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Abstract

Background: Built environment features of neighborhoods may be related to obesity among adolescents and
potentially related to obesity-related health disparities. The purpose of this study was to investigate spatial
relationships between various built environment features and body mass index (BMI) z-score among adolescents,
and to investigate if race/ethnicity modifies these relationships. A secondary objective was to evaluate the
sensitivity of findings to the spatial scale of analysis (i.e. 400- and 800-meter street network buffers).

Methods: Data come from the 2008 Boston Youth Survey, a school-based sample of public high school students in
Boston, MA. Analyses include data collected from students who had georeferenced residential information and
complete and valid data to compute BMI z-score (n = 1,034). We built a spatial database using GIS with various
features related to access to walking destinations and to community design. Spatial autocorrelation in key study
variables was calculated with the Global Moran’s I statistic. We fit conventional ordinary least squares (OLS)
regression and spatial simultaneous autoregressive error models that control for the spatial autocorrelation in the
data as appropriate. Models were conducted using the total sample of adolescents as well as including an
interaction term for race/ethnicity, adjusting for several potential individual- and neighborhood-level confounders
and clustering of students within schools.

Results: We found significant positive spatial autocorrelation in the built environment features examined (Global
Moran’s I most≥ 0.60; all p= 0.001) but not in BMI z-score (Global Moran’s I= 0.07, p= 0.28). Because we found
significant spatial autocorrelation in our OLS regression residuals, we fit spatial autoregressive models. Most built
environment features were not associated with BMI z-score. Density of bus stops was associated with a higher BMI
z-score among Whites (Coefficient: 0.029, p< 0.05). The interaction term for Asians in the association between retail
destinations and BMI z-score was statistically significant and indicated an inverse association. Sidewalk
completeness was significantly associated with a higher BMI z-score for the total sample (Coefficient: 0.010,
p< 0.05). These significant associations were found for the 800-meter buffer.

Conclusion: Some relationships between the built environment and adolescent BMI z-score were in the
unexpected direction. Our findings overall suggest that the built environment does not explain a large proportion
of the variation in adolescent BMI z-score or racial disparities in adolescent obesity. However, there are some
differences by race/ethnicity that require further research among adolescents.
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Introduction
Globally, adolescent obesity is one of today’s most pressing
public health concerns often marked by persistent racial/
ethnic disparities. Racial/ethnic minority U.S. adolescents
(e.g. Blacks and Hispanics) have particularly heightened
rates of obesity [1,2] and nationally representative U.S.
trend data indicate that racial/ethnic minority adolescents
have had statistically significant increases in obesity from
1988–1994 to 1999–2000 (while non-Hispanic White ado-
lescents have not) [1]. Though racial/ethnic disparities in
obesity have been documented for well over a half-century
[3], the determinants of this variation remain evasive.
Built environments of neighborhoods can have features

that promote energy expenditure (e.g. by facilitating or
impeding physical activity) as well as energy intake (e.g.
through its influence on food availability). Thus, built en-
vironmental features of neighborhoods may play a role in
the increases of obesity among adolescents, and in known
obesity-related racial/ethnic health disparities. Indeed,
adolescents are more independent than younger children,
potentially making them more susceptible to environmen-
tal conditions, and several reviews have shown that racial/
ethnic minority populations have increased exposure to
built environment features that can contribute to obesity;
disparities in the built environment might be an explan-
ation for obesity-related racial/ethnic health disparities
among adolescents and other populations [4,5]. A number
of studies show that neighborhoods that have access to
walking destinations (such as recreational facilities and
parks) and that have ‘walkable’ community designs (such as
sidewalks, increased number of intersections and a high
density of residences) are associated with favorable obesity-
related outcomes (especially increased physical activity)
among adolescents [6,7]. Although there is a burgeoning lit-
erature in this area, it is significant to note that much less
research has examined features of the built environment as
related to adolescent BMI specifically; most of the existing
studies in this area have focused on adolescent physical ac-
tivity [6,7]. The limited available research that has examined
relationships between features of the built environment and
BMI among adolescents has resulted in inconsistent find-
ings and several studies showed no significant effects [6,7].
Most studies that examine influences of the built envir-

onment on adolescent BMI have not conducted analyses
considering the possibility of racial/ethnic variation in the
effects. It is possible that aggregate models can ‘mask’ im-
portant relationships for certain population subgroups and
can also increase the likelihood of non-significant findings
(if the associations between the built environment and
obesity risk vary by race/ethnicity in terms of magnitude,
statistical significance and/or direction of effect) [8]. Fur-
thermore, most of the existing studies in this area have a
limited number of racial/ethnic minority populations in the
sample—restricting the generalizability of their findings and
also the power for any subgroup analysis by race/ethnicity.
Recent reviews on the built environment and adolescent
BMI have called for additional studies with ‘diverse’ popula-
tions as related to race/ethnicity [6] and for additional stud-
ies that consider moderators (such as race/ethnicity) in the
relationship between the built environment and adolescent
BMI [7]. A small but growing literature is explicitly explor-
ing whether the built environment might be a factor in dis-
parities in obesity. A recent review—in which most of the
studies published focused on adults—showed that the built
environment is associated with obesity risk among racial/
ethnic minority populations [4] though a previous review
found that the built environment had less consistent asso-
ciations among racial/ethnic minority populations [9]. Crit-
ical unanswered questions remain regarding relationships
between policy-relevant features of the built environment
and BMI among adolescents, especially regarding how built
environment neighborhood features might be implicated in
obesity-related racial/ethnic health disparities [6,7].
Methodological difficulties when analyzing relation-

ships between the built environment and BMI remain
problematic, including regarding potential racial/ethnic
differences in these effects. First, neighborhoods have
been defined differently across studies, and as indicated
by the modifiable areal unit problem, this likely leads to
different results in the literature [10,11]. Second, assum-
ing independence of individuals from different neighbor-
hoods, most studies evaluating relationships between
built environmental features and obesity risk among
adolescents neglect to examine and account for the
spatial connections between neighborhoods, i.e., how
neighboring areas are related to each other, although the
possible presence of spatial effects (e.g. spatial depend-
ence) can influence the results in meaningful ways. In-
deed, similar to the majority of the neighborhood effects
literature, several studies examining the influence of the
built environment on adolescent BMI followed a trad-
itional multi-level modeling approach, which treats
neighborhoods as disconnected areas. However, neigh-
borhoods are not spatially isolated and previous research
has shown that multilevel models do not necessarily ac-
count for spatial autocorrelation [12,13]. Emerging re-
search indicates that spatial clustering of obesity might
exist [14-19], raising questions about factors leading to
these potential clusters and also indicating that spatial
regression methods may be appropriate [20-24]. Third, a
sample of adolescents from different racial/ethnic groups
is needed to examine racial/ethnic differences, and a
sample with a sizeable number of adolescents from ra-
cial/ethnic minority groups is needed if researchers are
particularly interested in those population subgroups.
The goal of this study was to investigate spatial relation-

ships between various built environment features and BMI
z-score among a sample of adolescents across the city of
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Boston who predominantly come from racial/ethnic minor-
ity groups, and to investigate whether race/ethnicity modi-
fies the studied relationships using geospatial analysis
techniques such as spatial autoregressive models, if neces-
sary. A secondary objective was to evaluate the sensitivity of
results to defining neighborhoods at different spatial scales
in order to better understand the spatial scale aspect of the
modifiable areal unit problem (MUAP)—which is arguably
the most troublesome aspect of MAUP. As such, this re-
search seeks to address the limitations of past studies.

