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Abstract 

Background Assuring that emergency health care (EHC) is accessible is a key objective for health care planners. 
Conventional accessibility analysis commonly relies on resident population data. However, the allocation of resources 
based on stationary population data may lead to erroneous assumptions of population accessibility to EHC.

Method Therefore, in this paper, we calculate population accessibility to emergency departments in Sweden 
with a geographical information system based network analysis. Utilizing static population data and dynamic popula-
tion data, we investigate spatiotemporal patterns of how static population data over- or underestimates population 
sizes derived from temporally dynamic population data.

Results Our findings show that conventional measures of population accessibility tend to underestimate population 
sizes particularly in rural areas and in smaller ED’s catchment areas compared to urban, larger ED’s—especially dur-
ing vacation time in the summer.

Conclusions Planning based on static population data may thus lead to inequitable distributions of resources. This 
study is motivated in light of the ongoing centralization of ED’s in Sweden, which largely depends on population sizes 
in ED’s catchment areas.
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Background
Accessible health care is a fundamental part of a well-
functioning society. In the most time-sensitive condi-
tions, such as stroke, acute heart conditions and severe 
trauma, minutes until receiving medical intervention 
can be the difference between survival and death. Longer 
travel distances to the emergency department (ED) and 
time delays in reaching the ED have been associated with 

increasing risk of mortality [1, 2]. To assure as quick 
medical intervention as possible for patients, planners 
and decision makers generally aim at increasing the share 
of the population that can reach (or be reached by) health 
care resources within stipulated time thresholds in order 
to maximize population accessibility.

Hitherto, analysis of the populations’ accessibility to 
emergency health care (EHC) has generally relied on 
census data where the share of the population that can 
reach an ED within a certain time frame is calculated in 
geographical information systems (GIS). However, this 
type of analysis is flawed as the population is implicitly 
assumed to be stationary. In reality, individuals relocate 
in space over the course of the day when they travel to 
work, and spend leisure time in recreational areas at cer-
tain times of the day and in certain seasons of the year. 
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Implicitly assuming stationarity of populations may thus 
lead to over- or underestimation of population accessibil-
ity in certain areas, at certain times of the day [3]. With-
out considering temporality there is a risk that planners 
"may end up making decisions based on unrealistic or 
false information regarding e.g.[…] social equity in terms 
of service provision.” [4].

Despite accessibility being an essentially dynamic con-
cept [5], the mapping of populations is still largely con-
strained by the limitations of census data [6]. As others 
have noted, novel data sources such as location data from 
the mobile network should be “critically employed […] 
to address long-standing questions of social justice [and] 
inequality…” [7]. In this vein, we investigate how tempo-
rality can be included in the analysis of spatiotemporal 
patterns of population accessibility to ED’s in Sweden. 
The main novelty is that we compare accessibility meas-
ures derived from static population data (census) and 
dynamic population data (location data from the mobile 
network) to illuminate how conventional accessibil-
ity analyses may over- and underestimate shares of the 
total population in certain places, at certain times. This 
is important because if static population data is inaccu-
rately reflecting the actual population size, resources may 
unknowingly be allocated in sub-optimal ways. We focus 
particularly on urban and rural differences. This is moti-
vated by an ongoing large-scale centralization of ED’s in 
recent decades, both in Sweden [8], and internationally 
[2, 9–11] that tend to disfavor rural areas [12]. Closure 
of rural ED’s have also been argued to have “substantial 
consequences on patient outcomes, particularly among 
communities with limited resources for time-sensitive ill-
nesses” [13].

Aim and research questions
The aim of this study is to assess temporal variations in 
population accessibility to ED’s in Sweden and to com-
pare accessibility measures based on static population 
data with measures based on dynamic population data. 
This is achieved by calculating travel times to the closest 
ED for different areas covering all of Sweden, and then 
estimating the share of the population that have access 
to an ED within various time thresholds (10, 20, 30, 
60 min or more). Then, we compare resident population 
data (static) and location data from the mobile network 
(dynamic) to assess spatiotemporal clusters of under- or 
overestimation of population accessibility when using 
static population data as a base for analysis. Lastly, we 
show the impact that such over-and underestimations 
may have for planning by illustrating how ‘inaccurate’ 
resident population data is reflecting shares of the total 
population at different times of the year, using the catch-
ment areas of Sweden’s ED’s as units of analysis.

The research questions were thus;

– What are the spatiotemporal patterns of population 
accessibility to ED’s in Sweden?

– Does population accessibility to ED’s based on static 
population data over- or underestimate compared to 
population accessibility estimated from location data 
from the mobile network, and are there variations 
in over- and underestimation over the day; between 
weekdays and weekends; and/or between months?

– Are there spatiotemporal clusters of over- and under-
estimation of population shares in Sweden’s ED’s 
catchment areas, and does over- and underestima-
tion vary between different ED types?

