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Abstract

Background: Kulldorff’s spatial scan statistic for aggregated area maps searches for clusters of cases without
specifying their size (number of areas) or geographic location in advance. Their statistical significance is tested
while adjusting for the multiple testing inherent in such a procedure. However, as is shown in this work, this
adjustment is not done in an even manner for all possible cluster sizes.

Results: A modification is proposed to the usual inference test of the spatial scan statistic, incorporating additional
information about the size of the most likely cluster found. A new interpretation of the results of the spatial scan
statistic is done, posing a modified inference question: what is the probability that the null hypothesis is rejected
for the original observed cases map with a most likely cluster of size k, taking into account only those most likely
clusters of size k found under null hypothesis for comparison? This question is especially important when the p-
value computed by the usual inference process is near the alpha significance level, regarding the correctness of
the decision based in this inference.

Conclusions: A practical procedure is provided to make more accurate inferences about the most likely cluster
found by the spatial scan statistic.

Background
Introduction
Spatial cluster analysis is considered an important tech-
nique for the elucidation of disease causes and epide-
miological surveillance [1]. Kulldorff’s spatial scan
statistic, defined as a likelihood ratio, is the usual mea-
sure of the strength of geographic clusters [2,3]. The cir-
cular scan [4], a particular case of the spatial scan
statistic, is currently the most used tool for the detec-
tion and inference of spatial clusters of disease.
The spatial scan statistic considers a study region A

divided into m areas, with total population N and C
total cases. A zone is any collection of areas. The null
hypothesis assumes that there are no clusters and the
cases are uniformly distributed, such that the expected
number of cases in each area is proportional to its
population. A commonly used model assumes that the
number of cases in each area is Poisson distributed pro-
portionally to its population. Let cz be the number of
observed cases and nz be the population of the zone z.
The expected number of cases under null hypothesis is

given by μz = C(nz/N ). The relative risk of z is I(z) = cz/
μz and the relative risk outside z is O(z) = (C - cz)/(C -
μz). If L(z) is the likelihood function under the alterna-
tive hypothesis and L0 is the likelihood function under
the null hypothesis, the logarithm of the likelihood ratio
for the Poisson model is given by:

LLR(z) = log
(
L(z)
L0

)

=
{
cz log(I(z)) + (C− cz) log(O(z)) if I(z) > 1
0 otherwise.

(1)

LLR(z) is maximized over the chosen set Z of potential
zones z, identifying the zone that constitutes the most
likely cluster (MLC). A derivation of this model can be
found in [2]. When the set Z contain the zones defined
by circular windows of different radii and centers, max-

zÎZ LLR(z) is the circular scan statistic. Other possible
choices for Z include the set of elliptic clusters [5], or
even the set of irregularly shaped connected clusters
[6,7].
The statistical significance of the original MLC of

observed cases must be calculated employing Monte
Carlo simulations to build an empirical distribution of
the obtained maxzÎZ LLR(z) values under null

* Correspondence: duczmal@est.ufmg.br
3Department of Statistics, Universidade Federal de Minas Gerais, Campus
Pampulha, Belo Horizonte/MG, Brazil
Full list of author information is available at the end of the article

Almeida et al. International Journal of Health Geographics 2011, 10:47
http://www.ij-healthgeographics.com/content/10/1/47

INTERNATIONAL JOURNAL 
OF HEALTH GEOGRAPHICS

© 2011 Almeida et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:duczmal@est.ufmg.br
http://creativecommons.org/licenses/by/2.0