Methods
Study design and sample
Data for this study came from the 2008 Boston Youth
Survey (BYS), a survey of 9th-12th grade students in the
Boston Public Schools system [25]. Approximately 74%
of Boston Public School students in the 2007–2008 aca-
demic year were eligible for free or reduced-price meals
[26], similar to the percentage of those schools included
in the BYS survey [27]. Religious schools, private schools
and other schools not within the purview of the Boston
Public School system are not included. Schools that
served adults, students transitioning back to school after
incarceration, suspended students and students with se-
vere disabilities were ineligible. All 32 eligible public
high schools in Boston were invited to take part in the
study in 2008; 22 participated. The primary reason for
school non-participation was scheduling difficulties (e.g.
conflicts with mandatory standardized testing). There
were no statistically significant differences in key school
characteristics (e.g. racial/ethnic composition of stu-
dents, proportion of students receiving free or reduced
price lunches, drop-out rates, standardized test scores or
student mobility rate) across participating and non-par-
ticipating eligible schools. To generate our sample, we
assembled a list of unique classrooms within each par-
ticipating school, stratified by grade and randomly
selected classrooms for survey administration. Every stu-
dent within the selected classrooms was invited to par-
ticipate. Selection of classrooms continued until
approximately 100–125 students had been sampled per
school. The survey was administered to students by
trained staff in the spring of 2008. Students completed
the questionnaire during the allotted 50-minute class
periods. Passive consent was sought from parents and
students were read a statement regarding assent prior to
survey administration. Of the 2,725 students enrolled in
the classrooms selected for participation, 1,878 com-
pleted a survey (response rate = 68.9%). Students who
did not complete a survey either: (a) chose not to par-
ticipate (3.6%), (b) were not permitted by a parent to
take the survey (1%), or (c) were absent from school on
the day of survey administration (26.6%). Of the students
selected for participation and present on the day of the
survey (n= 2001), 93.9% completed surveys. We obtained
complete address information to the nearest intersection
from 68.8% of the Boston students who took the survey
(n= 1,292). Two-hundred fifty-eight of these students
were missing complete and valid data for computing BMI
z-score, and thus were not included in the sample, result-
ing in a final sample of 1,034 students. There was not a
statistically significant difference in biologically plausible
BMI z-scores (BMI calculations are discussed below) be-
tween students who provided complete intersection resi-
dential addresses and those who did not. Figure 1 shows a
map of the study area and the spatial distribution of these
respondents.

Address geocoding
To geocode the neighborhoods in which the BYS stu-
dents live, but not compromise confidentiality, students
were asked to provide the name of the street on which
they live and the nearest cross-street in addition to other
geographic information (e.g. zip code) [25]. All addresses
were preprocessed before geocoding by systematically
and extensively cleaning them to improve their quality.
We reviewed the data for misspelled street names and
checked them to ensure that the address existed using
Google Maps, remedying incorrect addresses (e.g. incor-
rect street names and streets that did not intersect) or
multiple addresses listed, when necessary. In addition,
we standardized spelling to the United States Postal Ser-
vice format (e.g. we changed ‘Street’ to ‘St’, ‘Avenue’ to
‘Ave’, and ‘Circle’ to ‘Cir’). After excluding participants
not located in Boston (n = 17), addresses were geocoded
to the street intersection and assigned longitude and lati-
tude coordinates, using the Environmental Systems Re-
search Institute (ESRI) Street Map USA address locator,
which uses a U.S. Census Bureau TIGER 2000 streets
dataset enhanced by ESRI and Tele Atlas for the refer-
ence layer, published in 2006, with ArcGIS version 9.3
(ESRI, Redlands, CA). The resulting points were
imported into Google Maps, where each location was
checked for accuracy and refined. Addresses that Arc-
Map failed to recognize, but which were real intersec-
tions, were manually placed on the map in Google
Maps. The verified points were imported back into Arc-
Map for processing.

Built environment features
We built a geospatial database that includes various built
environment features with ArcGIS 9.3 software using
the Massachusetts state plane projection North Ameri-
can Datum (NAD) 1983. This study included the follow-
ing variables related to access to walking destinations:
recreational open space per square kilometer, parks per
square kilometer, bus stops per square kilometer, subway
stops per square kilometer, total retail walking



Figure 1 Spatial Distribution of the Sample, 2008 Boston Youth Survey Geospatial Dataset (n = 1,034).
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destinations (e.g. clothing stores, pharmacy/drug stores,
bookstores) per square kilometer, total service walking
destinations (e.g. post offices, banks, credit unions) per
square kilometer and total cultural/educational walking
destinations (e.g. movie theaters, schools, libraries) per
square kilometer. We limited the retail, service and cul-
tural/educational walking destinations to locations with
fewer than 250 employees to filter out large businesses
(e.g. Costco’s, Home Depot’s) as businesses with more
than 250 employees may reduce the walkability of neigh-
borhoods (e.g. by having large parking lots) [28] and for
comparability with previous published research evaluat-
ing built environment correlates of obesity risk among
adolescents [29]. Recreational open space and public
transit data as of 2007 come from the Office of
Geographic Information (MassGIS), Commonwealth of
Massachusetts, Information Technology Division, the
state agency responsible for the collection, storage and
dissemination of publicly available geographic data for
Massachusetts [30]. Parks data come from ESRI Data
and Maps 2006; and retail, service and cultural/educa-
tional walking destinations data come from ESRI
Business Analyst InfoUSA Business Locations 2006.
ESRI Data and Maps information, from ESRI, has geo-
spatial datasets representing various built environment
features. InfoUSA [31] is a proprietary information ser-
vice; the company provides listings of private and public
businesses (verified yearly by telephone), with 6-digit
NAICS codes as well as numbers of employees. Loca-
tions of these businesses had been geocoded and were
available as a geospatial dataset through the ESRI Busi-
ness Analyst Extension. We also included the following
variables related to community design: median pedes-
trian route directness (median of the ratio of distance
between one point and another via the street network
and straight-line distance between the two points; values
closer to 1.00 represent a more direct route or a more
connected network), intersection density (the number of
street intersections per square kilometer; intersections
are defined as street network nodes with 3 or more asso-
ciated street segments excluding highways), sidewalk
completeness (excluding sidewalks in parks, informal
paths and cut-throughs and excluding roads with med-
ians; sidewalk completeness was calculated using the
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following equation: [left sidewalk length+ right sidewalk
length]/total road length times 100 divided 2; thus, a 0 is
no sidewalk and a 100 indicates presence of sidewalk on
both sides), average sidewalk width in meters (same exclu-
sions), average speed limit (miles per hour), highway dens-
ity (percentage of area that is highway traveled right of way;
highways are defined as primary roads with limited access
or interstate highways) and residential density (US census
block group occupied housing units per square kilometer
were weighted proportionally for the adolescents’ defined
neighborhood). Median pedestrian route directness data
come from ESRI Business Analyst InfoUSA Business Loca-
tions 2006; intersection density and average speed limit
data come from ESRI Data and Maps Street Map 2006;
sidewalk availability and highway density data come from
the MassGIS 2007; and residential density data as previ-
ously described come from the 2000 US Census. We used
‘ego-centric’ neighborhood definitions in this study, not
administrative boundaries (e.g. zip codes or census tracts)
because increasingly buffer-based neighborhood defini-
tions (i.e. a buffer around a study participants residential
address) are used in neighborhood effects on health re-
search and buffer-based neighborhood definitions are
likely to be more relevant to young people’s social realities
and health [32]. We specifically defined the adolescent’s
neighborhood as 400- and 800-meter street network buf-
fers for two primary reasons. First, these distances are
considered a proximal neighborhood environment for
adolescents [33], including an appropriate independent
walking distance for them [34]. Second, street network
buffers, in comparison to circular buffers, are more rele-
vant to human geography (i.e. human travel patterns) be-
cause they take into account the street geography and
impermeable barriers. Indeed, research shows that they
are more predictive of physical activity than circular buf-
fers [35]. The street network buffers were created from
StreetMap streets excluding highways and ramps using
the ArcGIS Network Analyst Extension. The street net-
work buffers consisted of 50-meter buffers around street
center lines that extend along the network 400- and 800-
meters from the geocoded residential addresses.

