and then AIC maintains similar 

values as the lag length becomes longer. We chose to use 
a 7-day lag due not only because it has the lowest AIC 
values in waves 2 and 3, but also there is evidence from 
the previous studies of the earlier waves that found a 
7-day lag between the contact with an infected person 
and the manifestation of clinical symptoms [9].

Next, we performed the Granger causality analysis for 
each of the three waves to identify the significant time 
series associations between COVID-19 cases and human 
mobility flows. Figure  2 shows the number of statisti-
cally significant counties for each of four possible cases 
in bidirectional relationships: (1) COVID-19 incidence 
Granger-causes human mobility, (2) human mobility 
Granger-causes COVID-19 incidence, (3) significant in 
both ways, and (4) no significant relationship. The results 
in Fig.  2 reveal some interesting findings regarding the 
temporal variations in those bidirectional relationships. 
First, more than half of the counties do not have any 
statistically significant relationship between COVID-19 
incidence and mobility across all periods. Second, among 
the counties with significant relationships, overall, it is 
more common for COVID-19 cases to have a stronger 
effect on human mobility than human mobility does on 
COVID-19 incidence across different periods mainly 
because of NPIs. Third, the number of counties where 
COVID-19 cases Granger-cause mobility flows is 130, 
85, and 50 in waves 1, 2, and 3, respectively. The num-
ber keeps decreasing over the three waves. This supports 
the fact that human mobility was most strictly restricted 
during the earlier periods of the pandemic due to the 
enforced stay-at-home orders [28] and the fear of infec-
tion was also the highest in this early phase of the pan-
demic [12]. On the other hand, mobility has a significant 

Fig. 2 The number of counties with statistically significant relationships by directions
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influence on COVID-19 cases in only a few counties, 
which shows that mobility flows do not Granger-cause 
COVID-19 cases as much as the effect of COVID-19 on 
mobility. However, it is notable that the number of coun-
ties where mobility Granger-causes COVID-19 cases 
increase sharply in wave 3. It implies that the increase in 
mobility due to the reopening policies and the availability 
of COVID-19 vaccines in late 2020 results in having more 
influence on COVID-19 cases.

We further disaggregate this time-series trend in Fig. 2 
and investigate more detailed temporal patterns on how 
relationships between COVID-19 cases and human 
mobility changed or remained stable. Figure 3 shows how 
each of four possible cases in bidirectional relationships 
evolves throughout three different waves of the pan-
demic. In Fig. 3, the width of grey flow lines indicates the 
number of counties. Note that this Sankey diagram only 
includes counties with at least one significant relation-
ship over three waves.

The most frequent pattern of change (i.e., the widest 
flow line) is that COVID-19 incidence Granger-causes 
mobility in wave 1 without any significant relationship in 
waves 2 and 3. This result supports the previous findings 
that the correlation between COVID-19 cases and mobil-
ity was the strongest during the initial lockdown and 
became weaker since other factors resulted in complex 
disease dynamics as time passed [8]. Another notable 
pattern is that approximately half of the counties without 

any significant relationships in wave 1 changed to have 
a significant relationship that COVID-19 incidence 
Granger-causes mobility in wave 2, and the relationship 
of more than half of those counties again became insig-
nificant in wave 3. Such information is hidden when 
aggregated as in Fig.  2, although we can still find the 
general trend of decreasing number of counties where 
COVID-19 cases Granger-cause mobility from Fig. 2.

Although Granger causality helps identify the direc-
tion and significance of the association between two 
time series trends, these associations can vary in form 
such as positive and negative associations. Consequently, 
each of the four associations in Fig.  3 could have two 
distinct forms, which makes a total of eight possible 
scenarios. Figure  4 illustrates the time series trends of 
these eight distinct scenarios drawn from our county-
level time series analysis results. When COVID-19 inci-
dence Granger-causes human mobility with a negative 
association, there are two possible scenarios. In Kings 
County, NYC, the increasing trend of COVID-19 inci-
dence Granger-causes and precedes the decreasing trend 
of mobility in (Fig. 4b). Second, the decreasing COVID-
19 incidence Granger-causes and precedes the increas-
ing mobility trend in Queens County, NYC (Fig. 4c). The 
presence of these two distinct forms of associations can 
be attributed to specific behavioral patterns observed 
during the pandemic. When the disease incidence is on 
the rise, people tend to exhibit increased caution and 

