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Abstract

Background: Self-organizing maps (SOMs) have now been applied for a number of years to identify patterns in
large datasets; yet, their application in the spatiotemporal domain has been lagging. Here, we demonstrate how
spatialtemporal disease diffusion patterns can be analysed using SOMs and Sammon’s projection.

Methods: SOMs were applied to identify synchrony between spatial locations, to group epidemic waves based on
similarity of diffusion pattern and to construct sequence of maps of synoptic states. The Sammon’s projection was
used to created diffusion trajectories from the SOM output. These methods were demonstrated with a dataset that
reports Measles outbreaks that took place in Iceland in the period 1946–1970. The dataset reports the number of
Measles cases per month in 50 medical districts.

Results: Both stable and incidental synchronisation between medical districts were identified as well as two distinct
groups of epidemic waves, a uniformly structured fast developing group and a multiform slow developing group.
Diffusion trajectories for the fast developing group indicate a typical diffusion pattern from Reykjavik to the
northern and eastern parts of the island. For the other group, diffusion trajectories are heterogeneous, deviating
from the Reykjavik pattern.

Conclusions: This study demonstrates the applicability of SOMs (combined with Sammon’s Projection and GIS) in
spatiotemporal diffusion analyses. It shows how to visualise diffusion patterns to identify (dis)similarity between
individual waves and between individual waves and an overall time-series performing integrated analysis of
synchrony and diffusion trajectories.
Background
Spatiotemporal analysis of epidemic waves can reveal im-
portant information on anomalies and trends, and provide
inside into the underlying diffusion patterns [1,2]. These
patterns are categorised as contagious spread, hierarchical
spread, or mixed diffusion. Contagious spread depends
on direct person to person contact and results in centrifu-
gal patterns from the source outward [2]. Hierarchical
spread refers to disease transmission through an ordered
sequence of geographic locations (normally based on their
size) [1] and it can be related to the movement of people,
carrying a disease to a new centre of population via long
distance travel. Due to this, hierarchical spread is typically
characterized by the display of synchrony among loca-
tions that have similar size but that are geographically
apart [2]. Two or more locations are synchronized when
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they exhibit a parallel development in the number of
disease cases.
The search for synchrony is not unique to epidemiology

but originates in innovation diffusion and ecology, and
it occurs in many other disciplines [3]. Hence, multiple
methods exist to quantify and to map synchrony [4].
Among these methods wavelets are frequently used as they
also allow to study non-stationary (trends) in time series
[5]. Wavelets analyse disease diffusion in the frequency
domain where synchrony can be identified via the coher-
ence in the phase of the number of diseases cases at each
geographic location [6].
Besides synchrony, another important property of spa-

tiotemporal disease diffusion is the trajectory of wave
propagation. This trajectory captures the step by step dif-
fusion by describing the speed and direction of spread [2].
As waves of infectious diseases are normally a combin-
ation of contagious and hierarchical spread [2], this trajec-
tory is not a single and continuous line (as a trajectory
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representing human movement) but a reflection of a mov-
ing front or fronts. Methods for capturing this movement
range from different calculations of front velocity [7], to
methods that capture the direction of diffusion as related
to clusters of human population, network distance or
travel distance [8,9].
In this paper, we propose using self-organizing maps

(SOMs) to study disease diffusion in space and time.
SOMs are a well-known data-mining method, used to
cluster and visualize high dimensional data by project-
ing it into a low-dimensional (typically 2D) space [10].
This projection makes it easier to understand spatio-
temporal datasets and the patterns that they might con-
tain [11,12]. In spatial-epidemiology, SOMs are mostly
used as a non-linear analytical method to study multi-
variate patterns [13-15] but here we show that they also
enable the integrated analysis of both synchrony and
diffusion trajectories. Moreover, this data mining methods
is advantageous because it does not require transforming
the data to a new “data space” (like wavelets). This greatly
facilitates the interpretation of the results as the shape of
the epidemiological curve (number of cases as a function
of time) is preserved so that the time of infection and
intensity (persistence) can be studied for each geographic
location.
The detection of synchrony using SOMs is based on