Body mass index
BMI was calculated using students’ answers to items on
height and weight, i.e., weight in kilograms divided by
height in squared meters. Biologically implausible heights,
weights and BMI values were dropped prior to any ana-
lysis (n= 40). Specifically, we dropped outlier variables for
height-for-age, weight-for-age, weight-for-height and BMI-
for-age based on Centers for Disease Control and
Prevention (CDC) growth charts from the year 2000 [36],
which were created using SAS version 9.2 and CDC SAS
growth chart programs for computing anthropometric
values [37]. Based on the 2000 CDC growth charts, we
converted BMI to z-scores accounting for age and gender
norms. BMI z-score was used in this study because it is a
more appropriate measure of adiposity than BMI for ado-
lescents [38]. A BMI z-score is the number of standard
deviation units that an individual’s BMI is from a popula-
tion mean value.

Individual and neighborhood-level covariates
Individual-level covariates include: race/ethnicity (non-
Hispanic White, non-Hispanic Black, Hispanic, Asian
and Other), gender (male, female), age (years), nativity
(U.S. born, foreign-born) and other youth in household
(yes, no). Neighborhood-level covariates include: percent
of non-Hispanic Black residents, percent of Hispanic
residents, percent of households below poverty level and
percent foreign born. Neighborhood-level measures were
based on 2000 US Census Data and were interpolated
proportionally based on the census block groups for the
adolescents’ defined neighborhood (values across block
groups were weighted proportionately by each block
group’s area within the defined buffer).

Geospatial analysis
Exploratory spatial data analysis
After having performed descriptive statistics for the indi-
vidual and neighborhood characteristics, we conducted
exploratory spatial data analysis, i.e. geovisualization and
cluster detection. Using ArcGIS, geovisualization was
conducted to map features of the built environment and
BMI z-score. This facilitated an initial inspection of po-
tential spatial patterns. We constructed maps to show the
spatial distribution of the built environment features and
BMI z-score among the sample (map colors were based on
Color Brewer 2.0) [39]. We present maps of all built envir-
onmental features for the 800-meter buffers to demonstrate
the different levels of spatial autocorrelation and variation
in the patterns in features of the built environment. The
Jenks natural breaks classification method, which deter-
mines the best grouping of values in the data, was used
when mapping the built environment features. This method
reduces the variance within classes, while maximizing the
variance between classes [40]. For BMI z-score, we created
a standard deviation map, showing how much variation
there is from the mean BMI z-score. We assessed the
presence of overall spatial dependence in built environment
features and BMI z-score with the Global Moran’s I statis-
tic, which is the most commonly used test statistic for
spatial autocorrelation [22,24]. For the Global Moran’s I cal-
culations and all subsequent spatial regression models, we
specified a k nearest neighbor (KNN) spatial weights
matrix. A value is one if the neighboring spatial units are
‘neighbors’ and zero if ‘not neighbors’. KNN was chosen as
the structure for spatial relationships because: (a) we
wanted all respondents to have an equal number of
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neighbors; (b) this specification represents the influence of
one’s most immediate neighbors; and (c) this specification
results in everyone having neighbors [41]. We specifically
used a k nearest neighbor spatial weights matrix specifica-
tion of four, because it has previously been suggested that a
spatial weights matrix specification between four and six
neighbors is optimal and because it is accepted that apply-
ing an under-specified (fewer neighbors) rather than an
over-specified (extra neighbors) weights matrix is better (e.
g. for increased power) [42,43]. The associated pseudo p-
value of the Global Moran’s I was calculated through a
Monte Carlo simulation consisting of 999 random replica-
tions. Moran’s I values range between −1 to 1. A Moran’s I
value near 0 indicates a lack of spatial pattern (values
observed at one location do not depend on values observed
at neighboring locations). This is the null hypothesis of
complete spatial randomness. Positive coefficients reflect
neighboring areas with similarly large or small values (simi-
larity or positive spatial autocorrelation). Negative coeffi-
cients reflect neighboring areas with large inverse values
(dissimilarity or negative spatial autocorrelation). One po-
tential reason for spatial clustering, or spatial autocorrel-
ation, is shared predictor variables that cluster in space.
Investigating the presence of spatial autocorrelation in BMI
z-score, both descriptively through mapping and statisti-
cally through cluster detection, provides preliminary evi-
dence for spatial regression modeling.