Fig. 3 The number of counties that changed or remained stable in terms of the direction and significance of the association between disease 
incidence and mobility
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reduce their mobility, leading to a subsequent decline 
in mobility trends (as observed in Kings County, NYC). 
Conversely, when the pandemic situation is less severe 

and disease incidence is declining, individuals tend to 
become more willing to travel, resulting in a subse-
quent increase in mobility trends (as observed in Queens 

Fig. 4 Eight possible scenarios in the bidirectional relationship between COVID-19 incidence and mobility flows. Each of A–H in a red box indicates 
each scenario
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County, NYC). These patterns highlight the relationship 
between the severity of the pandemic and individuals’ 
willingness to travel, ultimately influencing the direc-
tion of the association between COVID-19 incidence and 
mobility. The association can also be positive in the form 
of increasing or decreasing trends. Figure 4a illustrates a 
positive association such that both COVID-19 cases and 
mobility flows are increasing, while Fig. 4d illustrates that 
both trends are decreasing. In both cases (Fig. 4a, d), the 
trend of COVID-19 Granger-causes and precedes that of 
mobility flows. This implies that human mobility flows 
are affected by many factors other than the pandemic 
severity, such as better mask-wearing and social distanc-
ing policies, which is also discussed in the previous study 
[1].

Likewise, when mobility flows Granger-cause and pre-
cede COVID-19 incidence, the association can be both 
positive and negative. The increasing COVID-19 cases 
can be followed by the increasing mobility flows (Fig. 4e) 
since increased mobility can be a proxy of more social 
interactions and a higher risk of infections. On the con-
trary, the decreasing trend of mobility can Granger-cause 
the decreasing COVID-19 incidence (Fig. 4h). However, 
if there are negative associations, it is also possible that 
the trend of COVID-19 cases is increasing although 
mobility flows are decreasing (Fig.  4g) or vice versa 
(Fig. 4f ), which implies confounding factors affecting the 
COVID-19 incidence trend.

We further investigated the distribution of the counties 
with significant Granger-causality across eight types of 
scenarios. To do so, for each county and for each wave, 
we performed the analysis of (1) Pearson correlation to 
examine if two trends of COVID-19 and mobility have 
a positive or negative association and (2) a simple linear 
regression to decide if each of COVID-19 and mobility 
trends is increasing or decreasing. As a result, we found 
that when COVID-19 trend Granger-causes mobility 
trend, they are more likely to have positive correlation 
where both trends are increasing in wave 1 and wave 2. In 
wave 3, however, the most common scenario is that those 
two trends have a negative correlation where COVID-19 
cases are increasing, and mobility flows are decreasing. 
On the other hand, when mobility trend Granger-causes 
COVID-19 trend, those two trends are more likely to 
have negative associations in waves 1 and 3, but positive 
associations are more common in wave 2. More detailed 
results can be found in the Appendix.

Spatial and temporal variations of COVID‑19 incidence 
and mobility relationship
We investigate how bidirectional relationships between 
COVID-19 incidence and human mobility are spatially 
distributed and how those spatial distributions change 

over time (i.e., across different waves). Figure 5 demon-
strates the spatial variations in the relationship between 
COVID-19 incidence and human mobility with differ-
ent directions of their relationship for each period. Dur-
ing wave 1, COVID-19 hit urban areas harder than rural 
areas [29]. The areas where COVID-19 Granger-causes 
mobility (in orange) also include metropolitan areas such 
as New York City, Chicago, Atlanta, Minneapolis, and 
San Francisco. This suggests that increased incidence of 
COVID-19 in large and dense metropolitan areas forced 
people reduce their mobility more substantially than in 
suburban and low-density urban areas. In contrast, wave 
2 is when reopening policies started to be implemented, 
and many metropolitan areas of the South and South-
west experienced a surge. Some of those areas includ-
ing Houston, Charlotte, and Las Vegas have a significant 
relationship that COVID-19 cases Granger-cause human 
mobility as shown in orange in Fig.  5. However, in this 
period, COVID-19 virus was not limited to metropoli-
tan areas and had been widely spread to suburban and 
some rural areas as well [28]. As a result, the number of 
counties with significant relationships between COVID-
19 cases and mobility in metropolitan areas became 
smaller. For example, some cities such as Chicago, Kan-
sas City, and Indianapolis which had significant relation-
ships in wave 1 are no longer significant in wave 2. Wave 
3 is when the COVID-19 pandemic is the most severe 
with a peak of daily cases and deaths over the country. 
Like in wave 2, the number of counties where COVID-
19 Granger-causes mobility keeps getting smaller in wave 
3. Interestingly, on the other hand, the number of coun-
ties where mobility Granger-causes COVID-19 cases has 
increased. Indeed, in some areas such as Kansas City and 
Indianapolis where COVID-19 Granger-causes mobility 
in wave 1, the direction becomes the opposite in wave 3. 
Spatial variations during this period may be explained by 
the fact that the lift of lockdown policy was implemented 
by different states without a national mandate [8].