the fact that they maintain the topological characteris-
tics of the input data. This ensures that locations with a
high level of synchronisation in the timing and intensity
are mapped near to each other forming clusters. The
study of diffusion trajectories can be achieved by fur-
ther applying the Sammon’s projection to the previous
SOM results. In short, in this study we illustrate the fol-
lowing issues: identification of locations (spatial units)
with similar diffusion processes – synchrony (1) and
characterization of spatial temporal diffusion patterns –
diffusion trajectories (2).
Figure 1 Measles dataset. Measles cases in Iceland (1946–1970). (A) Spat
districts arranged in ascending order of population size and colour represe
cases for the complete country (log10 (cases +1)).
Methods
Disease data
To illustrate this study, we used data on eight historical
Measles epidemics in Iceland [16]. The epidemics span
the period November 1946 (wave 8) to December 1970
(wave 15). Prior outbreaks took place (waves 1–7), but
are not included in this research for reason of data in-
completeness and re-organization of medical districts.
After 1970, outbreaks have different characteristics due
to the introduction of mass vaccination.
The data reports monthly Measles cases for each of

the 50 medical districts of the country. Figure 1A shows
the log transformed Measles cases (log10 (cases +1)) for
all of the eight epidemics per medical district, with the
medical districts sorted in ascending order of popula-
tion size. The colour representing the epidemic inten-
sity shows that for all waves, there are only few medical
districts with high intensity and that these are always
the centres with the higher population (bottom of the
graph). The number of cases per epidemic outbreak
ranges between 6000 cases for wave 9 and less than
1900 for wave 10 (Figure 1B) [16]. Because of the low
number of cases wave 10 is excluded from further ana-
lysis. Inter wave periods are evenly distributed showing
no significant changes in pattern over the studied time
period. All presented analyses are performed on log
transformed input data to ensure a normal distribution
and are scaled (0–1).
This dataset was selected because Iceland has proven

to be an excellent study example for disease diffusion
processes for a number of reasons including: the isola-
tion of the country which creates a self-contained sys-
tem with few external influences; the stability of the
population and spatial structure (medical districts), and
length of the available time series. This has led to the
well-documented and extensively studied Measles data-
set [2,17].
ial distribution of log10 (cases +1) per medical district, with medical
nting epidemic intensity. (B) Time series of total number of notified
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Self-organizing maps (SOMs)
SOMs are a type of un-supervised artificial neural net-
work used to cluster high dimensional data by projecting
it onto a low-dimensional lattice. This lattice consists of
neurons that are trained iteratively to extract patterns
from the input data. These patterns are generalizations
of the input data and are referred to as codebook vec-
tors. At the start of the training phase, each neuron is
assigned a codebook vector that is updated at each iter-
ation, in such a way that topological properties in the in-
put training data are preserved.
We used the Kohonen R package [18] to train several

SOMs following these steps:

a. The size (number of neurons, including number of
rows and columns) and type (rectangular or
hexagonal) of the SOM lattice were chosen.

b. Each neuron was assigned a random vector of
weights or codebook vector (mk) with the same
dimensionality as the input data.

c. Data samples were iteratively presented to the
low-dimensional lattice to identify the best matching
unit, BMU, which is the neuron that contains the
codebook vector that minimizes the Euclidean
distance with the data sample at hand. This iterative
process is known as training the SOM and each
iteration (t) is used to update the codebook vector
of the BMU and the neighbouring neurons
according to:

mk t þ 1ð Þ ¼ mk tð Þ þ α tð Þhck tð Þ x tð Þ−mk tð Þð Þ ð1Þ

in which mk is an n-dimensional codebook vector,
α (t) is the learning rate, hck (t) is the neighbourhood
kernel of the BMU neuron and x is a randomly
chosen input vector from the training dataset.

For the training of the SOM we used a hexagonal
SOM lattice, using a standard linearly declining learning
rate from 0.05 to 0.01 over 1000 iterative updates. The
radius of the neighbourhood kernel uses the starting
value of 2/3 of all unit-to-unit distances using a square
neighbourhood.
After the training, a secondary clustering can be per-

formed on the SOM lattice, using visual analytics or a
different clustering algorithm. Especially when the train-
ing lattice is large (larger than the number of clusters
needed), a secondary clustering is known to outperform
the initial SOM [19]. Secondary clustering can be per-
formed via visual analytics or by using a second cluster-
ing algorithm.
A relatively simple way of identifying SOM clusters is by

using the U-matrix. The U-matrix displays the Euclidean
distance between the codebook vectors of neighbouring
SOM neurons. High values in the U-matrix visually separ-
ate clusters. However, this method has proven to be diffi-
cult, especially with complex datasets. Therefore, several
authors have proposed graph-based technics to enhanced
the U-matrix for cluster interpretation [20]. Here we used
an enhanced U-matrix as proposed by Hamel and Brown
[21]. In this method, the centres of the lattice neurons are
used as the vertices of a planar graph (a graph without
crossing edges). The edges in the graph connect nodes
to the neighbouring node with the maximum gradient.
In this way, subgraphs are created, that indicate the clus-
tered neurons. When displaying the graph on top of the
U-matrix, an easy visual interpretation of the number and
composition of the clusters is possible.
Besides the visual identification of clusters based on the

