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Abstract

Background: Predictive models of malaria vector larval habitat locations may provide a basis for understanding the
spatial determinants of malaria transmission.

Methods: We used four landscape variables (topographic wetness index [TWI], soil type, land use-land cover, and
distance to stream) and accumulated precipitation to model larval habitat locations in a region of western Kenya
through two methods: logistic regression and random forest. Additionally, we used two separate data sets to
account for variation in habitat locations across space and over time.

Results: Larval habitats were more likely to be present in locations with a lower slope to contributing area ratio
(i.e. TWI), closer to streams, with agricultural land use relative to nonagricultural land use, and in friable clay/sandy
clay loam soil and firm, silty clay/clay soil relative to friable clay soil. The probability of larval habitat presence
increased with increasing accumulated precipitation. The random forest models were more accurate than the
logistic regression models, especially when accumulated precipitation was included to account for seasonal
differences in precipitation. The most accurate models for the two data sets had area under the curve (AUC) values
of 0.864 and 0.871, respectively. TWI, distance to the nearest stream, and precipitation had the greatest mean
decrease in Gini impurity criteria in these models.

Conclusions: This study demonstrates the usefulness of random forest models for larval malaria vector habitat
modeling. TWI and distance to the nearest stream were the two most important landscape variables in these
models. Including accumulated precipitation in our models improved the accuracy of larval habitat location
predictions by accounting for seasonal variation in the precipitation. Finally, the sampling strategy employed here
for model parameterization could serve as a framework for creating predictive larval habitat models to assist in
larval control efforts.
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Introduction
Malaria is one of the most significant infectious diseases
affecting people in poverty, with an estimated 219 mil-
lion cases of malaria worldwide in 2010 killing 660,000
people [1]. An estimated 1.44 billion people in South
America, Africa, and Asia lived in areas with stable
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transmission of malaria caused by Plasmodium fal-
ciparum (Welch), yet the risk of P. falciparum transmis-
sion varies considerably across its range [2]. Even at fine
scales, the spatial distribution of malaria is heteroge-
neous, differing among households within a community
[3-6]. Of course, socioeconomic and immunological dif-
ferences contribute to the spatial heterogeneity of mal-
aria [3,4]. Additionally, landscape factors contribute to
the spatial distribution of malaria [5,7], which is likely an
indirect relationship ultimately due, in part, to the influ-
ence of landscape factors on the locations of the aquatic
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habitats of the vector mosquito larvae. The spatial distri-
bution of the larval habitats partially determines the
spatial distribution of the adult malaria vectors in many
landscapes [5,8-10]. Subsequently, the heterogeneous
spatial distribution of malaria vectors among households
coincides with the spatial distribution of malaria parasit-
emia in some landscapes [5]. Therefore, understanding
the factors that determine the distribution of the larval
habitats facilitates our understanding of the spatial
determinants of malaria transmission.
The vast majority of deaths from malaria (91%) occur

in Africa [1], where the primary vector mosquitoes are
among the most efficient vectors of malaria in the world.
Two of the most widely distributed vectors in Africa are
Anopheles gambiae s.s. Giles and Anopheles arabiensis
Patton, which are both members of a species complex of
eight closely related, morphologically indistinguishable
species known collectively as Anopheles gambiae s.l. [11].
In many regions the larval habitats of An. gambiae s.s.
and An. arabiensis are similar, and in fact, the two
species are often found within the same larval habi-
tats [12-14]. These larval habitats are generally smaller,
temporary bodies of standing water persisting for about
20 to 40 days [12,15], with rain being the main source of
the water.
The locations of larval An. gambiae s.l. habitats are

associated with certain environmental features of land-
scapes. Previous studies have found more larval habitats
closer to streams [16] and in locations with agricultural
land uses [16,17]. Others have used a topographic wet-
ness index (TWI) [18] to predict the locations of larval
habitats, finding more larval habitats in locations having
a combination of greater upslope area contributing to
drainage and less slope [19-21]. The influence of soil
types on the presence of larval habitats has largely been
ignored, although Bøgh and colleagues [22] found larval
habitats exclusively in alluvial soils in The Gambia. Finally,
seasonal differences in rainfall likely influence the number
of larval habitats on the landscape [12,16,19,20,23].
The objectives of this study were to create a model for