To further investigate if counties that have significant 
Granger causality are spatially clustered, we employed 
univariate local joint count statistics developed by 
Anselin and Li [30]. This is a local indicator of spa-
tial association which is appropriate when a variable 
of interest is binary. This method allows us to statisti-
cally test if a county with a specific type of significant 
Granger causality result is surrounded by counties 
with the same significant Granger causality result than 
would be expected under conditions of spatial random-
ness. Here, we have two granger causality types: (1) 
COVID-19 incidence granger-causes mobility flows, 
and (2) Mobility flow granger-causes COVID-19 inci-
dence. So, for each of three waves and for each of two 
granger causality types, we computed local join count 
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statistics. Table  1 shows the number of counties that 
are significantly locally clustered with other counties 
with the same Granger causality type at the 0.05 level of 
significance. The numbers in parentheses indicate the 
total number of counties with significant Granger cau-
sality of each type. So, during wave 1 for example, there 
are 149 counties where COVID-19 Granger-causes 
mobility, and among them, 23 counties are locally 
clustered. Interestingly, these local clusters are mostly 
located near metropolitan areas including New York 

City (NY), Philadelphia (PA), Charlotte (NC), Chicago 
(IL), and Dallas (TX). The discovery of these clusters 
near these major metropolitan areas during different 
waves indicates that urban centers, with their higher 
population density and mobility, played a crucial role in 
the dynamics of COVID-19 spread and response.

These findings  reveal that counties with a particu-
lar type of Granger causality (either COVID-19 inci-
dence Granger-causing mobility flows or mobility flows 
Granger-causing COVID-19 incidence) tend to be geo-
graphically clustered rather than randomly distributed. 
This clustering is observable in each of the three waves 
of the pandemic, for both types of Granger causality. 
The number of counties showing significant local clus-
tering with similar Granger causality types suggests 
that the pandemic’s impact and the response in terms 
of mobility were not uniform across the U.S. but con-
centrated in specific regions.

Fig. 5 Spatial and temporal variations of COVID-19 and mobility relationship. (‘COVID-19 ↔ Mobility’, ‘COVID-19 → Mobility’, ‘Mobility → COVID-19’, 
and ‘Not Significant’ indicates ‘COVID-19 and Mobility simultaneously’ Granger-cause each other’, ‘COVID-19 Granger-causes mobility’, ‘Mobility 
Granger-causes COVID-19’, ‘There is no significant relationship’, respectively)

Table 1 Number of counties that are locally clustered with other 
counties having the same Granger causality at the 0.05 level of 
significance

The numbers in parentheses indicate the total number of counties with 
significant Granger causality of each type

Wave 1 Wave 2 Wave 3

COVID-19 → Mobility 23 (149) 3 (89) 5 (60)