U-matrix, a different clustering algorithm can be used for
secondary clustering. A range of options exist including k-
means and hierarchical clustering [19]. In hierarchical
clustering, neurons are first assigned to their own cluster,
the distance between clusters is calculated and then, itera-
tively, the most similar clusters are joined. A disadvantage
of these methods is that user has to decide the number of
clusters to be found.
After training the SOM and performing the secondary

clustering, the third step in the SOM process is the map-
ping of the data onto the trained SOM, identifying for
each input vector the BMU neuron and cluster. The train-
ing dataset and mapping dataset can be the same, subsets,
or mapping data may consist of new data not included in
the training sample. Here, we trained the SOMs with the
complete dataset to ensure that all existing patterns are
represented in the codebook vectors of the lattice. How-
ever, different subsets of the training data are mapped
back onto the lattice for evaluation. These subsets corres-
pond to single epidemic waves, making it possible to com-
pare the mapping of the total dataset to the mapping of
the individual waves.
The standard way to quantify error for trained SOMs

is the quantization error, which measures the distance
between the mapping data and the codebook vector. In
this research, the quantization error is used to evaluate
the “goodness of fit” of the mapped data. The smaller
the quantization error, the better the mapping.
When applying SOMs for spatiotemporal analyses, the

data used for training and mapping needs to be consid-
ered in a dual fashion: from a spatial perspective and
from a temporal perspective [22,23]. A data organisation
of the type space over time (SxT) allows the detection of
spatial units (medical districts) that show similar behav-
iour over time; that are synchronized. Here, we would
like to find both synchronies over the total time series
and over single waves. Therefore, two different types of
space over time datasets are used: the space over time
(SxT) dataset where T includes the complete time series
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(Figure 2A) and the space over wave (SxW) dataset
where T covers a single wave (W) (Figure 2B). To study
the diffusion of the disease over time, a time over space
(TxS) data organization is used (Figure 2C).

Finding clusters of synchronised codebook vectors
Finding synchronies based on SOMs makes use of the
combined ability of the SOM method to produce a gen-
eralized prototype vector from the input data and to
order these vectors topologically onto a training lattice.
Input data vectors that map to the same neuron are syn-
chronised, vectors that map to neighbouring neurons
might also be synchronised. This can be identified by
performing a second clustering on the SOM lattice
grouping neighbouring neurons with similar codebook
vectors.
Detection of synchronies between medical districts is

based on an SxT data organisation. The training of the
SOM (lattice size 3×4) is followed by a secondary parti-
tioning based on hierarchical clustering (See Figure 3).
However, the exact number of clusters is unknown. This
is why the clustering is confirmed using the Component
Planes of the temporal SOM (Figure 3, step A) with a
lattice size of 7×7. Component Planes are slices of the
Figure 2 Data organisation. Data organisation, Space in Time (SxT)
SOM (A), Space over Wave (SxW) SOM (B) and Time in Space (TxS)
SOM (C).
codebook vectors that represent the status of a variable
for all the neurons in the SOM lattice. The correlation
among variables becomes visible via similar patterns in
their component planes. Methods for using Component
Planes for correlation hunting have been described pre-
viously [24,25].
We can re-organise our dataset in order to construct a

dataset were each data vector represents one month
(Figure 2 – data organisation (C)). This data organisa-
tion is also referred to as Time in Space (TxS). We
trained this SOM using a lattice size of 7×7 neurons.
When using the TxS SOM, variables represent spatial
locations. A component plane in this case, is a represen-
tation of all the neurons a medical district has been
mapped to, including the frequency. Two spatial loca-
tions with identical or similar component planes are cor-
related. We compared the clustering found with the
SxT SOM with the component planes of the TxS SOM
to verify the number of clusters. This was done by
grouping the component planes of the medical districts
per cluster.
After confirmation of the clustering, both the complete

dataset and the individual waves are mapped back onto
the SxT SOM lattice to determine the BMU (Figure 3
step B). In SOMs, training vector and mapping vector
should have an equal length. However, a single wave sub-
set is much shorter than the complete time-series. Thus,
subsets of input vectors were created by combining a
Nodata matrix with subsets of the scaled input data. This
is possible because SOMs allow for “missing data”.
When training the SOM with the complete dataset

and mapping back single waves, clustering found in the
complete dataset may differ from the clusters of individ-
ual waves. The robustness of the clusters was checked
via the so-called figure of merit [26]. The figure of merit
(M(v)) measures the extent to which the clustering for
the subsamples (individual waves) corresponds to the
clustering of the complete dataset for the variable or
variables v, in our case the disease incidence. Mapping
can be presented as an N × N mapping matrix Ƭij in
which Ƭij = 1 when two medical districts are mapped to
the same neuron or cluster, and Ƭij = 0 when mapped to
different neurons or clusters. The figure of merit is
based on the comparison of mapping matrices of the
resamples Ƭ(μ) and the original matrix Ƭ per subset (w),
in our case a wave:

M vð Þ ¼
Σw

δτij;τ
μ
i;j

τi;j

� �

w
ð2Þ

M(v) is used to compare the mapping of all the sub-
samples with the mapping of the complete dataset by
counting the number of times the same mapping occurs



Figure 3 Flow diagram synchrony. Flow diagram showing the steps to identify synchrony. A- clustering, B - mapping of the dataset, C- check
on the robustness of the clusters.
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in both samples and dividing this by the total number of
subsets. M(v) = 1 indicates a perfect score.

SOMs for identifying diffusion patterns
SOMs can also be used to identify diffusion trajectories.
For this, we followed two steps: First, we grouped epi-
demics based on their diffusion pattern. Next, we visua-
lised the synoptic states and created diffusion trajectories
(Figure 4).

Grouping waves with similar diffusion patterns
Grouping of epidemic waves with similar characteristics is
done based on the SxW SOM (Figure 2 – data organisa-
tion (B)). For the SxW SOM, codebook vectors represent
a medical district during a single epidemic. This SOM
maintains the epidemic curve in the purest form, and al-
lows for a high level of topological consistency. After
training (lattice size 7×7 neurons), a secondary grouping is
performed using the enhanced U-matrix method, and the
individual waves are mapped back onto the SOM lattice
(Figure 4(A)).
A limitation of the SOM algorithm is that all input vec-

tors should be equal in length. As this data organisation is
Figure 4 Flow diagram spatial diffusion. Flow diagram showing the ste
B - comparison of synoptic states of the groups identified under A. C- map
Projection, and comparison of the trajectories of the groups identified und
per wave, and waves cover different time periods, the vec-
tors are aligned at the beginning of the wave, and zero
values are added to shorter outbreaks, to ensure equal vec-
tor length.
Grouping of waves is found by comparing the mapping

of the individual waves on the SOM lattice.

Sequence of synoptic states
A synoptic state is a pattern that spatially characterises a
diffusion state. Each wave can be represented as an or-
dered sequence of synoptic states. The number of states
per wave is variable. This sequence provides information
on the speed and on the direction of spread. The workflow
for generating trajectories of synoptic states is shown in
Figure 4B.
In order to retrieve synoptic states, a SOM is trained

using the TxS SOM (Figure 2 – data organisation (C)).
In this case each data vector represent one month (vari-
ables represent the medical districts). After training the
SOM, codebook vectors are translated into a GIS map
(Figure 4 – (B)). This can be done because the variables
of each codebook vector represent a sequence of medical
districts. By transposing the codebook vectors (to SxT)
ps for the identification of diffusion. A - grouping of similar waves.
ping of diffusion trajectories of all waves onto the Sammon's
er A.
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and visualising them in a GIS, each neuron (codebook
vector) of the SOM lattice can be shown as a GIS map.
The data is now mapped back onto the SOM. For each

month a mapping to a codebook vector is determined.
After grouping successive months with the same map-
ping (within the same wave), a sequence of maps is re-
trieved, this composes the ordered sequence of synoptic
states per wave.
States differ in duration. The speed is represented as

the number of states and the duration of each synoptic
state (the number months mapped to the state). The dir-
ection of spread can be derived from the maps via visual
comparison of the states.

Sammon’s trajectories
Alternatively, the direction of spread can be evaluated
by mapping trajectories on the Sammon’s projection
(Figure 4 – (C)). The method of combining the analysis
of synoptic states and Sammon’s trajectories has been
previously used by Zurita-Milla et al. [27]. Yet, here we
applied it in combination with mapping back subsets on
point data.
This trajectory is constructed on a “TxS” SOM, in

which each vector in the input dataset represents an epi-
demic month. This is the same SOM and the same map-
ping as used for the synoptic states.
To describe the diffusion path, the Sammon’s projec-

tion is used to visualise the SOM codebook vectors in
2-D space. The Sammon’s projection aims to minimize
the following error function:

E ¼ 1X
i<j

d�
ij

X
i<j

d�
ij−dij

� �2

d�
ij

ð3Þ

in which d*ij is the Euclidean distance between the vec-
tors i and j in the input space (the codebook vectors),
and dij is the corresponding distance in the output space
(the Sammon’s coordinates).
Like this, each codebook vector in the SOM lattice can

be projected to a 2D space. The diffusion trajectory is the
vector that depicts the “sequence of movement” over the
SOM lattice. Arrows connect neurons in the order in
which they are mapped and the shapes of different epi-
demic vectors can be compared to reveal (dis)similarity
between diffusion patterns of different waves.
The R script used to perform the analysis discussed

here is available as Additional file 1.