The article is structured as follows; first, we define 
accessibility and how it is conceptualized in this study. 
This is followed by a definition of accessibility in the con-
text of EHC planning, and a brief summary of research in 
this field and how mobile phone data has been utilized in 
research on accessibility. Then, the study area (Sweden) 
is presented. This is followed by a description of the data 
and methods used. The results are then presented and 
discussed, before the article is concluded with some fin-
ishing conclusions and reflections.

Previous research
Defining accessibility and incorporating temporality
Conceptually, accessibility is difficult to define due to 
the complexity of determining the factors that affect it. 
Outlining several dimensions of accessibility, referring to 
economical, geographical and social aspects of the con-
cept, Penchansky and Thomas [14] define access as a rep-
resentation of “the degree of “fit” between the clients and 
the system”. Similarly, Levesque et  al. [15] define access 
to health care as “the opportunity to reach and obtain 
appropriate health care services in situations of perceived 
need of care”. Accessibility is in other words determined 
by an interplay between supply-side factors related to 
the organization of health care resources, and demand-
side factors related to the population. Accessibility has 
also been conceptualized as depending on spatial and 
aspatial dimensions. Factors such as health care financ-
ing and cultural understandings belong to the latter cat-
egory, while travel times and distances between patient’s 
location and service points belong to the latter—which 
is therefore often referred to as spatial accessibility [16]. 
This distinction is particularly useful when researching 
EHC accessibility. In emergencies, time is critical and 
factors pertaining to the geographic distance or travel 
times are therefore central. Despite the recognition that 
spatial accessibility is inevitably largely determined by the 
geographical relationship between patients and service 
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points, much of the existing literature on accessibility to 
EHC does not account for population’s mobility and the 
dynamic nature of accessibility [5].

However, increasing availability of population data with 
high spatiotemporal resolution has opened up possibili-
ties to incorporate temporality in accessibility research. 
Temporally sensitive accessibility is conceptualized by 
Järv et  al. [4] as depending on three primary factors—
people, transport and activities. Accessibility, they argue, 
depend on where people are located and at what time 
(people), on the current conditions of the transportations 
network affecting travel times (transport) and on the des-
tination (activity), referring to factors such as e.g. opening 
hours or capacity to provide a certain service. Compar-
ing models including one of each of the factors, and all 
combined, they concluded that the “activity” factors—e.g. 
the spatial availability of service points and having strict 
opening hours, had the greatest influence on accessibil-
ity measures that include temporal factors, compared to 
those that do not. Usually, research tends to incorporate 
one or two of these aspects in models, largely depending 
on data availability. For example, Rong et al. [17] included 
live traffic data (transport) to make more realistic meas-
ures of equity of spatial accessibility to public medical 
facilities, while using static population and activity data. 
In contrast, Tenkanen et al. [18] utilize temporally vary-
ing population data (people) to assess variations in acces-
sibility to grocery stores at different times of days.

Accessibility analysis in EHC
Accessibility to EHC is commonly calculated by carrying 
out service area analyses. This is done by first generat-
ing travel time buffers from ED’s or ambulance stations, 
and then summarizing the proportions of the population 
that fall within these buffers. For example, Lilley et  al. 
[19] summarized the population located within differ-
ent time thresholds based on travel times between ED’s 
and the centroids, i.e. geometrical central points of pop-
ulation blocks, in New Zeeland. Similarly, Branas et  al. 
[20] calculated the percentage of the US population that 
could reach a trauma center using ground ambulances 
or ambulance helicopters within 45 and 60  min, and 
Klein et al. [21] calculated the proportion of the popula-
tion that could reach a burn care facility within 1 or 2 h. 
Spatial accessibility can also be calculated by finding the 
fastest route between population block centroids and the 
closest ED or ambulance station, which can be useful to 
make statistical comparisons of accessibility across e.g. 
urban and rural areas (see e.g. [22]).

Incorporating temporality in spatial analysis has 
increasingly become a focus of research in recent years. 
This trend has been driven largely by the widespread and 
almost ubiquitous use of cell phones in many societies, 

and increasingly available data of population’s location 
with high spatiotemporal resolution. Such data is useful 
in many different research fields [23]. For example, dur-
ing the Covid-19 pandemic, movement data from the 
mobile network was used to indicate spatial patterns of 
infection and spreading (see e.g. [24, 25]) and to assess 
how population mobility changed following implemen-
tation of restrictions [26]. In transportation research, 
mobile phone data has been utilized to study mobility 
patterns to expand knowledge on where, when and why 
populations travel [27] and to estimate spatiotempo-
ral variations in accessibility to public transport [28]. A 
comprehensive summary of the potential applications of 
location data from the mobile network in research is pro-
vided by Blondel et al. [29].