A-spatial and spatial regression analysis
For our continuous outcome data, BMI z-score, we fit
ordinary least squares (OLS) regression models. If the
OLS regression residuals had significant spatial autocor-
relation, we applied a well-known spatial econometric
approach for spatial regression modeling by fitting
spatial simultaneous autoregressive error models (here-
after referred as the spatial error model), estimated via
maximum likelihood [20-24]. Recognizing that there are
different techniques to estimate spatial linear regression
models [44], we conducted a preliminary sensitivity ana-
lysis via the generalized method of moments estimation
of the spatial error model [44,45], however, the estimates
and p-values replicated were near identical as the initial
standard maximum likelihood estimation approach and
histograms of the residuals for the spatial error model
estimated via maximum likelihood showed normally dis-
tributed residuals, indicating that the maximum likeli-
hood approach was correct (we therefore present
findings from using the maximum likelihood approach).
The spatial error model accounts for spatial autocorrel-
ation by including an autoregressive term for the error
structure based on a specified spatial weights matrix
[20-24]. Because less is empirically known about the use
of asymmetric spatial weights matrices (e.g. point A is
B's nearest neighbor but point B might not be point A's
nearest neighbor) when estimating spatial autoregressive
models [44], we converted the asymmetric KNN spatial
weights to make it symmetric (our preliminary modeling
though showed that the two spatial weights matrices
produced similar results). The average number of neigh-
bors for the asymmetric spatial weights matrix was 5.31
(range 4 to 11; 98.1% had 4 to 8 neighbors). The
distances for the specified spatial weights matrix ranged
from 0 to 1526 meters (mean range for the KNN 4
spatial weights matrix was 191.10 meters; mean range
for the KNN 4 symmetric spatial weights matrix was
210.00 meters). Using the KNN 4 symmetric spatial
weights matrix, the Global Moran’s I statistic and the
Lagrange Multiplier test for the spatial error model were
used to evaluate the fitted OLS regression residuals for
evidence of spatial autocorrelation [20,23,46,47]. The
Global Moran's I statistic is applied to the error terms of
the OLS model to assess spatial autocorrelation. The
Lagrange Multiplier test for spatial error dependence
can be used when the Moran's I is statistic significant. If
the Lagrange Multiplier test for the spatial error model
is significant that should be the proper specification for
the data. If spatial models were necessary, the fit of the
OLS and spatial error models were compared using the
Akaike Information Criterion (AIC). The AIC examines
overall model fit and model complexity; lower AIC
values indicate a better fit. Finally, if spatial models were
fit, we conducted a spatial Hausman test comparing the
magnitude of the OLS and spatial error model param-
eter estimates based on the null hypothesis of correct
specification [20,48]. Each model estimating relation-
ships between features of the built environment and
BMI z-score was conducted using the total sample
(Model 1) as well as including an interaction term be-
tween the built environment feature and race/ethnicity
(Model 2) in order to assess potential effect modification
in the studied relationship. We included the interaction
term in the models (as opposed to conducting stratified
analysis) not only to formally evaluate effect modifica-
tion but also because in models including an interaction
term the spatial matrix is of the entire sample (when
conducting stratified analysis the spatial weights matrix
is only for that strata, which might not be appropriate).
Separate models were run for each built environment
feature to examine their unique contribution on BMI z-
score and due to expected multicollinearity between the
features of the built environment examined. To evaluate
the sensitivity of neighborhood effects, these models
were fit for our two neighborhood definitions: 400- and
800-meter street network buffers. All models controlled
for the previously described individual- and neighbor-
hood-level confounding factors selected based on past
theoretical and empirical research. School was included
as a fixed effect to control for clustering of students
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within schools. All data analyses were conducted using
the R statistical program version 2.12 with Bivand’s
spdep package [44].

Results
Sample characteristics
Sample characteristics are provided in Table 1 for the
total sample and disaggregated by race/ethnicity.
Respondents were predominantly non-Hispanic Black
(42%) and Hispanic (33%) and the mean age was
16.3 years. Over half were female and just over one-
quarter of the sample was born outside of the US. The
majority had at least one other youth living in their
home. Although there was racial/ethnic variation, the
mean BMI z-score was 0.51. Based on the CDC classifi-
cations, 33.17% of the adolescents were overweight or
obese (BMI percentile 85 or greater). Table 2 provides
descriptive statistics for the various features in the built
environment. Because respondents’ lived in neighbor-
hoods across the city, it is not surprising that there is
variation in the built environment features. It is import-
ant to highlight though that there are small standard
deviations for several built environment features—indi-
cating that there is not much dispersion from the mean
for several of these features.

Spatial distribution and spatial autocorrelation in the
built environment and BMI z-score
There appeared to be spatial patterns in features of the
built environment for each neighborhood definition
(Figures 2, 3, 4, 5). This was confirmed statistically via the
Global Moran’s I statistic. The Global Moran’s I value for
most built environment features were≥ 0.60 (indicating
strong positive spatial autocorrelation) and were all statis-
tically significant (p=0.001) (Table 2). The geography of
adolescent BMI z-score in Boston is shown in Figure 6.
Table 1 Sample Characteristics, 2008 Boston Youth Survey Ge

Total (n = 1,034) White (n = 107) Bla

BMI z-score (mean, SD) 0.51 (1.08) 0.50 (1.08) 0.5

Age in years (mean, SD) 16.32 (1.26) 16.20 (1.19) 16

Gender (%)

Male 44.29 54.21 43

Female 55.71 45.79 56

Nativity Status (%)

US Born 73.73 88.79 73

Foreign Born 26.27 11.21 26

Other youth in household (%)

Yes 85.48 84.31 86

No 14.52 15.69 13

*Includes non-Hispanic youth who were bi- or multi-racial, American Indian or Alask
into any of the specified race categories.
Note: Percentages may not total 100 due to rounding.
While there was tremendous local variation in adolescent
BMI z-scores across Boston neighborhoods, there did not
appear to be any overall patterns spatially in BMI z-score
based on geovisualization. The Global Moran’s I for BMI
z-score was 0.07 (p=0.277).

Spatial relationship between features of the built
environment and BMI z-score
The Global Moran’s I evaluating spatial autocorrelation in
the OLS regression residuals for the association between
features of the built environment and BMI z-score indi-
cated that there was significant positive spatial autocorrel-
ation (Global Moran’s I: all approximately 0.05, all
p< 0.01). The Lagrange Multiplier test for spatial error
model indicated that there was significant spatial autocor-
relation across models (most p< 0.01, all p< 0.03). For ex-
ample, in the OLS multivariate association between
recreational open space and BMI z-score for the total sam-
ple based on the 800-meter network buffer, the Global
Moran’s I was 0.052 (p< 0.002) and the Lagrange multiplier
test p-value for the spatial error model was statistically sig-
nificant (p=0.013). Therefore, to take spatial autocorrel-
ation into account, we utilized the spatial error model.
The AIC values for the spatial error models were slightly

higher compared to OLS models and the additional spatial
autoregressive coefficient in the spatial error model for
spatial autocorrelation was not significant across models.
For example, in the multivariate association between recre-
ational open space and BMI z-score for the total sample
based on the 800-meter network buffer, the OLS model
AIC was 2887.3 while the spatial error model AIC was
2889.0. In this model, the spatial coefficient was 0.028, with
a p-value of 0.575. Results from the spatial Hausman test,
however, were non-significant—indicating that the spatial
error model is an appropriate specification for these data.
Due to the significant presence of spatial autocorrelation in
ospatial Dataset by Race/Ethnicity

ck (n = 428) Hispanic (n = 330) Asian (n= 78) Other* (n = 72)

5 (1.13) 0.66 (0.99) −0.19 (1.10) 0.37 (1.03)

.39 (1.27) 16.24 (1.24) 16.63 (1.29) 16.18 (1.31)

.46 45.76 42.31 27.78

.54 54.24 57.69 72.22

.82 70.34 59.74 88.73

.18 29.66 40.26 11.27

.45 85.35 85.53 81.43

.55 14.65 14.47 18.57

a Native, Native Hawaiian or Other Pacific Islander, or youth who did not fit



Table 2 Built Environment Features: Descriptive Statistics and Spatial Autocorrelation