Results
Spatial synchrony
Identification of spatial synchrony was performed as
described in Methods - section “spatial synchrony”.
After training, the SOM lattice was partitioned into five
clusters (Figure 5A - Lattice with clusters) identifying
neuron 12 as cluster 1, neurons 8, 9 and 11 as cluster 2,
neuron 10 as cluster 3, neuron 7 as cluster 4 and neurons
1–6 as cluster 5.
The identified clusters were verified using the compo-

nent planes of the TxS SOM (Figure 6). When comparing
the component planes of the clusters, it can be confirmed
that districts mapped to the same cluster show good cor-
relation. In our experiment, including one extra class in
the hierarchical clustering would lead to neuron 6 being
identified as a separate class. When visualising the compo-
nent planes of this class (Figure 6 – cluster 5), it turns out
that the patterns in this group are not very prominent and
the group is not very homogeneous compared to the other
classes.
The mapping of both the complete dataset and of the

individual waves was visualised in a GIS (Figure 5B and
5C). The results of the mapping for the complete time
series, revealed that cluster 1 represents the medical
district in which Reykjavik (the most dominant city in
the process) is located, and a group of medical districts
mapped to cluster 2, surrounding Reykjavik, are highly
synchronised. On the SOM lattice this cluster is adjacent
to cluster 1. In the north of Iceland three more medical
districts were identified (mapped to clusters 3 and 4)
that are potential regional diffusion centres. They have a
relatively high incidence rate but are topologically fur-
ther away from Reykjavik on the SOM lattice. On fur-
ther examining it is revealed, that these correspond to
the areas of Ísafjörδar and Akureyri. By examining the
codebook vectors of the SOM lattice, neurons 1–6 are
grouped into one large cluster (cluster 5). The codebook
vectors of these neurons show that these represent med-
ical districts with lower frequencies.
When comparing the total mapping with the mapping

of the individual waves (Figure 5) we see that in each of
these waves more local medical districts are mapped to
clusters 1–4 (indicating a role in the diffusion process).
This shows that there is a group of medical districts that
are important in all outbreaks, but also medical districts
that play a role in the diffusion process of single epidemics.
For incidental mapping to cluster 2 (highly synchronised
with Reykjavik) we see several additional mappings in the
northern parts in almost all waves. Incidental mapping to
clusters 3 and 4 may indicate (second level) diffusion
synchrony with local northern and north western centres
or a different diffusion pattern. Especially wave 9 has
many medical districts mapped to cluster 4 throughout
the island. This can be an indication of a different direc-
tion of diffusion.
The quantization error is the average distance between

the input vector and the BMU. The results are shown in
Table 1. Quantization error for the complete dataset is high



Figure 5 Results Synchrony. (A) SOM lattice showing hierarchical clusters (black lines). Numbers indicate the order of the neurons. (B) GIS
mapping of the complete dataset (all waves), and the individual waves. (C) Numbers in the legend correspond to the numbers of the neurons
in the SOM lattice.
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(77.11). After mapping the individual waves, this value im-
proves to 42.33-73.56. The error for the complete dataset is
high because it is difficult to match a vector over the total
length of the time series. Values improve however (become
smaller) when matching only parts of the time frame.
To test the robustness of mapping back of individual
waves the figure of merit M(v) was calculated (Table 2).
This figure expresses the number of medical districts
that were mapped to the same cluster for the mapping
of the complete dataset and also for the mapping of the



Figure 6 Component planes. Component planes of a (TxS) SOM, organized by hierarchical cluster.
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individual waves. The average over the combined waves
was 0.82 (scale 0–1), indicating robust clusters over the
temporal period.