For emergency situations, including temporality in 
accessibility analysis is of particular interest because the 
geographical relationship between the closest ED and the 
patient may impact the chances of survival [1, 13]. Stud-
ies that utilize temporally dynamic population data show 
different findings in terms of where and when population 
accessibility changes compared to static population data. 
For example, variations in accessibility over the day has 
been shown to be greater in areas with high population 
flows [3]. Comparing the accessibility of rural and urban 
ED’s when using census tract data and location data 
from the mobile network, Yun et al. [30] found that rural 
ED’s were less accessible than urban ED’s when based on 
static census tract population data. However, they argue, 
if potential demand is taken into account, the opposite 
was true. Basing the accessibility analysis on location 
data from the mobile network, rural ED’s were found to 
be more accessible than urban ED’s because the popu-
lation is reduced in the day when people commute into 
urban areas to work. As a result, the potential number 
of patients, i.e. demand, is reduced in rural areas, while 
increasing in urban areas.

Study area
The study area included all of Sweden, with a population 
of nearly 10.5 million [31]. Sweden is the third largest 
country in the European Union in terms of area, whilst 
the population size is the eleventh largest [32]. There is a 
north–south divide in terms of population density, where 
the northern parts of Sweden are generally less popu-
lated. In the north, populations are concentrated along 
the coast where the larger cities are located. This hetero-
geneity in geographical and demographical conditions, 
and the fact that the number of ED’s have been reduced 
from 115 to today’s 68 since 1970 [8], makes Sweden an 
interesting case study.

In Fig. 1, Sweden is depicted by grid cells (left) and by 
ED catchment areas (right)—the units of analysis in this 
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study. The varying size of the grid cells reflect varying 
population density, where smaller grid cells are located 
in more densely populated areas. Due to the lack of a 
homogenous definition of what an ED is, it is defined 
here, derived from an official Swedish report, as a hos-
pital department that can treat patients in acute need of 
care without the patient having a booked appointment, 
and also has two or more medical specialist competences 
[8]. The hospitals in which the ED’s are located are often 
categorized based on their size and capacities. Although 
there are no exact definitions of what differentiates them, 
“Level 1” hospitals are located in the largest cities, have 
more resources and can treat uncommon conditions 
while Level 2 and Level 3 hospitals serve smaller popula-
tions, have less resources and are often located in smaller 
cities or rural areas [8].

Methods
Data descriptions
Several data types, from different sources, were employed 
to carry out the analysis. These are presented in Table 1 
below. Two separate datasets containing population data 
were employed. One to represent dynamically moving 

populations, provided by Telia, Sweden’s largest telecom-
munications company with mixed public–private own-
ership, and one containing static population numbers, 
provided by Statistics Sweden. The former was based 
on location data from the mobile network, aggregated 
to a grid. The two grids had overlapping borders which 
made it possible to combine them in order to compare 
dynamic and static population counts. However, the grid 
with static population data from Statistics Sweden had 
a homogenous size on all grid cells—1  km2—while the 
grid cells in the Telia grid had varying sizes depending 
on population density and a need to ensure than enough 
individuals (a minimum of 5) were located within each 
cell at a certain hour to prevent the possibility of identi-
fying individuals. These grid cells varied in size, ranging 
between 4096 and 0.25  km2.

The dynamic population data consisted of popula-
tion counts aggregated to 22,763 individual grid cells 
in a grid covering all of Sweden. The population counts 
were aggregated based on the number of mobile phones 
located in a grid cell on an hourly basis for every day 
between January 1, 2019 and April 1, 2020. In other 
words, once per hour, the number of phones present 

Fig. 1 The study area, separated by grid cells used in the analysis (left) and ED catchment areas (right)
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in each grid cell were summarized. In total, the dataset 
contained 229,740,975 observations. Furthermore, the 
Telia population data contain no device-specific data, 
and the aggregation process works to make identifica-
tion of an individual impossible.

To facilitate analysis of differences between urban 
and rural areas, urban, densely populated and rural 
area definitions from the Swedish Association of Local 
Authorities and Regions (SALAR) were used. It is an 
official national system of categorizing rural and urban 
areas in Sweden. The definitions rely on population 
size and commuting behavior—urban municipalities 
contain less than 20% of the population living in rural 
areas and have, together with neighboring municipali-
ties, more than 500,000 residents. Densely populated 
municipalities have less than 50% of the population liv-
ing rural areas and at least half of the population com-
mute less than 45 min to cities with more than 50,000 
residents. Rural municipalities have more than 50% of 
the population living in rural areas [33].

The road network covering all of Sweden was down-
loaded from the Swedish national road network data-
base (Nationella vägdatabasen, NVDB) and consisted 
of 2,135,134 individual road segments, including speed 
limits for each segment. The road network was split at 
intersections to assure that each line was connected 
at an endpoint. This generated an additional 710,761 
road segments, as several roads were split into shorter 
segments. Walking roads, i.e. roads with speed limits 
below 10  km/h, were removed, and the resulting road 
network contained 2,541,347 individual segments. 
Travel times were calculated for each road segment 
by dividing the length of each segment with the speed 
limits. All hospital based ED’s in Sweden (N = 68) were 
extracted manually as.kmz-files from Google Earth 

based on a list from a recent official report on the cur-
rent state of Sweden’s EHC system [8], and were then 
geocoded into a GIS.

