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Abstract
Background In the near future, the incidence of mosquito-borne diseases may expand to new sites due to changes 
in temperature and rainfall patterns caused by climate change. Therefore, there is a need to use recent technological 
advances to improve vector surveillance methodologies. Unoccupied Aerial Vehicles (UAVs), often called drones, have 
been used to collect high-resolution imagery to map detailed information on mosquito habitats and direct control 
measures to specific areas. Supervised classification approaches have been largely used to automatically detect 
vector habitats. However, manual data labelling for model training limits their use for rapid responses. Open-source 
foundation models such as the Meta AI Segment Anything Model (SAM) can facilitate the manual digitalization 
of high-resolution images. This pre-trained model can assist in extracting features of interest in a diverse range of 
images. Here, we evaluated the performance of SAM through the Samgeo package, a Python-based wrapper for 
geospatial data, as it has not been applied to analyse remote sensing images for epidemiological studies.

Results We tested the identification of two land cover classes of interest: water bodies and human settlements, using 
different UAV acquired imagery across five malaria-endemic areas in Africa, South America, and Southeast Asia. We 
employed manually placed point prompts and text prompts associated with specific classes of interest to guide the 
image segmentation and assessed the performance in the different geographic contexts. An average Dice coefficient 
value of 0.67 was obtained for buildings segmentation and 0.73 for water bodies using point prompts. Regarding 
the use of text prompts, the highest Dice coefficient value reached 0.72 for buildings and 0.70 for water bodies. 
Nevertheless, the performance was closely dependent on each object, landscape characteristics and selected words, 
resulting in varying performance.

Conclusions Recent models such as SAM can potentially assist manual digitalization of imagery by vector control 
programs, quickly identifying key features when surveying an area of interest. However, accurate segmentation still 
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Background
Global environmental change profoundly impacts the 
determinants of infectious disease transmission, with 
potentially devastating impacts on human health and 
well-being [1]. Changes in rainfall and global warming 
are associated with the emergence of vectors in new areas 
because of the increase of suitable habitats for their life 
cycle. Mosquito-borne diseases such as malaria, dengue, 
and Zika, are of particular interest because of their sen-
sitivity to environmental variables [2–5]. Reports of ris-
ing disease cases have related them to different climate 
change events [6]. Some recent examples associated to 
climate disasters include malaria outbreaks in Mozam-
bique and Pakistan caused by floods [7] and dengue out-
breaks in Peru associated with heavy rains [8].

To reduce the burden of mosquito-borne diseases, con-
trol programs need to target interventions using envi-
ronmental data to monitor changing risks. Over the last 
decades, there has been an increase in the use of remote 
sensing data to monitor ecological conditions, assess 
infectious disease risks, and identify priorities for con-
trol measures [9]. Typically, the data are gathered from 
diverse types of sensors carried by satellites, aircraft or 
small drones, which measure reflectance from the Earth’s 
surface [10]. The data can be analysed to identify land-
cover features of interest to monitor the composition of 
vector habitats, such as vegetation, water bodies, soil and 
infrastructure [11].

Historically, satellite data have been the most fre-
quently used form of remote sensing data by disease 
control programs; these often include freely available 
satellite-based optical data from Landsat, Moderate 
Resolution Imaging Spectroradiometer (MODIS) and 
Sentinel-2 [12]. Moreover, processed products of these 
data have made remote sensing resources more acces-
sible to the user by overcoming the challenges associated 
with managing complex satellite image processing steps 
and landcover classification. However, despite increasing 
availability and constantly improving spectral resolution, 
there are still substantial barriers to their use by disease 
control programs. Cloud coverage limits the availabil-
ity of usable data over time especially during the rainy 
season [13]. This can be a major limitation to obtaining 
images in peak transmission periods as mosquito popu-
lations increase due to the presence of semi-permanent 
aquatic habitats in the rainy season [14]. Moreover, low 
spatial resolution restricts focused studies, such as the 
understanding of micro-habitats that need a finer scale 

spatial resolution only available in commercial satellites 
[15].