400-meter Network Buffer Neighborhood 800-meter Network Buffer Neighborhood

Mean (SD) Range Moran’s I a Mean (SD) Range Moran’s I a

Access to Walking Destinations

Recreational open space (density) 4.71 (4.27) 0 - 21.11 0.79 3.71 (2.66) 0 - 16.42 0.88

Parks (density) 2.85 (2.83) 0 - 17.24 0.70 2.10 (1.32) 0 - 8.21 0.79

Bus stops (density) 25.81 (13.07) 0 - 63.36 0.66 25.37 (8.02) 0 - 47.56 0.83

Subway stops (density) 0.57 (1.64) 0 - 14.84 0.59 0.60 (1.30) 0 - 11.43 0.88

Retail destinations (density) 18.97 (21.27) 0 - 230.70 0.74 18.24 (15.02) 0 - 159.10 0.83

Service destinations (density) 1.64 (3.68) 0 - 42.32 0.63 2.01 (4.06) 0 - 71.45 0.67

Cultural/educational destinations (density) 14.48 (12.90) 0 - 154.30 0.77 15.33 (11.67) 0 - 128.60 0.90

Community Design

Median pedestrian route directness 1.14 (0.16) 1.00 - 2.73 0.15 1.18 (0.15) 1.00 - 3.12 0.38

Intersection density 113.21 (33.96) 23.86 - 305.90 0.86 105.43 (26.60) 48.41 - 262.80 0.94

Sidewalk completeness 85.31 (12.08) 10.47 - 100.00 0.68 84.11 (10.23) 17.62 - 99.47 0.83

Average sidewalk width (meters) 1.84 (0.33) 0.20 - 2.70 0.77 1.81 (0.28) 0.30 - 2.43 0.88

Average speed limit (mph) 28.00 (1.71) 24.78 - 39.40 0.76 27.82 (1.19) 25.00 - 35.34 0.89

Highway density 0.55 (2.42) 0 - 26.48 0.69 0.65 (2.08) 0 - 16.59 0.84

Residential density 375.45 (210.87) 52.76 - 1488.00 0.93 353.15 (172.45) 59.48 - 1194.00 0.96
a The pseudo p value for the Global Moran's I are all 0.001.
Note: All density measures are expressed as per square kilometer.
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the OLS regression residuals and the findings based on the
spatial Hausman test, the spatial error model was consid-
ered to be more appropriate.
Table 3 shows the multivariate results from the spatial

models estimating the association between built environ-
ment features and adolescent BMI z-score for the 800-
meter network buffer. We present the results based on the
800-meter network buffer because all multivariate results
for the 400-meter network buffer were not statistically sig-
nificant. There was not a statistically significant association
between density of recreational open space and BMI z-
score. The interaction term for recreational open space for
Asians was marginally significant and indicated an inverse
association. There was a marginally significant interaction
term in the relationship between park density and BMI for
Blacks (p=0.069), suggesting a positive association. Density
of bus stops was significantly associated with a higher BMI
z-score among Whites (Coefficient: 0.029, p< 0.05); the
interaction term was marginally significant for Blacks, His-
panics and ‘Others’—with results showing different direc-
tions across racial/ethnic groups. In addition, service
destinations and cultural/educational destinations were not
associated with BMI z-score overall, however, the inter-
action term for Asians regarding service destinations was
marginally significant (indicating an inverse association).
The interaction term for Asians in the association between
retail destinations and BMI z-score was statistically signifi-
cant (Interaction Coefficient: -0.014, p <0.05) and also
indicated an inverse association. Sidewalk completeness
was significantly associated with a higher BMI z-score
among the total sample of adolescents (Coefficient: 0.010,
p< 0.05). Average sidewalk width might be associated with
BMI z-score, though the direction of effect may vary by
race/ethnicity. BMI z-score was not associated with subway
stop density, median pedestrian route directness, intersec-
tion density, highway density or residential density.

Discussion and conclusion
The adolescent obesity pandemic remains a public
health concern. While adolescents from all U.S. racial/
ethnic groups have been affected, obesity is nearly nor-
mative among certain racial/ethnic minority adolescents.
In this study, we utilized a geospatial perspective to
evaluate relationships between features of the built en-
vironment and BMI z-score among a citywide sample of
Boston adolescents by explicitly including the spatial
context within which neighborhoods are embedded. We
also evaluated if race/ethnicity modified these relation-
ships and considered the effect of different neighbor-
hood scales in the relationships under investigation. We
found that there was significant positive spatial autocor-
relation in the built environment features examined but
not in BMI z-score. Because we found significant spatial
autocorrelation in our OLS regression residuals, we fit
spatial regression models (though these spatial models
did not significantly improve the model fit). In this
study, some relationships between the built environment
and adolescent BMI z-score were in the unexpected dir-
ection. Our findings overall suggest that built environ-
ment variables did not explain much of the variability in
standardized BMI among adolescents or racial disparities
in adolescent obesity but there are some differences in



Figure 2 Spatial Distribution of Recreational open space, Parks, Bus stops and Subways stops among the Sample, 2008 Boston Youth
Survey Geospatial Dataset (n = 1,034).
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Figure 3 Spatial Distribution of Retail destinations, Service destinations and Cultural/education destinations among the Sample, 2008
Boston Youth Survey Geospatial Dataset (n = 1,034).
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Figure 4 Spatial Distribution of Median pedestrian route directness, Intersection density, Sidewalk completeness and Average sidewalk
width among the Sample, 2008 Boston Youth Survey Geospatial Dataset (n = 1,034).
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Figure 5 Spatial Distribution of Average speed limit, Highway density and Residential density among the Sample, 2008 Boston Youth
Survey Geospatial Dataset (n = 1,034).
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Figure 6 Spatial Distribution of BMI z-scores among the Sample, 2008 Boston Youth Survey Geospatial Dataset (n = 1,034).
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Table 3 Spatial Error Model Estimation of the Relationship Between Built Environment Features and BMI z-score, 800-
meter Network Buffer a