hypothesis [8], because its analytical expression is gener-
ally not known. Simulated cases are randomly distribu-
ted over the study region such that each area receives,
on average, a number of cases proportional to its popu-
lation. The statistical significance of the original MLC of
observed cases is tested comparing its LLR value with
LLR values of the corresponding MLCs obtained for
each Monte Carlo replication. In each one of those
replications, the MLC will be chosen in the set of circu-
lar clusters of every possible size centered on every area
of the study region, meaning that the LLR(z) value is
the only selected feature used to compare the original
MLC with the random ones under null hypothesis. The
scan statistic is then computed for the MLC. This pro-
cedure is repeated B times, obtaining the empirical dis-
tribution of the maxzÎZ LLR(z) values. Let Y be the
number of times that those values are greater than the
LLR of the original MLC of observed cases. The p-value
of the original MLC is computed as (Y + 1)/B. In the
following, the empirical distribution of the B obtained
maxzÎZ LLR(z) values under null hypothesis for circular
clusters will be called the scan empirical distribution.
The statistical significance of the spatial scan statistic

is done without pre-specifying the number of areas or
the location of the most likely clusters, while adjusting
for the multiple testing inherent in such a procedure.
However, this adjustment is not done in an even man-
ner for all possible cluster sizes, as will be shown later.
The usual inference process compares the most likely
cluster of observed cases with the all the circular most
likely clusters of every possible size centered on every
area of the study region. In this work it is presented a
modification to the usual inference test of the spatial
scan statistic: the observed most likely cluster found,
with k areas, will be compared with only those most
likely clusters of size k found in the randomized maps
under the null hypothesis.

Gumbel approximations
Through extensive numerical tests it was shown [9] that,
under null hypothesis, the scan empirical distribution
for circular clusters is approximated by the well-known
Gumbel distribution

f (x) = θ−1 exp{− exp[(x− μ)/θ]− (x− μ)/θ}
with parameters μ (mode) and θ (scale). Using this

semi-parametric approach, the spatial scan distribution
may be estimated using a much smaller number of
Monte Carlo replications. For example, computing the
maxzÎZ LLR(z) values under null hypothesis for only 100
random maps, and obtaining their average and variance
to calculate the mode and scale parameters, a semi-
parametric Gumbel distribution is obtained, as accurate

as a purely null empirical distribution produced after B
= 10000 random Monte Carlo replications [9].

Methods
One could be concerned with the fact that it should be
more appropriate to compare the original MLC only
with those MLCs of null hypothesis replicated maps
that resemble as much as possible the original cluster,
in terms of size, population and geographic location. An
extreme instance of this situation would require that the
comparison clusters are picked only among those (rarely
occurring) random replications for which the MLCs are
exactly the same as the original MLC. However, this
task is computationally unfeasible, because an enormous
number of replications is needed in order to select a siz-
able number of random simulations for which the simu-
lated MLCs coincide with the original MLC. Therefore,
those requirements must be somewhat relaxed. Request-
ing that the population is the same (regardless of other
factors) may also be difficult, especially for maps with
highly heterogeneous populations. A possibility then is
to allow different location centers and populations, but
requesting that the number of areas in the cluster is the
same.

Empirical distributions
The spatial scan statistic was designed to adjust for the
multiple testing when evaluating clusters of different
sizes and locations. This adjustment implicitly supposes
that the scan distribution doesn’t change when restricted
for any given fixed cluster size. As will be shown, this
assumption may not be true. Define scank as the empiri-
cal distribution obtained from the scan empirical distri-
bution which considers only clusters of size k. It is also
show that the Gumbel semi-parametric approach could
be extended to the scank distributions.

Frequency of cluster sizes
This subsection begins with two examples of maps with
real data populations. The first map consists of 34
municipalities in the neighborhood of Belo Horizonte
city in Brazil, with 6, 262 homicides cases during the
1998-2002 period, for a total population of 4, 357, 940
in 2000. The second map consists of 245 counties in 10
states and the District of Columbia, in the Northeastern
U.S., with 58,943 age-adjusted deaths in the period from
1988 to 1992, for a population at risk of 29,535,210
women in 1990 [5].
For each map, 1,000,000 Monte Carlo replications

under null hypothesis were conducted and the most
likely clusters were found for each replication. The
MLCs were classified according to their sizes and the
frequencies of occurrence were displayed in the histo-
grams of Figure 1. In both case studies, representing
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typical examples of aggregated area maps, the fre-
quency of cluster sizes varies widely; clusters of very
small size are much more common. This means that
the shape of the scan empirical distribution depends
mostly on the smallest cluster size. Consequently, the
decision process about the significance of the original
MLC of observed cases relies mainly on the behavior
of very small clusters, regardless of its size. One could
argue that this feature, in itself, should not represent a
problem if it could be guaranteed that the scank distri-
butions were nearly identical for every value of k.
However, as is shown in the next subsection, there are
significant differences between the various scank

distributions.