These limitations have led to a rise in targeted mapping 
using low-cost drones to collect high- resolution imagery 
at specific locations and times. Different from satellite 
acquisition, data collection using drones needs to ensure 
compliance with ethical considerations and obtaining 
consent from communities [16]. Many recent studies 
have conducted image acquisition using small low-cost 
drones to evaluate the feasibility of using this technology 
for larval source management, aiming to identify water 
bodies where malaria mosquito vectors breed [17–19]. 
However, in contrast to satellite-based information, 
drone image pre-processing and classification need to 
be performed by the user. The automation of identifying 
specific features over large image datasets can be chal-
lenging and requires access to specialized expertise, soft-
ware, and computing infrastructure. These capabilities 
can be provided by technology solutions such as Zzapp 
for malaria control programmes [20]. However, many of 
these still rely largely on manual digitization which can 
be a time-consuming task.

Advances in computer vision have helped in the auto-
matic identification of specific objects in high-resolu-
tion remote sensing images and the integration of these 
methods in GIS software allows end users to apply them 
without advanced programming skills. The application 
of computer vision methods for land class identifica-
tion associated with mosquito habitats range from the 
classification of pixels in spectral bands (e.g. Carrasco 
et al. [17]), object-based recognition for land classifica-
tion (Stanton et al. [18]) to segmentation using deep 
learning models focusing on land classes such as crops 
and houses (e.g. Trujillano et al. [21]). Despite the high 
accuracy using these techniques [22–24], most are based 
on supervised learning and their model performance 
depends on training with manually annotated datasets 
to learn the patterns of the class of interest. In the past 
few years, convolutional neural networks (CNNs) for seg-
mentation have been widely used for land classification 
in remote sensing images [21, 25]. Recent architectures 
such as visual transformers are currently being preferred 
for improved segmentation performance, but these 
approaches require extensive training data, limiting their 
utility [26].

Foundation models, models trained on broad datasets, 
have significantly advanced this field and have shown 
impressive results [27]. The Segment Anything Model 
(SAM), a foundation model developed by Meta AI, is a 

requires user-provided manual prompts and corrections to obtain precise segmentation. Further evaluations are 
necessary, especially for applications in rural areas.
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generalizable trained model with the capacity to extract 
features from images independently of their domain [28]. 
This model can be run using the open-source Samgeo 
python package [29] which simplifies the way users enter 
text and spatial prompts to guide SAM segmentation 
for geospatial data. However, despite the utility of these 
foundation models, these tools have not been widely 
applied for infectious disease epidemiology.

Therefore, this study aims to assess the capability of 
new computer vision advances by measuring the seg-
mentation performance of key land features that are rel-
evant for disease surveillance in high-resolution drone 
images. For this purpose, we explored SAM, a trained 
segmentation model, using the Samgeo python package 
to evaluate if this ready-to-use tool can reduce the cur-
rent barrier of using complex computer vision models 
by non-specialists. Moreover, we performed a compara-
tive analysis using drone images previously acquired in 
three malaria-endemic areas: Africa, South America, and 
Southeast Asia to evaluate the performance in different 
geographic contexts and to identify the landscape char-
acteristics in which this type of approach could be useful. 
The development of new user-friendly technologies can 
benefit non-expert image processing users in identifying 
key features in large datasets of images and reduce the 
amount of time and effort required for human annota-
tion, leading to faster response times to prevent potential 
disease outbreaks.

Data and methods
Study sites
We performed a secondary data analysis using drone 
imagery collected from five different sites (see Fig.  1). 
Even though all these areas are malaria-endemic, the 
habitats and species vary from one location to another.

In South America, images were collected in the sur-
rounding rural villages of Iquitos, Peru, in the Amazon 
region. These areas are recognized for high dengue and 
malaria transmission rates [30]. The primary mosquito 
vector in this region is Nyssorhynchus darlingi, using a 
variety of aquatic habitats from natural to human made 
water bodies. The peak transmission period falls between 
January to June aligning with the rainy season [17].

In sub-Saharan Africa, we obtained drone images from 
three malaria-endemic locations. This included areas 
around Bouaké, Ivory Coast, where peak malaria trans-
mission occurs in the rainy season between May and 
October. The potential breeding sites are irrigated crops 
and large vegetated water bodies [31]. Similarly, Saponé, 
Burkina Faso has a seasonal malaria transmission with 
a rainy season that extends from June to October. The 
larval breeding sites are water reservoirs such as dams, 
canary pots, worn tyres and small water reservoirs. The 
Ulanga distric, in south-eastern Tanzania, experiences 
its rainy season from March to May. The dominant vec-
tor is Anopheles funestus and the breeding sites are river 
streams, ground pools and dug pits [32].