Access to Walking Destinations Community Design Attributes

Coefficient SE Coefficient SE

A. Recreational open space (density) A. Median pedestrian route directness

Model 1 Model 1

A: Total Sample −0.027 0.017 A: Total Sample −0.384 0.243

Model 2 Model 2

A: White −0.005 0.039 A: White −1.124 0.757

A X Black 0.011 0.046 A X Black 0.938 0.860

A X Hispanic −0.036 0.044 A X Hispanic 0.765 0.837

A X Asian −0.098~ 0.059 A X Asian 0.798 1.242

A X Other −0.018 0.063 A X Other 0.644 1.259

B. Parks (density) B. Intersection density

Model 1 Model 1

B: Total Sample 0.034 0.030 B: Total Sample 0.000 0.002

Model 2 Model 2

B: White −0.035 0.072 B: White 0.001 0.003

B X Black 0.155~ 0.085 B X Black 0.003 0.004

B X Hispanic −0.009 0.085 B X Hispanic −0.003 0.004

B X Asian 0.085 0.104 B X Asian −0.005 0.005

B X Other 0.163 0.124 B X Other 0.001 0.006

C. Bus stops (density) C. Sidewalk completeness

Model 1 Model 1

C: Total Sample 0.004 0.005 C: Total Sample 0.010* 0.004

Model 2 Model 2

C: White 0.029* 0.016 C: White 0.015 0.010

C X Black −0.027~ 0.016 C X Black −0.004 0.011

C X Hispanic −0.029~ 0.016 C X Hispanic −0.013 0.012

C X Asian −0.015 0.020 C X Asian 0.005 0.016

C X Other −0.038~ 0.023 C X Other 0.007 0.019

D. Subway stops (density) D. Average sidewalk width

Model 1 Model 1

D: Total Sample −0.039 0.034 D: Total Sample 0.267~ 0.145

Model 2 Model 2

D: White −0.020 0.085 D: White 0.567~ 0.321

D X Black −0.007 0.103 D X Black −0.156 0.378

D X Hispanic 0.019 0.101 D X Hispanic −0.582 0.389

D X Asian −0.063 0.098 D X Asian −0.561 0.480

D X Other −0.052 0.116 D X Other −0.022 0.645

E. Retail destinations (density) E. Average speed limit

Model 1 Model 1

E: Total Sample −0.001 0.002 E: Total Sample −0.029 0.035

Model 2 Model 2

E: White 0.007 0.006 E: White 0.127 0.106

E X Black −0.011 0.008 E X Black −0.208~ 0.119

E X Hispanic −0.003 0.007 E X Hispanic −0.112 0.117

E X Asian −0.014* 0.007 E X Asian −0.203~ 0.123

E X Other −0.013 0.013 E X Other −0.167 0.161
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Table 3 Spatial Error Model Estimation of the Relationship Between Built Environment Features and BMI z-score, 800-
meter Network Buffer a (Continued)

F. Service destinations (density) F. Highway density

Model 1 Model 1

F: Total Sample −0.007 0.009 F: Total Sample −0.017 0.020

Model 2 Model 2

F: White 0.012 0.013 F: White 0.017 0.042

F X Black −0.055 0.034 F X Black −0.059 0.070

F X Hispanic −0.015 0.031 F X Hispanic −0.039 0.054

F X Asian −0.036~ 0.020 F X Asian −0.040 0.052

F X Other −0.088 0.060 F X Other −0.060 0.105

G. Cultural/educational destinations (density) G. Residential density

Model 1 Model 1

G: Total Sample 0.001 0.003 G: Total Sample 0.000 0.000

Model 2 Model 2

G: White 0.006 0.007 G: White 0.000 0.000

G X Black −0.002 0.009 G X Black −0.000 0.001

G X Hispanic −0.002 0.010 G X Hispanic −0.000 0.001

G X Asian −0.013 0.008 G X Asian −0.001 0.001

G X Other −0.008 0.017 G X Other −0.000 0.001

SE =Standard Error
~ p< 0.10; * p< 0.05 (bold); ** p< 0.01 (bold).
a Model 1 estimates the association between the built environment and BMI z-score among the total sample; Model 2 estimates the studied association and
includes an interaction for race/ethnicity. For each model, we evaluate the estimated effect of each built environment feature separately. All models are adjusted
for individual-level race/ethnicity, individual-level gender, individual-level age, individual-level nativity, individual-level family structure (other youth in household),
neighborhood-level percent of Black residents, neighborhood-level percent of Hispanic residents, neighborhood-level percent of households below poverty and
neighborhood-level percent foreign born for the 800-street network buffer. Regression estimates are also controlled for school using indicator variables.
Note: All density measures are expressed as per square kilometer.
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these relationships by race/ethnicity. However, we do not
want to over interpret the interaction terms for the racial/
ethnic groups due to relatively small samples sizes among
certain groups. Although most built environment features
were not associated with BMI z-score, density of bus stops
was associated with a higher BMI z-score among Whites.
The interaction term for Asians in the association between
retail destinations and BMI z-score was statistically signifi-
cant and indicated an inverse association. Sidewalk com-
pleteness was significantly associated with a higher BMI z-
score among the total sample. These significant associa-
tions were found for the 800-meter buffer. To the best of
our knowledge, this is the first study to examine relation-
ships between various built environment features and ado-
lescent BMI z-score to have explicitly considered
geospatial issues such as spatial autocorrelation and one
of few studies to consider racial/ethnic differences in
effects and neighborhood effects at multiple spatial scales.
Few studies have examined spatial clustering of the

built environment in residential neighborhoods, and
the existing studies all show positive spatial autocor-
relation in various features of the built environment
[49-53]. Several studies have shown spatial clustering
of obesity [14-19], but others have shown that obes-
ity does not cluster [54,55]. The difference between
our findings and those of some other studies that
suggest obesity clusters could be explained by the
fact that most other studies examined obesity clus-
tering among adults (in this study we examined BMI
z-score clustering among adolescents). Also, most of
the studies evaluating spatial patterns in obesity used
large administrative areas, whereas we evaluated
spatial patterns with individual-level geocoded resi-
dential addresses. Furthermore, we measured global
spatial autocorrelation (since we were interested in
modeling associations and not identifying specific
potential locations of spatial clustering). Global
spatial autocorrelation might not exist if there is
highly localized clustering [56]. To illustrate, a high
prevalence of obesity might exist is a small region of
the overall geographic area under investigation, but
these spatial patterns in BMI might not be detected
with global spatial autocorrelation tests. Several of
these aforementioned studies used global spatial sta-
tistics in evaluating spatial autocorrelation in obesity
[16,17,54,55]; some did not find any clustering with
the global cluster detection method [54,55]. How-
ever, when assessing local clustering in obesity sig-
nificant spatial patterns in obesity were found [14-
16,18,19]. It therefore remains a possibility that our
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data could have local patterns in BMI. However,
such an assessment is beyond the scope of the
present study.
Only a handful of existing studies have examined built

environment correlates of BMI among adolescents and
only recently have studies used GIS to quantify the built
environment. Several findings from our study are con-
sistent with several of these existing studies. For ex-
ample, adolescent BMI was not associated with
recreational facilities and parks in several past studies
[57-63]. However, a few other studies indicate an inverse
association of recreational facilities and parks with adi-
posity among adolescents [55,64,65]. In a study among
adults in Los Angeles County and southern Louisiana
that examined racial/ethnic differences in associations
between the built environment and BMI, access to parks
was significantly associated with decreased BMI among
Whites, but increased BMI among Blacks (though the
latter association was not statistically significant) [66]. In
a study of Massachusetts children and adolescents, pub-
lic transit (particularly subway density) was inversely
associated with BMI [60]. Additionally, previous research
has found that intersection density were not associated
with adolescent BMI [58,62,63,67]. Contrary to our find-
ings, past research found no association between side-
walks and adolescent BMI [60]. In previous research,
residential density was not associated with BMI or obes-
ity among adolescents [55,57,62,63,67,68], although a re-
cent study found that higher population density was
associated with lower BMI in adolescents across spatial
contexts [67]. We are not aware of any research examin-
ing the effect of the average speed limit on adolescent
BMI, but some relevant research has been conducted. In-
deed, car traffic was longitudinally associated with
increased BMI among adolescents in one study [69], but
was not associated with adolescent BMI in another longi-
tudinal analysis [58]. In a cross-sectional analysis traffic
danger (i.e. the ratio of roads with higher speed limits and
traffic volumes to all other roads) was not associated with
adolescent BMI [59] nor was traffic density cross-section-
ally associated with BMI among a sample of adolescents
from Kiel, Germany [57]. Finally, no association was found
between road density and adolescent BMI [67].
There are several important caveats to note regarding