The Gumbel adjusted scank distributions
As was done before for the empirical scan distribution,
the Gumbel approximation for the scank distribution is
defined as the Gumbelk distribution. It was verified
experimentally that this adjustment was adequate, for all
cluster sizes in several different maps.
For the Belo Horizonte map, Figure 2 shows the scank

distributions taken from 1, 000, 000 Monte Carlo simu-
lations and their respective Gumbelk adjusted distribu-
tions, for k values 1, 6 and 15.
Similarly, the same procedure was performed consid-

ering the map of the Northeastern US, for k values 1, 20
and 80 as seen in Figure 3.
From the results of the 1, 000, 000 Monte Carlo simu-

lations for the map of Belo Horizonte metropolitan area,
it was observed that the critical values for the Gumbelk
distributions increase monotonically as the index k
increases from 1 to the maximum value 17. The Gumbel

adjusted distribution and the Gumbelk distributions for
k = 1, 6 and 15 are displayed in the same graph on the
left of Figure 4. The a = 0.05 critical values for the four
corresponding distributions are also shown.
For the Northeastern US map, similar results were

observed when the Gumbel adjusted distribution and
the Gumbelk distributions for k = 1, 20 and 80 were put
together in the graph on the right of Figure 4, with the
corresponding a = 0.05 critical values.
Those two examples show that the Gumbelk distribu-

tions change steadily with the size k, and are signifi-
cantly different from the Gumbel adjusted distribution
including all cluster sizes.

Data-Driven Inference
In its original formulation, the circular scan calculates the
significance of the most likely cluster based on the fol-
lowing question: “Given that the candidate cluster found
has LLR = x, what is the probability of finding a most
likely cluster under the null hypothesis with LLR >x ?”
As will be seen in this section, clusters of small size

constitute the majority among the MLCs found, and
have the highest influence in the determination of the
scan empirical distribution. In the situation when the
MLC has large size, its inference will be made basically
by the behavior of small clusters.
In this section it is proposed to use the information

about the size of the observed MLC in the inference
test. In this case, the following question is formulated:
“Given that the candidate most likely cluster has LLR =
x and contains k areas, what is the probability to find,
under the null hypothesis, a cluster formed by k regions
with LLR > x?”
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Figure 1 Frequency distribution of the sizes of the most likely clusters found under H0, with 1,000, 000 Monte Carlo replications, for
the Belo Horizonte metropolitan area (left) and the Northeastern US map (right).
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Figure 3 The scank distributions taken from 1, 000, 000 Monte Carlo simulations in the Northeastern US map, and heir respective
Gumbelk adjusted distributions, for k = 1, 20 and 80.
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Figure 2 The scank distributions obtained from 1, 000, 000 Monte Carlo simulations in the Belo Horizonte etropolitan area map, and
their respective Gumbelk adjusted distributions, for k = 1, 6 and 15.

Almeida et al. International Journal of Health Geographics 2011, 10:47
http://www.ij-healthgeographics.com/content/10/1/47

Page 4 of 8



The proposal of this paper takes into account the
cluster size, as follows: given that the circular scan
has found the observed MLC with k regions, then its
statistical significance is still obtained through Monte
Carlo simulations, but selecting only those replica-
tions for which the MLC solutions have exactly k
areas. The empirical scan distribution that considers
MLC solutions of any size is replaced by the scank

empirical distribution with MLCs of size exactly equal
to k.
However, when the p-value is much smaller or much

larger than the significance level a, there is no change
in the decision to reject, or not, the null hypothesis.
Thus, only the more difficult decision process is of
interest, namely when the computed p-value is close to
the significance level a.