Methodology
To facilitate an analysis where the static and dynamic 
population sizes could be compared, the first step of the 
analysis was to combine the grids from Statistic Sweden 
and from Telia. The two grids were imported to ESRI 
ArcGIS. Then, the static population data in the grid from 
Statistics Sweden was incorporated into the Telia grid. 
While the grids shared borders, the Telia grid cells had 
varying sizes. In the most densely populated areas, they 
were smaller than the grid cells from Statistics Sweden. 
Some had an area of 0.25  km2, compared to the grid from 
Statistics Sweden which had an area of 1  km2. Where 
this occurred, the grid cells from Statistic Sweden were 
divided into 4 smaller grid cells, each overlapping with 
the Telia grid cells. The population size was split equally 
between them, i.e. it was assumed that the static popu-
lation was equally spread within the grid cell. In less 
densely populated areas, the Telia grids were larger—up 
to 4096  km2. Where this occurred, the static population 
size from all the overlapping grid cells in the Statistic 
Sweden grid was summarized and incorporated as a sep-
arate field in the Telia grid. This process generated one 
grid containing both static and dynamic population data.

The grid and the road network were imported to the 
GIS in order to calculate the travel times to the closest 
ED from each zone. All centroids located within 5000 m 
of the road network were snapped to the closest road 
network junction. The centroids of 466 grid cells, repre-
senting 2% of the total number of grid cells, were either 
inaccessible from the road network, or were located out-
side of the Swedish borders. These were generally located 

Table 1 Descriptive information about the employed datasets

Dataset Source Description Type Year

Population data Telia Population data based on mobile phone locations 
compiled on an hour-to-hour basis, aggregated 
to grid cells

Polygon (point) 2019–2020

Statistics Sweden Population data based on place of residence aggre-
gated to Statistics Sweden’s grid cells

Polygon (point) 2019

Road network The Swedish Transport Administration Sweden’s national road network database, contain-
ing all official roads in Sweden

Polyline 2018

Emergency Departments Manually extracted Active emergency departments located in hospitals 
containing two or more specialist competences 
and the type of hospital

Point 2022

Urban–rural categorization Swedish Association of Local Authori-
ties and Regions (SALAR)

A system of classifying municipalities as containing; 
large cities; towns or municipalities close to large 
cities and rural

– 2017
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in e.g. the archipelago or in mountainous regions and 
would require either boat or helicopter transport. Also, 
we did not have access other nations (Norway and Fin-
land) road networks, and could therefore not estimate 
travel times outside of Sweden. Therefore, these 466 grid 
cells were omitted from the analysis, and 22,297 of the 
Telia grid cells (98%) were included in the analysis.

The Closest Facility network analysis, a tool in the Arc-
GIS suite, was utilized to assess spatial accessibility. It 
calculates the shortest (quickest) route, based on a road 
network with information of travel times, by finding the 
combination of roads between two points with the low-
est combined travel time. Travel times were estimated 
between the centroid of each grid cell and the closest ED, 
generating one individual route for each grid cell. Each 
generated route contained an identifying number, which 
was used as a common denominator to join the data on 
travel times back to the grid cells. As each grid cell was 
assigned a route which linked it to the closest ED, a sepa-
rate variable was generated which indicated which catch-
ment area each grid cell was connected to. Thus, the 
network analysis also generated the ED catchment areas.

The static populations were summarized in zones 
located within certain travel time thresholds derived 
from previous research. To assess how population acces-
sibility vary temporally the dataset was split into different 
temporal categories—between hours of the day, between 
weekday and weekends and between months. As the total 
population sizes varied between the static and dynamic 
population datasets, we normalized the data before 
assessing where and when static population data over- 
or underestimates population size compared to dynamic 
population data. This was done by comparing the share 
of the total population that was present within e.g. a cer-
tain travel time threshold from an ED, where the share 
was calculated using the static population data total for 
the static data, and the dynamic population data total for 
the dynamic data. To assess whether, and to what degree, 
static population data over- or underestimates shares 
compared to dynamic population data, a ratio indicat-
ing the relationship between the two datasets was then 
calculated by dividing the population shares based on 
static population data with population shares based on 
dynamic population data. This was done for each hour of 
the day, separated first by weekdays (Monday-Friday) and 
weekends (Saturday and Sunday) and then by months.

Then, we compared static and dynamic population 
datasets for all Swedish ED’s catchment areas at two dif-
ferent time points—at mid-day (13:00) in January and 
July. This included four steps. First, we visualized over- 
and underestimations in the ED catchment areas at both 
time points. Secondly, to complement the spatial pat-
terns observed in the visualizations, Moran’s I tests were 

conducted to assess whether there were statistically sig-
nificant clusters in data. Spatial relationships were con-
ceptualized as inversely distanced, meaning neighboring 
areas have larger influence than those further away. To 
ensure all ED catchment areas had at least one neighbor, 
a distance of 137,660 m was automatically set. This con-
ceptualization of spatial relationships was motivated by 
the fact that the ED catchment areas differ greatly in geo-
graphical size, and ensured that neighborhoods did not 
differ greatly between the smaller ED catchment zones in 
urban areas (where several EDs are located close to each 
other) and the larger ED catchment zones in rural areas. 
Thirdly, analysis of variance (ANOVA) tests were run to 
see if the clusters of over- and underestimation were also 
present across different ED types. Fourth, and lastly, as 
the ANOVA tests indicated statistically significant dif-
ferences between ED types, we ran Tukey post-hoc tests 
on the results from the ANOVA tests to assess whether 
those differences were statistically significant between all 
types of EDs, or only between some different levels.