Spatiotemporal diffusion and trajectories
Grouping waves
The grouping of epidemic waves was performed as de-
scribed in Methods - section “Grouping waves”. This ex-
periment produced a SOM with a high level of topological
consistency between the neurons (Figure 7A). Visually,
interpretations like “early” (top right), “middle” (top left),
“late” (bottom right), and “high” (edges) or “low” (middle)
intensity can be given to the neurons. By enhancing the
U-matrix, ten clusters were identified (Figure 7B).
The partitioning of the SOM lattice into clusters can be

translated into a heat key and the data can be visualised in
a GIS. Where red colours represent “early”, yellow colours
Table 1 Quantization error

Wave(s) All 8 9 11 12 13 14 15

SxT SOM 77.11 46.89 76.72 60.26 50.90 58.80 51.20 54.38

TxS SOM 11.40 11.76 11.81 10.29 12.67 12.86 9.04 10.88

WxT 6.08 4.20 10.40 3.88 3.96 6.50 4.87 8.91

Quantization errors for all SOMs.
“middle” and green colours represent “late”. Figure 8
shows the mapping of the individual waves using this heat
key. Comparison of the GIS maps revealed that waves 11
and 14 are fast (early) developing waves (primarily red
coloured), waves 12 and 15 are primarily yellow, meaning
their spread is of medium speed, and wave 9 is a late
developing wave (green coloured). However, interpretation
of these maps is “intuitive” (it depends on the human
interpretation of the colour scheme). Hence, it is easier to
evaluate the results by mapping directly onto the SOM
lattice.
This leads to the results shown in Figure 9. After map-

ping the complete dataset, each wave was mapped back
individually. Most waves do not have mapped samples
for all neurons or clusters, but the mapping is grouped
to a particular area of the lattice. Similar waves should
be projected to the same clusters of the lattice.
Two groups of epidemics were identified. These are

the fast developing (early) epidemic waves 8, 11, 13 and
14 (Group A) that have many medical districts mapped
Table 2 Figure of merit

Wave 8 9 11 12 13 14 15

m(v) 0.77 0.7 0.94 0.72 0.77 0.94 0.9

Results figure of merit for mapping of individual waves.



Figure 7 Clusters SxW SOM. Enhanced U-matrix, with light background colours indicating high values, dark colours indication low values and
graph lines indicating the clusters (A). Lattice with codebook vectors and cluster lines (B).
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to the upper right hand of the lattice, and the slow de-
veloping (late) epidemics, waves 9, 12 and 15 (Group B)
that show a mapping to the lower and left part of the
SOM lattices. The quantization error for this experi-
ment, when mapping back the complete dataset, is 6.08
(Table 1). This shows that for this experiment, the dis-
tance between the codebook vectors and the data vec-
tors was much smaller compared to the mapping of the
synchrony experiment. This was to be expected as single
waves were used.
Figure 8 GIS mapping SxW SOM. GIS mapping using colour
coding for the clusters.
Synoptic states
This experiment was conducted on a Time in Space
(TxS) SOM as explained in Methods - section “Synoptic
states”. The trained lattice is shown in Figure 10A. For
this type of SOM, each codebook vector represents one
specific spatial pattern, so the SOM lattice can be trans-
lated into a lattice of GIS maps (see Figure 11).
When we conducted an interpretation of these maps,

it turns out that neuron 23 represents a static state of al-
most no disease occurrence. Around this neuron, we
identified synoptic states that represent disease occur-
rence in certain (combinations of) compass points, with
the top right of the lattice corresponding to infection in
the north and south-western parts of Iceland, and the
lower left of the SOM lattice corresponding to infection
in the eastern and northern parts of the island.
Next, the codebook vectors of each wave were

mapped as an ordered synoptic spatial time series in a
GIS (Figure 12). This way, a sequence of maps per epi-
demic wave can be constructed to reflect the spatial-
temporal patterns found in each epidemic wave. When
comparing the patterns of Group A – consisting of
waves 8, 11, 13 and 14 – we noticed that these patterns
are all about equal in length, and are spatially very simi-
lar. This group seems to consist of fast developing
waves. Group B – waves 9, 12 and 15 – shows more di-
versity in number of synoptic states and in diffusion
pattern. Information about the number and duration of
synoptic states can also be found in Table 3. Number of
states for Group A ranges from 9–10, for Group B from
11–14. Duration of each state ranges from 1–6 months.
Group B waves have a longer duration of the first two
states.