Results
In this section, numerical experiments are made
showing that the proportions of rejections of the null
hypothesis differ noticeably, by employing the usual
critical value, compared with using the data-driven
critical values. It is also shown that the computa-
tional cost of estimating the data-driven critical value
may be reduced through the use of a simple
interpolation.

Critical values variability
To assess the variability in the estimation of the critical
values of each scank distribution, another batch of
Monte Carlo simulations was conducted. First a set S0

of 1, 000, 000 random replications under null hypothesis
was computed and the usual critical value v0 was deter-
mined for the a = 0.05 significance level employing the
empirical scan distribution. Next, for every value of size
k the empirical scank distribution and the corresponding
critical value vk at the a = 0.05 significance level was
determined.
Following, 100 sets Si, i = 1, ..., 100 of 1, 000, 000 ran-

dom replications each were computed under null
hypothesis. For each set Si and for every value of size k
the corresponding empirical scank distribution for the
set Si was computed, and called scanki. The proportion
pki (respectively qki) of computed MLCs’ LLR values lar-
ger than v0 (respectively vk) in the distribution scanki
was obtained, for every value k and i = 1, ..., 100. For
every value of k, the 100 values pki (respectively qki), for
i = 1, ..., 100, were used to build the 95% confidence
intervals Uk (respectively Dk), thus estimating the error
bar in the proportion of rejection of the null hypothesis
through the usual (respectively data-driven) inference
process.
The graphs on the left part of Figure 5 show the

results using the data for the Belo Horizonte metropoli-
tan area (above) and the US Northeastern map (below).
The graphs in blue color show the error bars for the
95% usual non parametric confidence intervals Uk, for
every size k, showing the average and the variability of
the proportion of likelihood ratios higher than the
usual critical value v0, which employs MLCs of every
size k in the empirical scan distribution. Otherwise,
the graphs in red color show the error bars for the
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Figure 4 The Gumbel adjusted distribution and the Gumbelk distributions for several values of k, with their respective a = 0.05
critical values, for the Belo Horizonte metropolitan area (left) and the Northeastern US (right).
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95% data-driven non-parametric confidence intervals
Dk, for every size k, showing the average and variability
of the proportion of likelihood ratios higher than the
data-driven critical values vk, which separates MLCs of
different sizes k into their corresponding empirical
scank distributions. For each dataset, the blue and red
error bars are clearly distinct, showing the differences
between the usual and data-driven inferences. A simi-
lar procedure was used to compute the 95% non para-
metric confidence intervals for the corresponding
adjusted Gumbelk distributions, instead of the empiri-
cal scank distributions. The corresponding sets of error
bars for the Gumbel adjusted distributions are dis-
played in the right part of Figure 5, for the Belo Hori-
zonte metropolitan area (above) and the US
Northeastern map (below). From Figure 5 it is noted
that the values obtained through the data-driven infer-
ence are substantially closer to the 0.05 level, for both
maps. The usual approach’s rejection rate of about
0.03 to 0.04 for small clusters means it is not rejecting
enough small clusters, thus returning too many false
positives. The opposite happens for large clusters.

Practical evaluation of critical values
From a practical viewpoint, one could be concerned
with the large number of simulations necessary to
obtain a reasonable number of replications for which
their MLCs have exactly the size of the observed MLC,

in order to estimate the data-driven critical value. It is
shown that, through interpolation of the vk critical
values for the values of size k close to the observed
MLC size, a fairly small number of replications produce
a consistent critical value estimate.
Figure 6 shows the data-driven critical values for the

Northeastern US map for the k size values, using
1,000,000 (respectively 50,000) replications, displayed
as red dots (respectively blue crosses). The solid black
curve represents the moving average, of window size
20, of the critical values for each size k > 10 using the
50,000 replications set (blue crosses). As can be seen
in Figure 6, the moving averages fall approximately
within the 1,000,000 set’s obtained critical values (red
dots). The horizontal dashed line indicates the usual
critical value. This very simple scheme is thus suffi-
ciently stable, allowing the use of a small number of
Monte Carlo replications to estimate the data-driven
critical values. For smaller maps (as the Belo Horizonte
metropolitan area map), the computational effort is
lower, and the data-driven critical values are easier to
calculate.