Fig. 1 Geographic location of the study sites in Peru, Burkina Faso, Ivory Coast, Malaysia, and Tanzania

 



Page 4 of 15Trujillano et al. International Journal of Health Geographics           (2024) 23:13 

Lastly, in Southeast Asia, drone images were obtained 
from Northern Sabah, Malaysian Borneo where zoonotic 
malaria transmission is endemic. This is a tropical area 
with variable rainfall and the dominant vector is Anoph-
eles balabacensis, which breeds in small water bodies 
under forest cover [33]. We used RGB drone imagery 
acquired by different platforms and settings across these 
rural sites as described in Table  1. Together, these sites 
represent a diverse group of landscapes with on-going 
malaria transmission.

Key land classes of interest
We focused our study on the recognition of water bodies 
and human settlements given their relevance when moni-
toring potential aquatic habitats of mosquitoes and tar-
geting control measures based on high-resolution Earth 
observation (EO) data. The preferred mosquito breeding 
sites depend on the species and the specific local context, 
ranging from man-made reservoirs to natural stagnant 
water bodies or slow-flowing river streams. We therefore 
evaluated the capability to detect different types and sizes 
of waterbodies.

Human settlements are also important in the spread of 
diseases carried by mosquitoes and should be considered 
when assessing population-level risk as well as individ-
ual-level risk from mosquito bites. Across the different 
study sites, the characteristics of housing are diverse, par-
ticularly in rural environments where variations in roof 
types and spatial separation were significant. The classes 
identified in each study site and the technical details and 
methods of the drone acquisitions are detailed in Table 1.

Dataset
To perform a comparison across sites, we extracted 14 
representative samples from each study area (reported in 
the Supplementary Information) considering all the col-
lected orthomosaics. The samples sizes were 120 × 120 m 
and 60 × 60  m, and the selection was performed manu-
ally, targeting the areas where water bodies and human 

settlements were present. The patch size was selected to 
include the objects of interest; however, samples with no 
classes were also selected. Out of the 70 patches, 47 sam-
ples contained buildings and 44 contained water.

The Samgeo package
Recently, Visual Transformers (ViT) have outperformed 
CNN-based models in object detection and segmen-
tation tasks [35]. The key difference lies in how they 
compute the features of an image. While CNNs use con-
volutional layers to extract local information about the 
images, ViT divides the image into smaller patches called 
tokens and learns the relationships between them, allow-
ing it to capture both local and global information. How-
ever, this process is computationally expensive during 
training and requires larger datasets to achieve meaning-
ful performance.

The Segment Anything Model (SAM) [28] assembles 
several blocks that perform specific tasks (e.g. segmen-
tation and detection), and this model uses Vision Trans-
formers to encode the input image into its embeddings, 
which is a numerical vector representation of an image. 
The model is capable of segmenting different areas or 
objects; however, other information such as spatial points 
and bounding boxes information can also be given to the 
model to indicate the object to be segmented. The final 
block comprises a decoder that maps the segmentation 
output mask to the original image size.

SAM’s segmentation capability can be integrated into 
large systems of different domain-specific applications if 
an object identification model is available. The Samgeo 
Python package simplifies the process of preparing geo-
spatial data as input for the SAM model and generating 
georeferenced output masks in GIS-compatible formats. 
This package also allows text prompt for segmentation 
which is supported by the Grounding Dino object detec-
tor model [36]. This transformer-based detector pro-
cesses an image and a text input to locate the specified 
object in the image within a bounding box. The Samgeo 

Table 1 Description of site characteristics and data acquisition parameters
Site Characteristics Image collection

Human-settlement Water bodies Equipment Date range Resolution 
(cm/pixel)

Iquitos, Peru Clustered housing. Corrugated metal roofs. Man-made fishponds. Large stag-
nant water bodies.

Mavic 2 Pro Aug - Oct 
2021

2–10

Bouaké, Ivory 
Coast [31]

Separated houses. Corrugated metal, and 
straw roofs.

Rains puddles in vegetated areas. DJI Phantom 
4 Pro

Nov 2018 – 
Nov 2019

2

Saponé, Burkina 
Faso [21]

Compounds with multiple houses. Thatched 
rounded huts. Corrugated metal roofs.

Vegetated and non-vegetated 
large water bodies. Turbid shallow 
puddles.