Sammon’s trajectories
For a further analysis of the diffusion direction, the diffu-
sion trajectories were projected as a Sammon’s projection



Figure 9 Mapping SxW SOM on SOM lattice. Mapping of the Medical Districts on the SOM lattice. Each dot representing one medical district.
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(Figure 13). This experiment is described in section
“Sammon’s Trajectories” of the Methods section. The data
organisation and the SOM lattice (see Figure 10A) were
the same as for the previous experiment. The Sammon’s
projection of the lattice is shown in the same figure
(Figure 10B). In this projection the distance between the
vectors is explicitly mapped, but the topological rela-
tionships are not necessarily maintained. Numbers in
the Sammon’s projection refer to the numbers of the
neurons. As can be observed, the Euclidean distance be-
tween the neurons in the top right hand of the SOM lat-
tice (numbers 35, 42, 48, 49) is relatively large.
For each wave, the “trajectory of diffusion” was mapped

onto the Sammon’s projection (Figure 13) and the tra-
jectories were compared. Waves 8 and 14 both have a
Figure 10 Codebook vectors and Sammon’s Projection TxS SOM. Latt
numbering in rows, from left to right and bottom to top, ending with neu
interpretation (B).
trajectory starting in neuron 23, moving in a circular fash-
ion to the right hand side of the figure (reaching neuron
35 as one of their peak stages) to return to neuron 23.
Their diffusion pattern is strikingly alike. This diffusion
corresponds to the sequence of “infection in the Reykjavik
area” followed by “infection in the Reykjavik area and the
north”, and returning via infection for example infection
in the east back to neuron 23.
Waves 11, 12 and 13 have trajectories with similar

characteristics compared to the previous group. Their
trajectories also follow a circular path from neuron 23
to the upper-right hand side of the graph indicating
similar diffusion. However the lines of waves 11 and 13
show cross-overs and wave 12 shows an opposite direc-
tion. Cross-overs occur when a fast spread (or decline)
ice showing codebook vectors, with neuron 1 in the lower left corner,
ron 49 in the top right hand corner (A) and Sammon’s Projection with



Figure 11 Lattice converted to GIS maps. Lattice showing the codebook vectors as maps of synoptic states. Numbering from left bottom
corner (1) to the top right (49), in rows from left to right.

Figure 12 Trajectories of synoptic states. Representation of the waves as a sequence of synoptic states.
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Table 3 Synoptic states

Number of months per state

Wave Group #
states

1 2 3 4 5 6 7 8 9 10 11 12 13 14

8 A 9 1 2 1 2 1 3 3 3 6

9 B 14 4 1 1 3 2 1 2 3 1 2 3 1 2 1

11 A 10 1 3 2 2 2 2 2 2 4 3

12 B 11 4 2 2 1 1 2 3 1 2 2 1

13 A 9 2 2 3 1 4 2 3 8 1

14 A 9 2 2 3 1 4 2 3 8 1

15 B 12 3 4 1 2 4 2 3 1 2 1 1 3

Number and duration (in months) of synoptic states per wave.
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to all areas takes place. Where waves 8 and 11 decline
to the north, the opposite direction of wave 12 is trig-
gered by a decline to the north and south of the island.
However, these diffusion trajectories do not differ sig-
nificantly from the trajectories of wave 8 and 14.
Wave 9 and 15 have the strongest deviation from the

general pattern. For the interpretation of these results
we mapped the compass directions onto the Sammon’s
projection (Figure 10B). Wave 9 and 15 show strong ver-
tical trajectories. These correspond to a different spatio-
temporal diffusion pattern. For Wave 9 this is a pattern
from neuron 45 to 28 (spread starting in the north) and
for Wave 15 from (1, 14, 27) from the east, via the north
to the western parts of the island.

Discussion
The use of SOMs, combined with Sammon’s projection,
has enabled us to identify synchrony between locations
(medical districts), and to map diffusion trajectories of a
Figure 13 Trajectories on Sammon’s Projection. Trajectories of spatiote
time series of epidemic waves revealing their spatiotem-
poral diffusion patterns. This integrated approach was car-
ried out using three different data organisations (in space
and time). Training the SOM on the complete time series
and mapping back individual waves has shown to be a
simple but effective way to compare general spatiotem-
poral diffusion patterns for a complete time series with
patterns of individual waves. Results found are consist-
ent with results found for the same epidemics, using dif-
ferent methods.
The synchrony experiment revealed a number of med-

ical districts that form the diffusion structure for all of
the waves and, additional medical districts that only play
a role in some waves. The medical districts that were
identified as forming the stable structure all have a large
number of inhabitants and the centres in the north and
north west are connected to Reykjavik via domestic air
travel. The identified medical districts show a great simi-
larity to the structure found by Cliff et al. [17], in their
quarterly lag maps of geographical spread, first and sec-
ond quarter. They are also consistent with epidemio-
logical theory (hierarchical diffusion models).
The research identified two different groups of epi-