Conclusions
The classical inferential process used in the inference of
spatial clusters employing Kulldorff’s Spatial Scan statis-
tic considers all the most likely clusters found in Monte
Carlo replications under the null hypothesis in order to
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build the empirical distribution of the likelihood ratio,
regardless of cluster size and location. A potential disad-
vantage of this approach is the implicitly assumed inde-
pendence of the log likelihood ratio distributions, when
restricted to the various sizes of the most likely cluster
found. It was shown, through numerical experiments,
that this assumption is not true for commonly occurring
real data maps. Given that the observed most likely clus-
ter has size k0, that means that the classical inference
process computes its significance based on the behavior
of most likely clusters whose sizes are different from k0.
In this work an alternative was proposed, the data-dri-

ven inference, which takes into account only those most
likely clusters found whose size is identical to the size of
the observed most likely cluster. This approach employs
a more specific comparison, thus avoiding that the beha-
vior of clusters of very small size are used to decide if a
large observed most likely cluster is considered signifi-
cant, for example.
As the number of most likely clusters of certain speci-

fic size found in randomized maps is smaller than the
total number of Monte Carlo replications, a concern
may arise that the computational effort to compute the
significance with the data-driven inference process
should be very high. However, it was shown that using
the Gumbel semi-parametric approach and simple inter-
polation techniques this effort could be mitigated. How
many simulations are necessary to provide an acceptable
confidence interval for the critical values for each value
of size k? It would be very difficult to find a simple for-
mula fitted for every kind of map. Given a particular
map, it is suggested to apply the method described in

the “Practical evaluation of critical values” section, run-
ning sequentially several sets of simulations with an
increasing number of Monte Carlo replications, and
waiting for the interpolated critical values curve to
numerically stabilize.
For each value of size k there are different distribu-

tions of empirical values; in all the studied examples,
the overall shape of those distributions varies smoothly
as k varies, and it even seems reasonable to conjecture
that their averages increase monotonically as the value
of k increases. However it is plausible to imagine an
hypothetical situation where those changes become
abrupt with the variation of k, characterizing instability
of the null hypothesis. This instability should impact
even more the usual inference, because the relative
importance of the different values of k would not be
identified, as was done in the present analysis. This
kind of situation has not yet been experienced,
although, and the experiments of the previous section
may serve to assess that kind of instability in a particu-
lar map.
It should be stressed that the present paper’s strategy

of employing the size (number of areas inside the clus-
ter) as the criterion to compare the most likely clusters
is still subject to bias due to the heterogeneous popula-
tion distribution. A solution for this problem should be
the use of both variables, size and population, which
would be very expensive, as discussed before.
The proposed method is more useful when the com-

puted p-value using the classical inference is close to
the a significance level, otherwise there will be no
change in the decision process. In this situation, it is
recommended that the data-driven inference should be
performed, especially when the observed most likely
cluster has relatively large size.
Numerical experiments were also performed using the

data-driven inference for space-time cluster detection,
considering not only the number of areas inside the
cluster, but also the length of the time interval of the
cylinders [10]. Preliminary results suggest that the differ-
ences in the critical values are even more pronounced
than in the purely spatial setting.
The data-driven inference could be applied to case/

controls point data set clusters, taking into account the
number of cases and the population inside the clusters.
There are three options to consider for the data-driven
inference in this type of dataset, namely those based on
the number of cases, population, or both. When based
on the number of cases, provided that the number of
cases is small, the data-driven inference follows the
same lines of the present paper. Otherwise, when the
number of cases is large or when the data-driven infer-
ence is based on the population, some kind of interpola-
tion scheme should be used.
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Another extension should consider irregularly shaped
clusters [11] instead of circular clusters. These ideas will
be discussed in a future work.
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