DJI Phantom 4 
Pro / Sensefly 
eBee

Jun to Aug 
2021

2–10

Ulanga, Tanzania Isolated thatched houses. Rain puddles. Turbid ground pools. DJI Phantom 
4 Pro

May 2023 6

Kudat, Malaysia 
[34]

Isolated houses. Mixed roof types: red, metal 
and concrete.

River streams. Fishponds. 
Reservoirs.

Sensefly eBee 2014–2019 10
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package then uses the bounding box as an input for the 
SAM model to perform the segmentation. We tested the 
capacity of this text-prompt feature to detect and seg-
ment landscape features.

Segmentation guided by spatial point prompts
We defined the gold standard to represent the most accu-
rate identification of the land class, performed by visually 
inspecting the acquired images. To create the gold stan-
dard, we used SAM’s guided object segmentation capa-
bility to assist this process (Fig.  2). First, we evaluated 
each patch to determine the presence of water bodies or 
buildings. Then we created a shapefile for each identified 
class using QGIS software, version 3.32 [37]. We created 
a point for each water body and, for buildings we cre-
ated a point for every discernible roof. This approach was 
adopted since clear delineation of house boundaries was 
challenging in some sites. All the points were positioned 
approximately at the centre of the objects. The segmenta-
tion result was exported as a shapefile, and to obtain the 
gold standard, manual corrections were made to rectify 
errors such as boundaries inaccuracy, missed objects or 
false positives.

Text prompt segmentation
For the text prompt experiments, we defined a list of text 
prompts for the class of interest. We tested a single word: 
“building”, “house”, “roof”, “puddles”, “ponds” and “water 
body”, and ensembled words: “house.thatch.dwelling.
roof.building”, and “puddle.water body.pond.fishponds”. 
A GPT model, ChatGPT-4 [38] was used to generate 
prompts in the following 4 steps:

Step 1. Upload three images from sites and ask 
ChatGPT to describe them.

 Query prompt: “Describe the uploaded image”.

Step 2. Ask for a text prompt for water bodies and 
houses based on the images.

 Query prompt: “Generate a ‘text prompt’ for the 
SAM model in order to segment buildings in 
similar images to the one uploaded.”

 Query prompt: “Generate a ‘text prompt’ for the 
SAM model in order to segment water bodies in 
similar images to the one uploaded.”

Step 3. Ask to refine the given prompt to only include 
keywords.

 Query prompt: “Consider that the prompt for 
the model should be a list of keywords, each 
separated by a period. Generalize it to different 
types of buildings.”

 Query prompt: “Consider that the prompt for 
the model should be a list of keywords, each 
separated by a period. Generalize it to different 
types of water bodies.”

Step 4. Manually remove keywords that are not 
meaningful.

After filtering words such as aerial view, rural and 
shadow, we obtained for buildings the GPT prompts: 
“buildings.roofs.reflective surfaces.matte surfaces.geo-
metric shapes.metallic.tiles.thatch” and for water “water.
ponds.lakes.rivers.streams.murky water.clear water.
reflections”. Details about the questions and answers 
obtained using ChatGPT are reported in the Supple-
mentary Information. In addition to the text-prompt, 
two other inputs were needed for the Grounding Dino 
model, these were the box and text threshold that can be 
selected in the range from 0 to 1. By default, the model 
outputs 900 bounding boxes and the box threshold serves 
to filter the number of boxes as the threshold approaches 

Fig. 2 Workflow for gold standard generation
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to 1. Figure 3 shows the inputs and outputs of each model 
to perform the segmentation.

All the datasets were run using these combinations of 
prompts on a High-Performance Computing (HPC) sys-
tem with 2x AMD 7543 Processors @2.8 Ghz, 256Gb of 
RAM and a Nvidia A40 (48 GB) GPU.

Metrics used to measure performance
The segmentation and object detection performance 
were evaluated quantitatively using the Dice similarity 
coefficient for class segmentation. This metric is com-
monly used to assess segmentation performance in vision 
computer tasks [39]. The Dice coefficient measures the 
overlap between two regions A and B, where A repre-
sents the gold standard and B the predicted segmenta-
tion. Shapefiles were converted to binary raster masks 
for this computation. The coefficient was calculated as 
follows:

 
Dice (A,B) =

2 | A ∩ B |
| A | + | B |  (1)

Where | A ∩ B |  is the number of elements common 
to both A and B (i.e. the intersection of A and B), ∣A∣ is 
the number of elements in set A and ∣B∣ is the number 
of elements in B, and the Dice coefficient is measured in 
the range of 0–1. Additionally, to evaluate the robust-
ness of the prediction we computed the bootstrap confi-
dence interval (CI) [40] with 5000 resamples for each text 
prompt and box threshold.