predicting larval An. gambiae s.l. habitat locations using
landscape variables that predict the likelihood of stand-
ing water bodies, and to account for seasonal changes in
habitat probability based on accumulated precipitation.
A model for accurately predicting the locations of mal-
aria vector larval habitats has multiple utilities. First, it
allowed us to investigate the links between larval habitat
distribution and adult malaria vector distribution across
a large landscape where manually mapping the larval
habitats is infeasible (McCann et al. in preparation).
Additionally, such a model could be useful for malaria
control programs, allowing program managers to focus
their efforts to areas where larval habitats are most likely
to occur.
Study site
The Asembo region of Rarieda District in western Kenya
(Figure 1A) is a rural community of about 60,000 people
covering about 200 km2. Most of the residents are sub-
sistence farmers, and the landscape is largely dominated
by small-scale agriculture. Small plots of land generally
surround family-based groups of houses, or compounds,
further arranged into villages. While the compounds are
highly dispersed within villages, the boundaries bet-
ween villages are often discernable only by residents [24]
(Figure 1B). Asembo sits in the lowlands along the
shores of Lake Victoria, with elevations ranging from
1,100 m to 1,400 m above sea level and low topographic
relief. Networks of streams run across the region and
drain into Lake Victoria. Farmland is common in these
low-lying drainage basins, as well as throughout the
region. Houses are mostly absent within 100 m of the
streams. Rainfall is seasonally bimodal but may occur
year round, with monthly precipitation totals ranging
from 7 to 490 mm and yearly totals ranging from 1,100
to 1,800 mm from 2003 through 2012.
Malaria is holoendemic in Asembo, with parasitemia

rates in children under 5 being around 50% in 2009 [25].
Similar to rainfall patterns, malaria transmission oc-
curs year round, with seasonal peaks in May-July and
October-November. The predominant species of malaria
is P. falciparum. Two of the primary malaria vectors in
the region are An. gambiae s.s. and An. arabiensis, the
only two members of the An. gambiae s.l. species com-
plex found here. The other primary malaria vector in the
region is Anopheles funestus Giles. However, An. funes-
tus and An. gambiae s.l. larvae do not generally occupy
the same habitats, as the larval habitats of An. funestus
are generally larger and more permanent than those
of An. gambiae s.l. [12]. Larval An. gambiae s.l. habitats
are numerous and widespread in Asembo yet heteroge-
neously distributed [16]. This makes it difficult to estab-
lish a relationship between larval habitats and the spatial
distribution of the adult vectors or malaria prevalence in
people. A 10 by 10 km study site was defined within
Asembo to examine variation in the determinants of lar-
val habitat location across a relatively large area. Because
we wanted to include the lakeshore in the study site, the
southern border fell largely within the lake, leaving
96.43 km2 of actual landmass in the 10 by 10 km site.

Methods
Larval habitat ground surveys
The 10 by 10 km study site was divided into 500 by
500 m quadrats for larval An. gambiae s.l. habitat ground
surveys. After excluding the quadrats that fell com-
pletely in the lake, we selected quadrats for larval ha-
bitat ground surveys using spatially stratified random
sampling from the remaining 393 quadrats (Figure 1C).



Figure 1 Study site and survey locations. (A) Map of Kenya with red square indicating location of the study region in western Kenya. (B) Map
showing the boundaries of Asembo and the streams within the community, with black dots representing all households. (C) 10 by 10 km study
site shown as dashed black line with thirty-one 500 by 500 m quadrats surveyed for larval habitats shown as red boxes. (D) Location of the
neighboring villages of Aduoyo-Miyare and Nguka, sites of the 15 monthly ground surveys for larval habitats, shown in red.
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For spatial stratification the 10 by 10 km area was divided
into 2 by 2 km blocks. The 500 by 500 m quadrats were
randomly selected from groups defined by the 2 by 2 km
blocks. Spatial stratification was implemented to avoid the
problem of sampling a cluster of quadrats in a certain area
of the grid, assuring spatial variation in the predictor vari-
ables [26]. The time required for surveying a quadrat var-
ied greatly according to the number of larval habitats in
the quadrat, which was not known a priori. Therefore, we
surveyed as many quadrats as possible during the targeted
time frame, which was the end of the long rainy season to
coincide with the peak An. gambiae s.l. population level
[27-29]. Thus, 31 quadrats were surveyed exhaustively
over 22 days between 17 May 2011 and 4 July 2011.
All potential larval An. gambiae s.l. habitats found in