Mobility → COVID-19 2 (44) 0 (9) 7 (57)
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Assessing similarity between time series of COVID‑19 
incidence and human mobility
The results from the Granger causality analysis identi-
fies the existence of statistically significant associations 
between the two time series trends. However, the mag-
nitude of association among the trends is unknown. We 
computed DTW distances between the standardized 
series of COVID-19 cases and mobility flows for each 
county and each wave to compare the similarity between 
the two trends across different geographies and through-
out the different waves. Figure  6 highlights geographic 
variations in DTW distances over three time periods. The 
DTW distances are classified into five classes using Jenks’ 
natural breaks. To fairly compare different waves, we first 
defined classes based on all DTW distance values over 
three waves and then apply the same classification to all 
of the three waves. Overall, the degree of similarity is the 
highest in wave 1, and while it is gets gradually smaller in 
waves 2 and 3. This implies that the relationship between 
COVID-19 cases and mobility was strongest in wave 1, 

but other factors began to affect COVID-19 cases as the 
pandemic continued, which also corresponds with the 
results of the Granger causality test. Also, more impor-
tantly, the results from DTW demonstrate that even 
though there are statistically significant relationships 
between COVID-19 cases and mobility flows consist-
ently over periods, the degree of such relationships may 
vary across space and time. For example, in Las Vegas, 
COVID-19 Granger-caused mobility flows in all three 
waves (Fig.  5); however, the DTW distance of that area 
was the largest in wave 2 and the smallest in wave 1 (cir-
cles in Fig. 6), which shows that the degree of their cor-
relations changed over different waves.

To better understand the changes in the degree of 
similarity between COVID-19 case and mobility trends, 
we further investigated how DTW distances varied over 
time and whether the trends in cases and mobility were 
positively or negatively correlated (Table  2). We could 
confirm that the similarity between the two trends of 
COVID-19 cases and mobility flows became weaker, 

Fig. 6 DTW distances for mobility and COVID-19 incidence in study areas. The value becomes smaller as two time series have more similar trends. 
Counties with shorter distances (in blue color hue) have more similar trends
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indicated by increasing DTW distances. More interest-
ingly, however, the DTW distances showed notable dif-
ferences based on the nature of the association (positive 
or negative) between the two trends, as determined by 
Pearson’s correlation coefficient. Specifically, when there 
was a positive correlation between COVID-19 incidence 
and mobility trends (i.e., both trends moved in the same 
direction), we found that the similarity in their patterns 
weakened. In contrast, a stronger similarity was observed 
when the trends were negatively associated (i.e., mov-
ing in opposite directions). Despite these variations, the 
overarching trend points to a general decline in the simi-
larity between COVID-19 case numbers and mobility 
patterns. This finding suggests that the dynamics of the 
pandemic and public response, as reflected in mobility 
changes, have evolved in complexity. Initially, more direct 
relationships might have existed, but over time, factors 
such as changes in public behavior, and policy interven-
tions could have influenced these patterns.

Discussion and conclusions
During the COVID-19 pandemic, many countries have 
implemented non-pharmaceutical interventions (NPIs) 
that restrict human mobility such as stay-at-home orders 
to curtail the spread of the disease. To enhance the effec-
tiveness of such interventions, it is crucial to understand 
the association between human mobility and COVID-
19 incidence. Previous studies have indicated a positive 
correlation between COVID-19 incidence and human 
mobility, although this correlation has demonstrated 
variations across geographic regions and different phases 
of the pandemic. While it is recognized that COVID-19 
incidence and human mobility can mutually influence 
each other, the intricacies of these bidirectional relation-
ships remain incompletely understood. Furthermore, 

these bidirectional relationships may also exhibit vari-
ability across geographic regions and evolve over time, 
particularly as the pandemic persists with new waves and 
strains of the virus.

Our study presents an exploratory spatial time series 
analysis workflow designed to examine the spatial 
and temporal variations in bidirectional relationships 
between COVID-19 incidence and human mobility. 
Overall, our findings indicate that COVID-19 incidence 
had a more significant impact on mobility compared to 
the influence of mobility on COVID-19. The correlation 
between these variables was strongest during the initial 
wave of the pandemic and gradually weakened over time, 
primarily due to the implementation of NPIs in earlier 
waves. By utilizing a typology of change patterns, we 
identified shifts in the direction and significance of the 
relationship between COVID-19 incidence and mobility 
across different waves for specific counties. These shifts 
can be attributed to changes in disease control measures, 
risk perception, and the evolving behaviors of individu-
als, which vary both spatially and temporally. Further-
more, our workflow includes the application of dynamic 
time warping (DTW) to quantify the degree of similarity 
between COVID-19 cases and mobility flows by compar-
ing their time series trends. Through visualizing stand-
ardized DTW distances, we provide insights into the 
spatial distribution of similar and dissimilar trends in dis-
ease incidence and mobility.