 For the object detection evaluation, we did not use 
metrics such as the Intersection over Union (IoU) 
because some sites contained a large number of objects 
causing the object bounding boxes to overlap as shown 
in Fig.  4(a). Instead, we used as a reference the points 
manually assigned to each object to validate whether they 
were identified by SAM’s predicted polygon output as 
shown in Fig. 4(b). We considered a true positive (TP) if 
the point was inside the model predicted polygon, a false 
positive (FP) if a polygon was predicted and no point was 
inside, and a false negative (FN) if a point did not match 
any polygon. The object accuracy detection was mea-
sured by the Positive predictive value (PPV) and True 
positive rate (TPR). Calculated by the following equa-
tions: PPV = TP/(TP + FP) and TPR = TP/(TP + FN).

Fig. 4 Iquitos, Peru. (a) Grounding Dino bounding boxes (b) SAM output segmentation

 

Fig. 3 Text prompt segmentation pipeline

 



Page 7 of 15Trujillano et al. International Journal of Health Geographics           (2024) 23:13 

Results
Spatial prompt segmentation
An average Dice coefficient value for all samples was cal-
culated using point prompts obtaining 0.67 for buildings 
and 0.73 for water bodies. Figure 5 presents examples of 
SAM segmentation output in the study sites. In Fig. 5(b), 
water bodies at the top of the patch were not correctly 
segmented and manual correction was needed to rectify 
the shapes, which impacted the accuracy (Dice coeffi-
cient = 0.79). Conversely, Fig. 5(a) shows a sample where 
the majority of houses were accurately segmented. Small 
polygons around the houses were deleted and minor 
boundary corrections on the bottom houses were per-
formed, reflecting in a higher Dice coefficient of 0.93.

In the case of buildings, 49% of the patches had a Dice 
coefficient value above 0.8 and for water bodies 65%, 
showing that minor corrections were needed in the SAM 
generated shapefiles (Fig. 6). On the other hand, 11% of 
the buildings and 16% of the water bodies needed to be 
almost fully manually digitalized. In general, there was a 
better performance of human settlements segmentation 

in the sites of Tanzania and Ivory Coast, and for water 
segmentation, Malaysia, Peru, and Tanzania were the 
sites where fewer corrections were required (Fig. 7). The 
accuracy of class boundary identification varied across 
the other sites.

Text prompt segmentation
Text prompts showed variable performance depending 
on the class, prompts used, and location. Results from 
0.3 to 0.4 box threshold are summarized in Table 2 while 
other values are reported in the Supplementary Informa-
tion. Overall, the highest Dice coefficient for buildings 
was 0.725 with CI [0.724 0.725], achieved using the word 
“house” and for water bodies, it was 0.695 with CI [0.694 
0.696] using the mix of different words; predictions were 
made using box thresholds of 0.4  and 0.3 respectively. 
Regarding object detection, the metrics in general show 
a low PPV performance due to a high number of small 
polygons generated as false positives. For the buildings 
class, the “house” text prompt with a 0.3 box threshold 
resulted in the highest TPR; nevertheless, for PPV, a 0.4 

Fig. 5 (a) Iquitos, Peru and (d) Malaysia show point prompts in magenta used for water and buildings segmentation. (b) and (e) show the output of SAM 
in red polygons. (c) and (f) show the gold standard in blue polygons
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box threshold showed a marginal improvement. In the 
case of water bodies, the word “ponds” with a 0.3 thresh-
old reported the higher value.

Figures 8 and 9 present boxplots of the Dice coefficient 
per site. The performance of the words selected for the 
text prompt segmentation was not consistent across all 
sites. Considering the water body class, an ensembled 
choice of words performed best in images from Peru and 
Malaysia, whereas for Tanzania, the word “puddles” was 
the most effective. The results from Burkina Faso showed 

a marked variability and those from Ivory Coast showed 
a low performance in all cases. For buildings, “house” 
had a higher average Dice coefficient for Ivory Coast 
and Malaysia, although in Peru an ensembled combina-
tion yielded the best performance. Building segmenta-
tion results from Tanzania were highly variable and all 
the text prompts used for images from Burkina Faso per-
formed poorly.