studies examining the relationship between built environ-
ment features and adolescent adiposity. Most of the existing
studies did not examine or account for potential spatial
autocorrelation in regression models and most studies also
did not examine race/ethnicity or neighborhood definition
as potential effect modifiers. It is plausible that some of our
results may differ from the existing studies due to the afore-
mentioned reasons but also the samples in most of the
existing research were not predominantly Black and/or
Hispanic, as was our sample. Moreover, it is difficult to
compare our findings regarding potential effect modifica-
tion by neighborhood definition because several studies
used buffers of different scales and zones than ours. In the
present study, the significant findings pertain to the 800-
meter street network buffer as compared to the 400-meter
street network buffer. Of the studies with similar spatial
scales, some found significant associations at larger spatial
scale (about 800 meters) [55,67], though others did not at
this spatial scale [61,62]. In contrast to our findings, some
studies found significant associations at a smaller spatial
scale (about 400 meters) [60,64,69], though these studies
included a wider age range including children and adoles-
cents, or younger adolescents only. Of note, there might be
a threshold effect in the relationship between the built en-
vironment and adolescent BMI, as a very large spatial scale
(1 mile or greater) for built environment features was not
associated with adolescent BMI across studies [58,63] .
Because several results were unexpected, in addition to

consulting the literature, we conducted post-hoc analyses
and also used Google – which can be a useful resource for
evaluating the neighborhood environment [70-73] – to de-
termine plausible explanations for our findings. The finding
that density of parks might be associated with higher levels
of BMI among Black adolescents was unexpected; parks are
generally thought to be places where people can partake in
various physical activities [74]. Previous studies have found
socioeconomic and racial/ethnic inequalities in the quality
of parks [75-77]. There is racial residential segregation in
Boston [78,79], and it is possible that the parks in Black
neighborhoods have worse conditions (e.g. less safe and
more trash) than the parks in certain other neighborhoods.
In post-hoc analyses, Blacks in our sample were among the
least likely to have recently used parks and other open
spaces (which was queried in the survey) and this is consist-
ent with previous research [80-83]. As shown in other pre-
vious cross-sectional studies [60,84] and a recent natural
experiment [85], public transit was inversely associated with
BMI, perhaps a result of walking to and from public transit
(increasing daily physical activity level via utilitarian exer-
cise) [86,87] and because public transportation might also
be an overall indicator of urban neighborhood walkability
with increased destinations [60]. Although it is known that
racial/ethnic minorities (e.g. Blacks and Hispanics) walk
more than their White counterparts to public transit [86],
it is unclear why we found a significant positive association
between bus stop density and BMI among White
adolescents. It is possible that Whites might be less likely to
use public transit (e.g. buses), but it is still unclear why this
association exists. We speculate that the effect found might
be a marker for another environmental feature (e.g. crime
which can happen at bus stops) [88,89] and our 2006 sur-
vey showed that youth feel particularly unsafe on public
transit (including buses) [25]. Additionally, bus stops might
be associated with increased traffic noise [90], which may
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be associated with BMI. However, it is still unclear why this
was only significant for Whites. Also, we did not expect to
find that sidewalk completeness would be associated with
higher BMI z-scores. In post-hoc analyses, we re-estimated
the associations between sidewalk completeness and ado-
lescent BMI z-score, controlling for all the individual- and
neighborhood-level variables previously noted and also
now controlling for average speed limit and highway dens-
ity (as they might be associated with both the exposure and
outcome). The results, however, did not appreciably
change. We suspect that there may still be residual con-
founding and note that our sidewalk effect in the unex-
pected direction should be considered in light that the data
was unable to account for the quality of sidewalks. Using
Google Street View, we examined the streetscape and side-
walk conditions for the locations of a small number of ado-
lescents in our sample with varying degree of sidewalk
completeness. The conditions of neighborhoods with a low
percentage of sidewalk completeness and neighborhoods
with a high percentage of sidewalk completeness were sur-
prisingly generally comparable in our preliminary Google
investigation.
It is important to note that several of the non-significant

effects might be due to some ubiquity of the neighborhood
exposures; lack of a good degree in variation for adolescents
on some features might limit the ability to find significant
effects, especially in urban environments such as Boston.
Even if there was greater variation for most of the sample,
non-significant effects could still be found due to the po-
tential counterbalancing effects of the built environment on
adolescent BMI, as neighborhoods can have features that
dually promote increased physical activity as well as
increased food intake, which can be implicated in the
spatial behavior and therefore health of neighborhood resi-
dents. For example, it is plausible that adolescents in neigh-
borhoods with increased intersections walk (potentially
resulting in energy expenditure) to stores to consume en-
ergy dense foods (potentially resulting in energy intake),
which can result in energy balance—not or minimally
affecting their adiposity. Some emerging work has sug-
gested that there may be a ‘corner store phenomenon’,
whereby the purchases made in corner stores can contrib-
ute significantly to energy intake among urban children
[91]; these children might be making purchases at corner
stores walking in their neighborhoods as well as to and/or
from school. In regards to our counterintuitive bus stop
density-BMI z-score finding among Whites, bus stops can
be near food stores. Therefore, bus stop density could serve
as a proxy for the food environment, increased energy in-
take and higher adiposity. Lastly, it is necessary for us to
comment on our findings regarding model specification.
Spatial autocorrelation was found in our standard OLS re-
gression models, but the spatial error models did not result
in improved goodness-of-fit. We speculate that this to be
the case because while there was significant spatial autocor-
relation in the OLS regression residuals, the magnitude of
the effect was not large.
Although this study had several strengths (e.g. under-