This study, however, has some limitations which need 
further investigation in future studies. In our analysis, 
we have primarily focused on examining the relation-
ships between mobility flows and COVID-19 incidence 
across larger temporal scales defined by the pandemic 
waves. This approach aligns with our goal to capture 
broader trends and associations. We acknowledge that 

Table 2 Descriptive statistics of DTW distances between two trends of COVID-19 incidence and mobility flows

Mean Min 25% 50% 75% Max

Wave 1

 Total 2.050 0.225 0.927 1.772 2.938 6.067

 Positive association 1.088 0.225 0.673 0.983 1.388 2.644

 Negative association 3.132 0.708 2.421 3.033 3.890 6.067

Wave 2

 Total 2.162 0.585 1.353 1.970 2.614 6.345

 Positive association 1.557 0.585 1.033 1.431 1.931 4.708

 Negative association 2.606 0.846 1.816 2.412 3.084 6.345

Wave 3

 Total 2.172 0.813 1.600 2.043 2.648 4.287

 Positive association 2.042 0.813 1.398 1.907 2.484 3.853

 Negative association 2.207 0.839 1.627 2.099 2.668 4.287
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employing smaller temporal scales, such as a moving 
window of 2–3  weeks, could potentially uncover more 
detailed relationships within each defined period. For 
instance, the increasing and then decreasing pattern 
in case counts observed during each wave used in this 
study might be more distinctly segmented and analyzed 
by dividing this period into smaller sub-periods. Such a 
granular approach could reveal multiple occurrences and 
types of the “Granger-causing” relationships, offering a 
more detailed understanding of the interplay between 
mobility and infection rates. While acknowledging the 
significance and potential insights of such fine-scaled 
temporal analysis, it extends beyond the scope of our 
current study, which is designed to explore overarch-
ing trends across broader pandemic waves. This limita-
tion, however, presents a promising direction for future 
research. Investigating the pandemic dynamics at a finer 
temporal resolution could provide valuable insights into 
the rapidly evolving nature of the pandemic and its inter-
action with human mobility patterns, thereby contribut-
ing to a more comprehensive understanding of pandemic 
behaviors and policy responses.

Another limitation is that we only consider human 
mobility flows as a factor that may affect COVID-19 or 
be affected by COVID-19. However, we acknowledge 
that many different factors, beyond mobility alone, play 
integral roles in understanding the dynamics of the pan-
demic. These factors, such as means of transport, avail-
ability to work from home, fear of infection, and the 
culture of communities, can have both direct and indi-
rect influences on disease transmission. For example, 
the means of transport is a vital aspect often intertwined 
with mobility patterns. Variations in public transporta-
tion usage, personal vehicle use, and the availability of 
safe transport options can significantly affect not only the 
movement of individuals but also the spread of infectious 
disease. Additionally, the emotional and psychological 
aspect of fear related to infection can be another factor. 
Understanding how fear of infection influences mobility 
choices, social interactions, and adherence to preventive 
measures will help us better understand mobility behav-
iors and their association with disease incidence. Incor-
porating these additional factors beyond mobility into 
our analysis represents a promising direction for future 
research. It will allow us to gain more comprehensive 
understanding of the dynamics between disease inci-
dence and human behaviors.

Finally, it’s important to acknowledge certain aspects 
of data uncertainty and representativeness that were not 
explicitly addressed in this study. Our analysis utilizes 
daily COVID-19 case numbers and mobility flows, which 
are derived from mobile phone location data. While these 
datasets are invaluable for understanding the pandemic’s 