Figure 10 shows examples of houses that the Ground-
ing Dino model missed. These included rural dwellings 

Fig. 7 Boxplot of Dice coefficients for each class by site

 

Fig. 6 Dice coefficient histograms per class
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such as thatched rounded huts in Burkina Faso and straw 
roof structures in Ivory Coast. The example from Malay-
sia, without any house structure, shows the bounding 
box aligned with patch boundaries, leading SAM to seg-
ment the areas within. These large false positive polygons 
resulted in a low Dice coefficient, impacting the average 
value. Figure  11 shows the variability of colour, shape, 
and extension of water bodies which resulted in variable 
segmentation performance. Small puddles in vegetated 
areas and along roads in Burkina Faso and Ivory Coast 
were undetected, in contrast to larger areas with clear 
boundaries, such as fishponds in Peru or ground pools in 
Tanzania, which were identified despite of their varying 
colours. Additional results are reported in the Supple-
mentary Information.

Discussion
In this study, we explored cutting-edge techniques for 
segmentation and applied them to high-resolution drone 
imagery from five study sites across the globe to identify 
water bodies and human settlements that are relevant 
classes for vector-borne disease control. Foundation 
models, such as SAM, have shown potential to rapidly 
segment and identify key land classes from high-reso-
lution imagery, enabling the targeting of disease control 
activities. We found that the segmentation accuracy was 
highly dependent on the specific features and landscape 
characteristics, leading to variable performance by meth-
ods and sites. While these models can be a valuable tool 
to support the analysis of high-resolution imagery, there 
is still a need for manual corrections and user input.

Table 2 Segmentation and object detection metrics according to text prompts
Box threshold

0.3 0.4

Text prompt CI Dice
std.

TPR PPV CI Dice
std.

TPR PPV

Buildings Building 0.603 [0.603 0.604] 0.420 0.518 0.446 0.620 [0.619 0.621] 0.409 0.318 0.482
House 0.716 [0.715 0.716] 0.362 0.554 0.515 0.725 [0.724 0.725] 0.350 0.406 0.537
Roof 0.379 [0.379 0.380] 0.415 0.360 0.448 0.462 [0.461 0.463] 0.445 0.176 0.320
Ensembled 0.635 [0.634 0.636] 0.412 0.413 0.478 0.468 [0.467 0.469] 0.441 0.093 0.293
GPT prompt 0.351 [0.350 0.351] 0.404 0.251 0.282 0.369 [0.368 0.370] 0.446 0.041 0.149

Water Puddles 0.640 [0.639 0.640] 0.441 0.288 0.304 0.537 [0.536 0.538] 0.476 0.103 0.200
Ponds 0.446 [0.445 0.446] 0.449 0.393 0.316 0.546 [0.545 0.547] 0.460 0.184 0.242
Water body 0.375 [0.374 0.376] 0.440 0.371 0.310 0.522 [0.521 0.523] 0.463 0.227 0.249
Ensembled 0.695 [0.694 0.696] 0.424 0.325 0.308 0.565 [0.565 0.566] 0.471 0.131 0.184
GPT prompt 0.577 [0.576 0.578] 0.470 0.168 0.177 0.372 [0.371 0.373] 0.484 0.000 0.000

Fig. 8 Dice coefficient for each site according to the water text prompts used with 0.3 box threshold
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Despite the variable performance, the use of the Sam-
geo package can significantly reduce the effort required 
for manual annotation of drone imagery. Approxi-
mately 65% of the water bodies and 50% of buildings in 
tested patches required minimal correction (Dice coef-
ficient > 0.8) following SAM prediction, using a single 
user point for segmentation. This approach using either 
a point or a word for segmentation is relatively straight-
forward compared to other supervised learning methods 
such as CNNs [21] and random forest [17, 18].