Limitations
A major limitation to this study relates to the dynamic 
data from the mobile network. Prior to being made avail-
able to us it was extrapolated using residential popula-
tion data. This was done to compensate for the fact that 
Telia does not control the entire mobile phone market, 
and thus other operator’s users are not included in the 
dataset. Extrapolation likely makes the population num-
bers more realistic, but it entails that the total population 
size is estimated. The total population present in Sweden 
also varied over time, which could have several explana-
tions. It could reflect how people move out of, and into, 
the country. But it is also likely a reflection of limitations 
to the data itself. For example, only around 30–35% of 
the population have Telia subscriptions, and some have 
several phones while others have no phone. Extrapola-
tion made to the data prior to us receiving it therefore, to 
some degree, induced some uncertainty. Another poten-
tial limitation pertains to the Covid-19 pandemic. Travel 
behaviors may have been affected by recommendations 
from the public health authorities in Sweden in March, 
2020. Due to the short period of time where this may 
have impacted the data, we did not consider this in the 
analysis. It is possible that it did impact the results, but 
likely not to a significant degree.

An official Swedish system of spatial division was 
employed to delimit urban and rural areas. What is 
‘urban’ and what is ‘rural’ is, however, not self-evi-
dent—population’s or individuals may identify as urban 
despite living in a small town that, by official defini-
tions, is considered rural. Urban–rural is thus, per-
haps, rather a stratum than two separate, dichotomous 
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categories. Moreover, populations are not necessar-
ily either rural or urban—when rural residents com-
mute to work in larger cities, for example, they would 
be considered urban during the working hours, and 
rural when they are at home. Our conceptualization of 
the urban and rural should be viewed as one possible 
conceptualization of many alternative ones, and due to 

the Modifiable Areal Unit Problem (commonly known 
as MAUP), another division might produce different 
findings. Another limitation is that the potential impact 
of weather, traffic and road conditions on travel times 
were not taken into consideration. However, there are 
conflicting results about the impact of such factors 
where studies have shown little effect [4] while others 
proclaim that they are important to consider [17].

Results
Spatial patterns of population accessibility to emergency 
departments
Accessibility was estimated in a network analysis. The 
spatial patterns of accessibility (see Fig.  2) broadly 
reflect the population density of Sweden. Along the 
coasts and urban areas, accessibility is generally high. 
Further inland, particularly in the northern half of Swe-
den, large geographic areas have more than one hour to 
travel to an ED.

Using static population data, we estimated the acces-
sibility for the Swedish population. Table  2 shows 
descriptive statistics split by urban and rural areas, 
using the same classifications of accessibility as in 
Fig. 2. On the national level, there are urban and rural 
disparities. Nearly 90% of the Swedish population 
(N = 9,104,076) live within 30  min from an ED and 
almost half, 48% (N = 4,931,390 individuals) live within 
10 min from an ED. In urban areas, more than half of 
the population (56.3%) live within 10 min of an ED. No 
urban residents one live further than one hour from an 
ED. The share of the population that live within 10 min 
from an ED decreases with rurality—in rural areas, 
only around a third of the population live within 10 min 
from an ED. Of the total 132,205 individuals that live 
further than one hour away from an ED, 124,109 (94%) 
are rural residents.

Fig. 2 Spatial patterns of accessibility to the closest ED in Sweden

Table 2 Population accessibility to ED’s separated by travel time intervals and by urban, densely populated and rural areas

Stat Stat 0–10 min 10–20 min 20–30 min 30–60 min Above 60 min Total

Urban Sum 2,138,989 1,267,713 334,430 61,024 0 3,802,156

Share 56.26% 33.34% 8.80% 1.60% – 100.00%

Densely populated Sum 1,940,608 1,027,009 593,052 352,514 8096 3,921,279

Share 49.49% 26.19% 15.12% 8.99% 0.21% 100.00%

Rural Sum 851,793 461,962 488,520 620,963 124,109 2,547,347

Share 33.44% 18.14% 19.18% 24.38% 4.87% 100.00%

Total Sum 4,931,390 2,756,684 1,416,002 1,034,501 132,205 10,270,782

Share 48.01% 26.84% 13.79% 10.07% 1.29% 100%
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Temporal variations of population accessibility—
comparing static and dynamic measures
Temporal variations in over- or underestimation of acces-
sibility for the Swedish population were then assessed by 
estimating a ratio indicating the relationship between 
static and dynamic population, first between weekdays 
(Monday–Friday) and weekends (Saturday and Sunday) 
and then by months. The graphs are interpreted as fol-
lows: values above 1 indicate that static population data 
overestimates the share of the total population compared 
to dynamic population data, and values below 1 indicate 
that it underestimates. A value of 0.01 reflects a 1% differ-
ence. For full descriptive statistics, see Additional file 1: 
Table A1–A14.