dynamics and people’s movement patterns, they inher-
ently carry some level of uncertainty. This uncertainty 
stems from factors such as reporting delays, variations in 
testing rates for COVID-19, and the representativeness of 
mobile phone data for the entire population. Such uncer-
tainties might have some impact on our findings, particu-
larly when exploring the spatial and temporal variations 
in the relationship between COVID-19 and mobility 
trends. For example, the fact that not every person has 
a mobile phone and the SafeGraph mobile phone data 
is known to use a 10% sample of all cell phone provid-
ers in the U.S. obviously creates some bias. Although a 
recent study examined that the SafeGraph mobility data 
have relatively consistent sampling rate and highly cor-
related with the census population both in urban and 
rural areas at the county level [31], these data need to be 
analyzed and interpreted with caution. Moreover, regard-
ing temporal variations, COVID-19 cases may be under-
reported in some periods, and different testing practices 
in different areas and time periods may also distort the 
actual trends of the disease. During wave 1, particularly, 
it was more difficult for the public to get a COVID-19 
test compared to other phases [28]. The undercounting of 
COVID-19 cases can lower the data quality and hinder 
accurate analysis in COVID-19 research [32]. In future 
research, the COVID-19 data can be validated against 
external benchmarks, such as excess mortality estimates, 
which capture the number of deaths above the expected 
baseline. We can evaluate whether the reported COVID-
19 data aligns with the overall increase in mortality 
during the pandemic. Incorporating validation against 
excess mortality estimates or other external benchmarks 
in future studies will help us address the uncertainties 
in COVID-19 case report data to ensure more precise 
correlations between COVID-19 incidence and human 
mobility.

Despite the limitations, our study contributes to a bet-
ter understanding of the spatial and temporal dynamics 
of disease incidence in relation to human spatial inter-
actions. This understanding is crucial as it helps reveal 
confounding factors and processes that influence dis-
ease dynamics. Additionally, our findings show evidence 
on how the outcomes of healthcare policies may vary 
at the city or county level, which provides a wide array 
of possibilities for location-based interventions to con-
trol the spread of COVID-19. Here, we highlight just 
three examples. First, NPIs such as lockdowns and travel 
restrictions could be dynamically adapted to location 
conditions. For instance, regions with a strong correla-
tion between high COVID-19 incidence and increased 
mobility might benefit more from stricter mobility con-
trols. Conversely, areas with lesser correlation could 
consider more nuanced restrictions, balancing disease 
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control and socioeconomic activities. Second, the iden-
tification of areas where COVID-19 incidence signifi-
cantly impacts mobility can help in directing public 
health messaging, and resources. In regions where the 
study shows that COVID-19 incidence didn’t significantly 
deter mobility, there might be a need for more aggressive 
public awareness campaigns about the risks of mobility 
during high transmission periods. Third, by understand-
ing the spatial and temporal trends of COVID-19 spread 
in relation to mobility, health authorities can allocate 
medical resources, testing facilities, and vaccination cam-
paigns more effectively. Regions identified as high mobil-
ity despite high COVID-19 rates might require increased 
healthcare capacity or targeted vaccination drives.

Furthermore, while our study focuses on COVID-19 
incidence and human mobility, the proposed methodol-
ogy is generic and can be applied to explore time series 
associations between various spatiotemporal phenom-
ena. For example, it can be extended to investigate the 
interactions between human mobility flows or contact 
tracing data and the evolution of other infectious dis-
eases such as Influenza, which exhibit spatial and tempo-
ral variations.

Appendix: The distribution of the counties 
with Granger‑causality across eight scenarios
We conducted a further investigation to show the dis-
tribution of the eight types of scenarios more clearly. To 
do so, for each county and for each wave, we performed 
additional analysis of (1) Pearson correlation to examine 
if two trends of COVID-19 and mobility have a positive 
or negative association and (2) a simple linear regres-
sion to decide if each of COVID-19 and mobility trends 
is increasing or decreasing. The Table 3 below shows the 
distribution of 272 counties that have at least one signifi-
cant Granger-causality over three waves. This table illus-
trates the number of counties for each of eight scenarios. 
This gives us more detailed information about the rela-
tionship between COVID-19 and mobility trends. When 
COVID-19 trend Granger-causes mobility trend, they are 
more likely to have positive correlation where both trends 
are increasing in wave 1 and wave 2, but in wave 3, the 
most common scenario is that those two trends have a 
negative correlation where COVID-19 cases are increas-
ing, and mobility flows are decreasing. On the other 
hand, when mobility trend Granger-causes COVID-19 
trend, those two trends are more likely to have negative 
associations in waves 1 and 3, but positive associations 
are more common in wave 2. More specifically, in wave 2, 
positive association where both COVID-19 and mobility 
trends are increasing is the most common scenario.
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