Guided segmentation, using points or text prompts, 
achieved varying performance based on class character-
istics, such as the clear boundaries of the object and its 
extension within the patch. Therefore, well-delineated 
water bodies such as fishponds, rivers, and large water 
bodies were segmented more effectively, whereas the per-
formance varied in samples containing small puddles on 
roads or in grass. Regarding the segmentation of houses, 
typical urban houses were segmented more accurately 
than rural buildings such as rounded huts. The identifi-
cation accuracy was not consistent even within the same 
study site. According to Zhang [41], SAM’s capabilities 
are limited by the complexity of the features in remote 
sensing images which includes irregular shapes and 
occlusions.

Experiments using text prompts present a power-
ful alternative tool for reducing the manual allocation 
of point prompts to each object in the image. However, 
the selection of words significantly impacted the object 
detection task and, consequently, the segmentation. A 
general text prompt was suitable for some sites since the 
model’s performance was highly context-dependent and 

the class characteristics varied from site to site. There-
fore, an iteration of trial and error, using different text 
prompts and thresholds to optimize the segmentation 
performance was necessary. We evaluated a GPT-based 
prompt selection to explore other class descriptions we 
did not consider. However, results showed that, in most 
cases, this approach did not improve the results obtained 
with more general words chosen directly by the user.

Public datasets are often used to assess the perfor-
mance of a model across different domains. The develop-
ers of the Samgeo package, Osco et al. [39], used drone 
and airborne imagery for its evaluation. For the segmen-
tation task using point prompts, they report achieving a 
higher Dice coefficient (0.97) compared to text prompts 
(0.89) for the class “lake.” Our results expand the evalu-
ation of the water class in rural environments, and con-
sistently with the report, samples with clear boundaries 
also obtained a Dice coefficient performance above 0.9. 
Nevertheless, more challenging types are smaller water 
bodies present in these rural areas where most of our 
imagery was acquired and which are relevant for mos-
quito-vector control. When evaluating the performance 
of buildings, the Samgeo’s authors reported a higher Dice 
coefficient value (0.89) for the class “house” compared to 
“buildings” (0.70) using text prompts, which performed 
significantly better than the points. Similar to their find-
ings, the use of “house” in our study had, in general, a 
better performance compared to the other alternatives. 
This may also be related that our focus was specifically 
on this type of building, and “buildings” implies a more 
general class. Another study by Ren [42], used the Inria 
and Deep Globe open datasets in urban areas, and tested 

Fig. 9 Dice coefficient for each site according to the building text prompts used with 0.3 box threshold
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bounding boxes and point prompts in building segmen-
tation stating that SAM performance was variable, align-
ing with our results. A limitation of open datasets is the 
underrepresentation of low-middle income areas, as 
reported by Kucharczyk [43]. Initiatives such as Open 
Buildings aim to generate footprints from high-resolu-
tion satellite imagery to address this gap, highlighting 
the challenges of house detection in Africa using a CNN 
(U-Net) [44]. Our study evaluated samples from these 
low-income areas finding that characteristics of these 
buildings remain challenging for new pre-trained foun-
dation models.

The use of the Samgeo package can provide several 
advantages to the end user. This includes the availability 
of a Graphic User Interface that can be executed on the 
Google Collaboratory cloud-based platform that helps 
overcome the limitations of computing resources and 

advanced programming skills. This alternative offers 
users an initial approach to assess the suitability of these 
tools for their study area. Regarding SAM, its generaliza-
tion capability seems to underperform in some specific 
domains such as remote sensing [45] or medical imag-
ing [46] due to the imagery characteristics. To enhance 
its domain-specific segmentation accuracy, pre-trained 
CNN models are being used to provide prompts [45], 
which increase the complexity for practical purposes or 
can result in variable performance compared to a super-
vised CNN model [42].

Previous work has followed different workflows on 
the use of drone in habitat mapping [31, 47, 48]. How-
ever, from an operational perspective, there is no clear 
framework for managing the image processing steps 
after generating the orthomosaic. SAM is an alternative 
in this workflow, however, the suitability of using this 

Fig. 10 Results using a 0.3 Box threshold. The image on the left corresponds to the buildings gold standard, the middle image shows the Grounding Dino 
bounding boxes in red and the right figure shows in blue SAM’s output. The sample from Kudat does not contain houses

 



Page 12 of 15Trujillano et al. International Journal of Health Geographics           (2024) 23:13 

Fig. 11 Results using a 0.3 Box threshold. The image on the left corresponds to the water body gold standard, the middle image shows the Grounding 
Dino bounding boxes in red and the right figure shows in blue SAM’s output
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technology will depend on the characteristics of the vec-
tor ecology. It may be more appropriate for mosquito 
species that breed in discernible objects in drone imag-
ery, as opposed to those that breed in leaf axils, tree holes 
and tyres [33]. Moreover, there are other constraints of 
the aerial imagery itself related to occlusion, e.g., water 
bodies under canopy trees, puddles covered by shadows, 
and water containers under roofs. Therefore, ground-
based surveys are still required, and the use of drone 
technology can complement this methodology especially 
in difficult to access areas.