Over‑ and underestimation on weekends compared 
to weekdays
On weekends (Fig. 3), the share of the population located 
in areas with high accessibility (0–20  min) tend to be 
slightly overestimated at all times. Areas further away 
from an ED—with poorer accessibility—have increas-
ingly underestimated shares of the population com-
pared to dynamic population data. In areas located more 
than 60  min from an ED, static population data under-
estimates the population by around 30% compared to 
dynamic population data.

In the weekdays (Fig.  4), there is more variation over 
the course of the day. In the areas with the highest acces-
sibility (0–10  min) the share of the population derived 

from static population data underestimates by roughly 
10% during office hours [8–17] compared to dynamic 
population data. In areas located between 10 and 60 min 
from an ED, an opposite trend can be observed where 
static population data overestimates the share of the total 
population during office hours—at the most by around 
25%. In the most remote areas (more than 60 min from 
an ED) static population data consistently underestimate 
the share throughout the day.

Over‑ and underestimation between months
In the summer months there is a pattern of increas-
ing underestimation of population shares in areas with 
poorer accessibility and simultaneous overestimation 
in the areas with the highest accessibility (see Fig. 5). In 
areas with more than 60 min to an ED, static population 
data underestimate shares by around 45% compared to 
dynamic population data, while overestimating by nearly 
15% in areas with less than 10 min travel time to an ED.

Over- and underestimations also vary over the course 
of the day in different months. Generally, static popula-
tion data overestimate more in areas with higher acces-
sibility (shorter travel time to an ED) and underestimate 
in areas with the poorest accessibility (more than one 
hour travel time to an ED). However, in the areas with the 
highest accessibility (within 10  min from an ED) popu-
lation shares are consistently underestimated by up to 
around 10%, with the exception of July when they are 
overestimated by up to 17%. Moreover, overestimation 

Fig. 3 Ratio indicating the difference between population shares located in areas with different accessibility levels estimated from static 
and dynamic population data in weekends (Saturday and Sunday)
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in areas with relatively high accessibility (between 10 and 
30 min travel time from an ED) appear to increase during 
the daytime.

Temporal variation in population sizes per ED catchment 
areas
In emergencies, patients are in most cases transported 
to the closest ED. Larger populations within an ED’s 

Fig. 4 Ratio indicating the difference between population shares located in areas with different accessibility levels estimated from static 
and dynamic population data in weekdays (Monday–Friday)

Fig. 5 Ratio indicating the difference between population shares located in areas with different accessibility levels estimated from static 
and dynamic population data, separated by months
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catchment area thus entails increased potential pressure 
on the ED to provide medical interventions. Population 
sizes vary as populations, for example, may go on vaca-
tion in the summer time, leading to under-or overestima-
tion of population sizes. To illustrate this, we assessed the 
over- and underestimation of population shares in the ED 
catchment areas, see Fig. 6. In most months population 
shares tend to be only slightly over- or underestimated. 
In the summer months, however, population shares were 
overestimated in all Level 1 ED’s catchment areas while 
most Level 3 ED catchment areas had underestimated 
population shares in the same months.

Both over- and underestimations were largest in July. 
To compare how under- and overestimations of popu-
lation sizes may differ over the seasons, it was com-
pared to January, a month that had less variation and 
that were similar to most other months of the year. In 
Fig.  7, the spatial patterns of over- and underestima-
tion of population sizes for all Swedish ED’s catchment 
areas are visualized at midday (13:00) in January and 
July. In January, static population data does not appear 
to over- or underestimate population sizes particularly 
much. There is a tendency of overestimation in the ED 
catchment areas in Stockholm, and underestimation 
in the central parts of Sweden. There is also a slight 
north–south difference with 0–10% overestimation 

in southern Sweden, and 0–10% underestimation in 
northern Sweden. However, the spatial clustering was 
not statistically significant, indicated by a Moran’s I test 
(0.01, p = 0.598). In July, however, underestimation is 
high in coastal areas—the islands Öland and Gotland 
in the southeast in particular—and in northern Sweden 
in general. In the largest cities (Stockholm, Gothen-
burg and Malmö) population sizes are overestimated by 
more than 30–40% in some ED catchment areas. Unlike 
January, the Moran’s I test indicted significant cluster-
ing in July (0.42, p = 0.000).

A one-way ANOVA test was run to assess whether 
over- or underestimation differed between ED types. 
This indicated that there were no significant difference 
across the three ED levels in January (F(2,65) = 6.08, 
p = 0.901) but that there was a significant difference in 
July (F(2,65) = 9.78, p = 0.000). A Tukey post-hoc test 
revealed that the differences exist between Level 1 and 
Level 2 ED’s (−  0.211 ± 0.082, p = 0.032) and between 
Level 1 and Level 3 ED’s (− 0.334 ± 0.077, p = 0.000). On 
average, in January at 13:00 there was very slight over- 
or underestimation—less than 2% for each ED type. 
In July, however, static population data overestimated 
population sizes by nearly 18% in Level 1 catchment 
areas while underestimating by nearly 16% in the Level 
3 category.