demics with fast developing (group A) and slower devel-
oping waves (Group B). These groups were identified
using the SxW SOM but the synoptic state experiment,
based on the TxS SOM revealed the same grouping. Simi-
lar results were found by Cliff et al. [2] who found for
Group A mean lag time in months of respectively 8.42,
9.05, 10.54 and 5.85 months and for Group B a mean lag
time of 15.45, 11.29 and 13.32 months.
Experiments also showed that the fast developing

waves (Group A) show considerable similarity in their
mporal diffusion on the Sammon’s Projection.
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spatiotemporal patterns. They all spread from Reykjavik
to the north-eastern areas. Group B waves cannot be
characterized by a single direction of spread; yet, the dif-
fusion trajectories show that the spread of wave 9 and
15 does not follow the Reykjavik pattern. Findings were
compared to Cliff et al. [2] that describe the spread of
wave 9 as being confined to the northern parts of the is-
land. For wave 15 the same source notes that it was slow
moving, that it started in the south, but the difference in
diffusion pattern, was not reported.
Two methods were used for the clustering of the trained

SOMs: the enhanced U-matrix and hierarchical clustering
combined with a validation based on component planes of
a temporal SOM. Although both methods lead to reliable
results, the enhanced U-matrix is advantageous because it
does not require the user to determine the number of
clusters. However, other enhancement methods for the U-
matrix exist, for example methods including the second
best matching neuron [20]. These may be worth further
exploring.
The proposed method was used on a time series of

seven epidemic waves and a relatively small number of
spatial locations. Spatially this method is scalable with-
out any problems. However, there are probably a mini-
mum number of waves needed to come to a reliable
mapping of the individual outbreaks. If the diversity in
the training dataset is too small this may lead to prob-
lems. The synchrony experiment was tested with shorter
time series including fewer epidemics. A series of 4 out-
breaks still gave a reliable result for our case study, but
this may depend on the complexity of the dataset.
Iceland is a small island with only one larger city and

it is clear that this city is the “motor” of the diffusion
mechanism. In this regard, the selected dataset is ideal
for testing new methods (also because there are seven
epidemic waves available). However, it would be interest-
ing to test the proposed method in a much more hetero-
geneous environment (with more large cities and a more
complex diffusion pattern). For this study all medical
districts were included, but some of these centres repre-
sent areas with low population. When working with lar-
ger datasets, removal of sparsely populated areas may be
an option.
SOMs are relatively easy to train and combine with other

visualisation methods to enhance their analytical possibil-
ities. However, results are very sensitive to values of input
parameters (size and shape of the training lattice, number
of iterations, type of initialization), and deriving meaning-
ful information can be challenging [28]. The method as ap-
plied here, therefore focusses more on comparison then
on absolute characterisation of patterns.
Besides Measles, this method is potentially useful to ex-

plore and understand spatialtemporal diffusion patterns of
other infectious diseases (e.g. Influenza, Pertussis) as SOMs
can deal with large datasets as well as with missing data.
This understanding might lead to new paradigms of mod-
elling and validating spatially explicit disease models based
on reproducing observed diffusion patterns.
This method can also be used for real time disease map-

ping. As data from partial outbreaks can be mapped back,
comparison of diffusion patterns with previous waves may
lead to early indications of the characteristics of an epi-
demic and, thus, help to design intervention actions.
When linked to systems for Volunteered Geographic In-
formation, web-based monitoring networks a fully auto-
mated analysis may be an interesting option.

Conclusions
In this paper we proposed a SOM-based method to ana-
lyse spatiotemporal diffusion of infectious diseases. The
method is based on training a SOM for a larger time-
series (including multiple waves) and mapping back indi-
vidual outbreaks for characterisation and comparison. Via
a number of experiments we showed how this method can
be applied for finding synchronies between spatial loca-
tions and for comparing spatialtemporal diffusion patterns
of different epidemics.
We also demonstrated how different types of data or-

ganisation (in space and time) can help to reveal different
information. Several types of secondary clustering (hier-
archical, enhanced U-matrix and Component planes) were
shown, that can be used to improve the SOMs perform-
ance. The integration of SOMs with other visualisation
techniques, especially Sammon’s Projection and GIS was
used to detect, interpret and visualise spatial temporal
patterns.
Results of the method are consistent with diffusion

patterns found using other methods; this makes SOMs
an interesting alternative, worth further exploring. For
instance, by applying it to a larger dataset in a more dy-
namic geographic environment, by coupling it to a
spatially-explicit disease model or by using it for near-
real time disease monitoring.
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analyses were performed, including comments with explanatory details.
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