standing the modifiable areal unit problem, examining
race/ethnicity as a potential effect modifier, using socially
meaningful neighborhoods, using GIS, providing a
detailed description of our address geocoding methods
and using various spatial statistical methods), it also had
some limitations. The use cross-sectional analysis is a
limitation, as it precludes any causal inference. Despite
this limitation, our built environment exposures precede
the outcome, BMI z-score, and several longitudinal studies
[55,64,69,92] and natural experiments [85,93] show that
features of the built environment can impact changes in
obesity risk among adolescents and adults. Though the
gold standard is to collect objectively measured height
and weight data, this was not practical nor a central focus
of the parent study. In the BYS, we had self-reported
height and weight data for BMI, which can be associated
with inaccurate reporting. However, past research has
found that adolescents can provide valid reports of height
and weight. For example, among adolescents in a previous
study, the correlation between measured and self-reported
height was 0.94 and the correlation between measured
and self-reported weight was 0.95 (all statistically signifi-
cant) [94]. Accuracy of exposure and outcome data loca-
tion is important in spatial analysis, including for
visualization, cluster detection and spatial regression mod-
eling. Problems with GIS datasets can exist [95,96]; the
few studies that have examined the validity of GIS built
environment databases indicate that there can be errors in
them [60,97,98]. Any pattern of error in a GIS dataset is
likely biased towards the null when examining associa-
tions between the built environment and health [98]; this
also serves as an additional potential explanation of our
overall null findings. We also note that we had access to
various GIS datasets to create a wide range of built envir-
onment features—including access to local GIS datasets
(used in the study) which are likely to be more valid than
national GIS datasets. It is still possible that there is some
location misclassification. Also, because we obtained inter-
section addresses there may be some location misclassifi-
cation and some spatial overlap in the sample. Location
misclassification can produce biased estimates and reduce
the statistical power to detect true associations. However,
the effect of using intersections on location misclassifica-
tion is likely to be small, since all study participants live
within the city of Boston, which generally has a dense
street network with small block sizes (so, the distance be-
tween the exact address and the intersection is likely to be
quite small; thus, built environment variables at intersec-
tions are expected to be similar to variables at mid-block).
Overlap in the neighborhoods of these students (meaning
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same intersections) can introduce nuisance spatial auto-
correlation (i.e. artificially increase clustering) among in-
dependent variables. However, address information was
obtained at the intersection level for several specific rea-
sons (e.g. for confidentiality reasons and to increase the
response rate); geocoding intersection addresses has been
suggested as a suitable alternative to geocoding a partici-
pant’s specific residential address [99]. Importantly, the
BYS geospatial sample is smaller than the adolescents who
completed the survey; this is a limitation, however, there
were no differences by BMI z-score in our data with
regards to who provided geocodeable information and
who did not, which is consistent with another recent study
among adolescents [67], so ‘geographic bias’ is not an issue
[100]. In this study, we control for a number of potential
confounding variables at both the individual- and neigh-
borhood-level. However, due to expected high rates of
non-response, we did not seek to ascertain information on
parent’s socioeconomic position (e.g. income and employ-
ment status) as well as adolescents’ residential stability, so
we were unable to control for these variables in adjusted
regression models. We speculate that including family-
level socioeconomic variables in the analyses (if we could)
would further attenuate the results, although probably not
by a large degree, because the sample is predominantly
low-income urban adolescents, so there likely is not as
much variation in family-level socioeconomic conditions
as there likely could be with samples including individuals
from a broader socio-economic spectrum. Residual con-
founding (due to the effect of not including family-level
socioeconomic variables) likely is not as much of a con-
cern in this study as it might be in other research. Con-
founding by neighborhood self-selection is also a
possibility (e.g. it is possible that physically active people
may move to neighborhoods where there are parks and
recreational facilities) [5,101-103]. However, residential se-
lection bias might not be much of a concern in this study
because it is less plausible that adolescents chose the
neighborhoods that they live in (we recognize though that
their parents’ still did and this could influence the adoles-
cent’s behavior/health). Furthermore, it is also important
to note that adolescents might not use resources in neigh-
borhoods that can be related to energy imbalance. Though
we found some significant racial/ethnic differences, statis-
tical power for the racial/ethnic interaction analysis is a
limitation of this study due to small samples sizes for
some groups. Also, results were not corrected for multiple
comparisons. These findings might only be generalizable
to low-income adolescents in comparable urban locations
at comparable spatial scales as the study was conducted in
the city of Boston among a sample of low-income high
school students using specific spatial scales.
While the findings for this study overall suggest that the

built environment is not a major contributor to adolescent
obesity or racial disparities in adolescent obesity, we believe
that further research is needed including in other geo-
graphic locations. Given the lack of evidence found in this
study that the built environment contributes substantively
to adolescent obesity and obesity disparities, future research
should not only consider the built environment analyzing
separate measures but consider analyzing composite
measures of the built environment as well as consider other
explanations for adolescent obesity disparities—including
perhaps an examination of the social environment (e.g.
crime, neighborhood disorder). Qualitative studies can be
helpful in understanding these relationships, which may
vary by race/ethnicity. In addition to examining access to
the built environment, future studies should ascertain and
examine the quality of built environment features. There
are a variety of existing tools (which can be integrated into
a geospatial dataset) that facilitate examining conditions
and cleanliness of the built environment [95] such as the
conditions of park and open space features (e.g. the
Environmental Assessment of Public Recreation Spaces
[EAPRS]) [104]. An additional suggestion for future
research is to query use of built environment neighborhood
resources. While additional cross-sectional studies will also
be important to gaining a greater understanding of how
policy-relevant built environment features might influence
obesity risk among adolescents, to address the complexity
of causation in this area of research, prospective cohort
designs in addition to experimental research designs can
also be conducted and would provide clear temporal order-
ing. These future studies examining associations between
the built environment and BMI should pay special attention
to differences by race/ethnicity and neighborhood defin-
ition. Understanding the role that race/ethnicity may play
in relationships between various built environment features
and adolescent adiposity (which require large sample sizes
for the racial/ethnic groups to have power to detect effects)
may contribute to remedying racial/ethnic health dispar-
ities. Because neighborhood definition (e.g. spatial scale)
probably always matters in neighborhood effects research,
if possible, it will be useful for future studies to conduct
analysis with multiple neighborhood definitions in the same
study to further understand the modifiable areal unit prob-
lem. Critical thought should be given when defining neigh-
borhoods. The appropriateness of the neighborhood
definition(s) likely varies based on the process studied. Use
of spatial regression methods in research examining the
built environment and BMI can be important if there is
spatial autocorrelation in regression residuals. Although the
spatial error model is usually an appropriate spatial model,
given that the source of spatial autocorrelation is often un-
known, future research can consider the use of other spatial
regression methods. There is also a need for additional re-
search to further understand the role of residential self-se-
lection as it might bias associations between the built
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environment and adolescent BMI; a number of approaches
can be used to do this [105-107]. Among the published
studies investigating the effects of the built environment on
adolescent BMI, to our knowledge, only one has performed
a validation of their GIS datasets [60]. The paucity of infor-
mation on the validity of GIS built environment data
(which may vary by location and provider) warrants add-
itional research. Future studies using georeferenced data
can also consider employing spatial sampling techniques to
equalize the number of respondents at different levels of
exposure and to also ensure socio-demographic heterogen-
eity [108-110]; use of spatial sampling can improve the
quality of analysis on the built environment and obesity
risk. These additional studies will expand the main findings
from our study that suggest the built environment does not
explain a large proportion of the variation in adolescent
BMI z-score or racial disparities in adolescent obesity, al-
though some differences by race/ethnicity existed among
adolescents.
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