Fig. 6 Variation of differences (in percentage) for ED catchment areas by month, separated by ED types
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Discussion
In this paper, we assessed spatiotemporal patterns of 
population accessibility to ED’s in Sweden. Nearly half 
of Sweden’s population live within 10  min travel time 
from an ED, and almost 90% of the population live within 
30  min from an ED. As the distribution of ED’s reflect 
population density, rural areas have lower levels of acces-
sibility than urban. For example, out of the total rural 
population, nearly 30% live further away than 30  min 
from an ED, which can be compared to less than 2% of 
the urban population. On the national level, there is a 
north–south pattern where accessibility is higher in the 
south. Again, this reflects the spatial patterns of popula-
tion density, and the poorer geographic coverage of ED’s 
in the northern parts of Sweden is not surprising consid-
ering the centralization processes that have taken place in 
Sweden and elsewhere in recent decades.

However, these numbers refer to resident populations. 
As people go to work or perform other activities, they 
relocate in space. The “accuracy” of estimates based on 
resident population data, where it is implicitly assumed 
that the population is stationary, varies over time. Con-
ventional measures of population accessibility, such as 

above, are in other words more or less “wrong” at differ-
ent points in time. For example, in the most central areas 
with the highest accessibility levels (0–10  min from an 
ED), population sizes were underestimated—albeit only 
slightly—during office hours. In areas located 10–60 min 
from an ED, population sizes were in contrast overesti-
mated by up to 25%. Considering ED’s are located largely 
based on population density and that centralization of 
ED’s have focused on allocating resources to cities, this 
could reflect the fact that large parts of the population 
commute inwards from surrounding areas during the 
day. Resident population data is therefore less accurately 
reflecting real population sizes at this time—if location 
data from the mobile network is assumed to provide 
more realistic assumptions of population sizes at differ-
ent times.

During summer vacation time, around June to Sep-
tember, and specifically in July, overestimation is high 
also in the most central areas with the highest acces-
sibility level’ (within 10 min from an ED) and there was 
less variation in the degree of overestimation over the 
course of the day. This likely reflects the movement of 
large parts of the urban populations going elsewhere 

Fig. 7 Visualization of over- and underestimation of population sizes in ED catchment areas in Sweden at 13:00 in January (left) and July (right)
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for the vacation, which also explains why there were 
significant clusters of underestimation of population 
shares in the catchment areas of smaller, rural ED’s in 
the July. These are located in areas where many go on 
vacation, for example in Gotland (an island in south-
western Sweden), along the coasts and in the northern 
parts of Sweden. These results therefore, in some sense, 
corroborate previous research by Xia et  al. [3], whose 
results indicated that variations in accessibility over the 
day is greater in areas with high population flow. How-
ever, we also show that there are seasonal variations in 
how accessibility varies, which also reflect the move-
ment of populations between urban and rural areas.

In relation to planning of EHC resources, our findings 
show that accessibility analysis based on static, resident 
population data tends to underestimate population 
sizes in catchment areas of smaller, rural hospitals. 
In light of the ongoing centralization of ED’s in Swe-
den and many other countries, where population sizes 
represent an important metric indicator in relation to 
efficiently [34], this is important to recognize because 
decisions to close a hospital may not be motivated at 
certain times of the year. During July, a vacation month 
in Sweden, there were significant clusters of underesti-
mation in places where the resident population tends to 
be relatively low—in the northern parts of Sweden, and 
on island and coastal areas. The smaller ED’s located in 
such places, in other words, serve a larger population 
than traditional accessibility analyses would suggest at 
certain times of the year.

The argument here is not that under- or overestima-
tion of population size directly leads to decisions to 
close an ED or not. However, it is a central metric to 
guide such decisions. As our findings show that popula-
tion sizes tend to be underestimated in catchment areas 
of smaller, rural ED’s—and overestimated in the larger 
ED’s catchment areas—there is a risk that traditional 
ways to measure population sizes with static population 
data contribute knowledge that supports decisions that 
disfavor rural ED’s. Similar arguments have been made 
before, for example by Yun et  al. [30] whose analysis of 
accessibility to ED’s showed that using static population 
data may be erroneous and lead to different conclusions 
compared to what location data from the mobile network 
indicates. In extension, as has been noted also by others, 
urban–rural inequities in access [12] and in health out-
comes [35] may be perpetuated and increased. Informing 
about where and when conventional measures of popu-
lation accessibility is less accurate in reflecting reality, 
the use of location data from the mobile network in this 
study may, as Birkin et al. [7] notes, hopefully contribute 
to increasing social justice and equality when it comes to 
allocating EHC resources.