The application of drone technology for vector control 
purposes, ranging from habitat monitoring to larvicide 
application, is being considered in various countries and 
the use of a broadly trained model for automating the 
digitalization of the images can assist in these diverse 
tasks. While our study focused on malaria vectors, this 
can be expanded to other mosquito species such as 
Aedes, which are vectors for dengue that breed in water 
containers and the utility of using drones for breeding 
sites detection has been explored by Valdez-Delgado [49] 
and Passos [50]. The automatic identification of potential 
larval habitats could also guide drone larvicide spraying 
[51] which its applicable in the control of other vectors 
and can be extended to waterborne diseases in general. 
Furthermore, the ability to rapidly detect houses and 
informal settlements may be useful for broader risk map-
ping [52] and health planning activities. Overall, this 
technology can benefit interventions where an aerial 
view provide critical information. The availability and 
advances of automatic segmentation such as SAM can 
assist in the overall analysis, for example after natural 
disaster events such as earthquakes [53] or floods where 
a damage assessment is needed for a prompt response.

Additional research is needed to improve the perfor-
mance of these models to ensure robustness for practi-
cal utilization. Future advances of accurate text guided 
object detectors, such as Grounding Dino, customized 
on high-resolution images for land classification will 
leverage the flexibility on locating the different habitats 
depending on the vector ecology. Moreover, considering 
images from underrepresented areas is crucial to improve 
the identification of rural human settlements. In this 
study, we use RGB images, which can be considered as 
a low-cost alternative compared to a multispectral image 
acquisition. However, although RGB images are easier 
and cheaper to collect, multispectral data may improve 
performance, particularly the Near-Infrared band, as it 
has shown an increased performance using CNN-based 
models [54]. Regardless of the differences between CNN 
and ViT models (such as SAM), adding multispectral 
images to future foundation models may increase the 
performance of water segmentation. Additionally, SAM’s 
capability relies on its extensive training on 11  million 

natural images [28], therefore, following work should be 
extended adding remote sensing imagery, since its per-
formance has been reported to improve with additional 
data samples (one-shot learning) [39], and model adapta-
tion to this domain [41].

From an operational point of view, further studies are 
needed to assess the ground-truth accuracy and cost-
effectiveness of these approaches to have better under-
standing on how these methods can be included in 
disease control strategies [55]. The availability of software 
packages in GIS platforms can bring this type of technol-
ogy closer to non-expert users and would help bridge the 
gap between new computer vision advancements and 
their application in real context. This study relied on ret-
rospective data, therefore, additional research focused on 
the integration of these image analysis steps are needed 
to delineate a framework that can cover from the drone 
image collection to automatically mapping the targeted 
classes relevant for disease monitoring.

Although we covered five different countries, a limita-
tion of this study is that we only sampled seventy patches 
of the landscape in total. Further analysis is required to 
assess the application in diverse contexts including the 
evaluation of other land classes (i.e. rice crops, drains) 
relevant for vector control purposes.

Despite this limitation, this study is the first to assess 
how foundation models can support analysis of high-res-
olution Earth observation data for vector control. With 
increasing levels of environmental change, monitoring 
these changes and quickly obtaining accurate informa-
tion is essential for disease control programmes. These 
results illustrate the potential of foundation models to 
rapidly analyse imagery across different malaria-endemic 
settings and highlight the need for further assessments 
on their use for operational disease control.

Conclusions
The purpose of this study was to provide insights on the 
segmentation performance of the Samgeo package in 
drone imagery surveillance for mosquito borne diseases. 
The presented results show that this technique is a poten-
tial tool to assist manual digitalization. However, it still 
requires the user to manually assess and set prompts and 
thresholds to achieve proper segmentation depending on 
the site’s own characteristics. Further evaluation and tests 
of these parameters are needed if this model is intended 
to be used, especially in aerial imagery from rural areas.
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