In this study, we found that shares of the population 
with different levels of accessibility differ between static 
and dynamic datasets. Moreover, these differences are 
heterogeneous across space and time. While location 
data from the mobile network holds a lot of promise for 
accessibility analyses these differences are important 
to acknowledge. There are also important problems 
to be overcome when working with dynamic data that 
impacted the analysis presented here. First of all, location 
data from the mobile network is often provided by a spe-
cific operator which has a certain share of the population 
as customers. The entire population, in other words, is 
not represented in the dataset. To control for that, some 
extrapolation may have to be done—which was the case 
with our data—to provide approximations of population 
sizes at certain times and places. This, of course, has an 
effect on the data and thus the analysis. One effect is that 
total population sizes varied greatly between the location 
data from the mobile network (dynamic) and the resident 
population data (static), which led us to normalize the 
data and compare shares instead of absolute population 
numbers in this analysis.

This study adds to a growing body of research on 
how temporally sensitive data can be incorporated into 
accessibility analysis (e.g. [4, 17, 18]). The major contri-
bution of this study is perhaps to show how, when and 
where conventional static modelling over- or underesti-
mates population accessibility to ED’s. Like Järv et al. [4] 
points out, this is crucial to facilitate equitable distribu-
tions of resources. Mapping out where and when con-
ventional modelling produce uncertain estimations can 
directly influence the way that resources are distributed. 
The findings of this study should be of relevance also in 
other fields of research that utilize population data—e.g. 
epidemiology [24, 25], mobility [26] and transportation 
[27, 28]. Location data from the mobile network such as 
the dataset utilized in this study provides opportunities 
to make more precise predictions and estimations—both 
spatial and temporal—of where resources may be needed, 
which can guide policy making.

Suggestions for future research
Future research should also compare the temporally vary-
ing population sizes in EDs catchment areas to EDs visits, 
i.e. demand. To what degree does population size present 
within an ED’s catchment area correlate with demand for 
services, and how does that correlation vary spatiotem-
porally? This was not done here because we did not have 
access to demand data of high enough spatiotemporal 
resolution. Another interesting direction would be to also 
assess sociodemographic characteristics of populations, 
and how it changes over time when population’s move 
around in space. Are the populations in certain places 
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and times potentially more vulnerable to certain condi-
tions—e.g. medical conditions such as strokes or cardiac 
arrests—and could such information inform allocation of 
specializations to certain ED’s? Looking at the capacity at 
the ED’s to treat patients, and the time that patients need 
to wait before receiving treatment after having arrived 
at the ED, would also be of interest. After all, it may not 
matter how quickly the patient arrives to the ED if he or 
she cannot acquire adequate care.

Looking further into spatiotemporal variations in 
accessibility, data such as the mobile network data uti-
lized in this study could facilitate different, and more 
detailed, aggregations. In the Swedish context it would be 
particularly interesting to assess how over- or underesti-
mations of population sizes manifest in separate adminis-
trative regions, as the EHC system is planned regionally. 
Further analysis along these lines could also ask broader 
questions, for example whether public services such as 
health care provision could be better planned without 
administrative borders, and what the alternatives could 
be. Moreover, it would be of interest to make a retrospec-
tive study in the Swedish setting to assess whether clo-
sures of ED’s in recent decades have been made in places 
where the population is larger than the static popula-
tion data indicates. In the future, research should also 
investigate in greater detail how temporal variations 
in population sizes can influence planning of ED’s and 
other EHC resources such as ambulances and specialist 
competences. Relatedly, dynamic accessibility does not 
solely depend on the location of people but also on the 
transportation network and capacity of service. Including 
capacity, e.g. available hospital beds, and the influence 
of traffic or public transport on accessibility could shed 
light on variations in accessibility to Swedish ED’s when 
controlling for both supply and demand factors—as well 
as for individuals who may not have a car and needs to 
travel to the ED in other ways.

Conclusions
This study takes a step towards utilizing location data 
from the mobile network in geographical research, and 
illustrates where, and when, conventional models over- 
or underestimate population accessibility. Accessibil-
ity to ED’s vary spatially in Sweden. Northern Sweden 
have lower levels of accessibility than southern Sweden, 
reflecting patterns of population density. Likewise, rural 
populations tend to have lower levels of accessibility. 
Resources are, in other words, located in areas where 
many live. Accessibility also varies temporally, which is 
not captured by conventional accessibility analysis based 
on static population data. Population shares tend to be 
underestimated in the catchment areas of smaller, rural 
ED’s—especially during summer months, when many are 

on vacation. Concurrently, population shares tend to be 
overestimated in urban areas, and in the catchment areas 
of the larger ED’s.

These results illustrate how planning based on conven-
tional metrics that (implicitly) assume static populations 
may disfavor rural areas. This information is important 
because it can help decision makers to allocate resources 
more efficiently and fairly. Essentially, this article points 
at how static population counts are always more or less 
inaccurate reflections of the actual population size at cer-
tain places and times. In the light of ongoing centraliza-
tion of ED’s in Sweden and many other countries, where 
population sizes often represent an important metric 
for decision makers when deciding on how to allocate 
resources, this is important to recognize.
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