the quadrats were georeferenced with GPS units. Six
field workers spaced 20 m from each other walked from
one end of a quadrat to the other, using ArcPad (ESRI,
Redlands, CA) on a GPS unit for navigating the borders
of the quadrat. This was repeated until the entire quad-
rat was covered, usually in four to five passes. This ap-
proach allowed us to say, with certainty, where habitats
were absent during the survey. In addition to recording
the locations of each larval habitat, we recorded the pre-
sence or absence of Anopheles larvae. Larval An. gam-
biae s.l. habitats were defined as any standing body of
water, regardless of whether Anopheles were present on
the day of the ground survey, and falling under the follo-
wing categories: drainage channel, burrow pit, rain pool,
runoff, cluster of hoof prints, stream bed pool, pond/
reservoir, wet meadow, well and tire track [15]. For a subset
of habitats (the first five Anopheles-positive habitats for
each of the four to five passes across each quadrat),
Anopheles larvae and pupae were collected to confirm
that the habitats were being used by An. gambiae s.l. All
visible Anopheles larvae, up to a maximum of 20, were
collected using a 300 ml dipper or plastic pipette as
appropriate according to the size of the habitat. The
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specimens were transported to the lab for species identi-
fication. Larvae were raised to fourth-stage instars for
identification, while pupae were allowed to eclose as
adults before identification. All identifications were done
according to Gillies and Coetzee [30].
To capture variation in habitat location across time

due to seasonal rainfall patterns, additional ground sur-
veys were conducted monthly in two neighboring vil-
lages, Aduoyo-Miyare and Nguka, covering 6.22 km2

within the 10 by 10 km study site (Figure 1D). Two local
field workers with extensive knowledge of the villages
walked throughout the whole of each village over the
course of one to three days, depending on the number
of habitats encountered, each month from April 2011
through June 2012. Potential An. gambiae s.l. habitats
were defined and recorded as above. Thus, we had the
ability to say where habitats were present and absent
within the two villages each month.

Environmental data
Spatial data for soils, land use-land cover (LULC),
distance to the nearest stream, and TWI were created
across the study site. These data were assembled in Arc-
GIS 10.0 (ESRI, Redlands, CA) in raster data structures
with a spatial resolution of 20 m. All four datasets were
treated as constant over time. Soil data were taken from
the 1:1,000,000 exploratory soil map of Kenya, compiled
by the Kenya Soil Survey in 1980 [31]. The three soil
types in Asembo were 1) friable clay, 2) friable clay/
sandy clay loam, and 3) firm, silty clay/clay. Of these soil
types, friable clay drains more quickly, and firm, silty
clay/clay drains more slowly. A satellite image from the
IKONOS-2 sensor was used to create the LULC classi-
fication. Briefly, unsupervised classification was done
using the K-means method [32] in ENVI 4.8 (Exelis Vis-
ual Information Solutions, Boulder, CO). Classes were
combined into a binary data layer of agricultural or
0
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Figure 2 Precipitation data from the Kisumu airport for March 2011 t
The vertical bars show the daily precipitation total. The solid line shows the
each day represents the summation of precipitation totals over the previou
15-month dataset. Similarly, the dashed line shows the daily fluctuation of
same data. Circles and squares show the last day of ground surveys for eac
east of Asembo.
non-agricultural land use. All streams in Asembo were
mapped using GPS units, and the Euclidean distance in
meters to the nearest stream was calculated.
The TWI data were derived from a digital elevation

model (DEM) of the study site. The DEM was created
using local universal kriging to interpolate 11,130 GPS
elevation records previously taken within Asembo [33,34].
The ArcGIS extension TauDEM 5.0 (Tarboton, Utah State
University) was used to calculate a TWI. First, slope and
flow direction were calculated using the deterministic
infinite-node algorithm recommended by Tarboton, which
is robust yet easily implemented [35]. Contributing area
catchments were calculated using the flow direction and
slope data. Finally, TWI was calculated as the ratio of the
slope to the contributing area, and the values were
rescaled to the range by taking:

TWIi–min TWIð Þð Þ
�100= max TWIð Þ – min TWIð Þð Þ for each i value of TWI:

Because the TWI was calculated as the ratio of slope
to contributing area, the lowest value (0) represented the
wettest locations, while the highest TWI value (100)
represented the driest areas.
Daily precipitation totals for March 2011 to July 2012,

as measured by the weather station at the Kisumu Air-
port (about 40 km east of Asembo), were downloaded
from the National Climatic Data Center’s Global Sum-
mary of Day (GSoD) database (Figures 2 and 3). For
missing daily data at the Kisumu weather station (n = 19
of 489 days), the inverse distance weighted mean of sur-
rounding GSoD weather stations (within 250 km) was
used. Cumulative n-day precipitation totals were calcu-
lated by summing the precipitation total of a given day
with the previous n days for n = 0 to 30 days. Each n-day
precipitation total had a daily temporal resolution, trea-
ted as spatially constant across our study site. From the
v 2011 Jan 2012 Mar 2012 May 2012 Jul 2012

hrough July 2012. Each point along the x-axis represents one day.
cumulative 30-day precipitation total (i.e. the level of the line for
s 30 days), which was used in the logistic regression model for the
the cumulative 21-day total used in the random forest model of the
h month in Aduoyo-Miyare and Nguka. Kisumu airport is about 40 km



0
20

40
60

80
10

0
12

0

02 May 2011 16 May 2011 30 May 2011 13 Jun 2011 27 Jun 2011

P
re

ci
pi

ta
tio

n 
in

 m
m

 

Figure 3 Precipitation data from the Kisumu airport for 2 May 2011 to 4 July 2012. Each point along the x-axis represents one day. The
vertical bars show the daily precipitation total. The solid line shows the cumulative 6-day precipitation total (i.e. the level of the line for each day
represents the summation of precipitation totals over the previous 6 days), which was used in the logistic regression model of the 10 by 10 km
dataset. Similarly, the dashed line shows the daily fluctuation of the cumulative 14-day precipitation total used in the random forest model of the
same data. Squares and circles show the days of the ground surveys in the 31 quadrats. Kisumu airport is about 40 km east of Asembo.
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resulting 31 measures of cumulative precipitation, we
selected the best cumulative n-day total for each model
based on the criteria outlined below.

Statistical methods
We used two approaches for modeling the distribution
of larval habitats across the landscape, logistic regression
and random forest [36]. Logistic regression is commonly
used in species distribution modeling [20,21,37]. Eco-
logists have recently started using the random forest
method as well, because it does not require any assump-
tions about the distribution of the data [38,39]. Random
forest is a machine learning classification method that
extends classification and regression tree (CART) ap-
proaches, which work by recursive binary partitioning of
the data space into increasingly homogenous regions
[39,40]. Random forest works by fitting and combin-
ing many CARTs to create a more accurate prediction
[36,39].
Both methods were used separately on the two data-

sets (one from the 10 by 10 km area and the other from
the 15 monthly ground surveys in Aduoyo-Miyare and
Nguka). For both methods, the unit of analysis was a
20 m pixel. Because each of the 31 quadrats in the 10 by
10 km area was surveyed once, each pixel in that dataset
had a single value for all of the variables described above
(habitat presence/absence, TWI, soil, LULC, distance to
stream, and 31 values of n-day precipitation). The value
of n-day precipitation was based on the day a given
quadrat was surveyed (Figure 3). In the Aduoyo-Miyare
and Nguka dataset, each pixel was repeated 15 times.
The value of n-day precipitation was based on the final
day of ground surveys, which took only 1 to 3 days, each
month (Figure 2). Habitat presence/absence was deter-
mined by the ground survey data for each month, while
TWI, soil, LULC and distance to stream were constant
for a given pixel across all 15 months.
We built a series of candidate logistic regression mo-

dels to select the most useful predictor variables. To
determine which n-day precipitation measure to use,
each cumulative precipitation measure was used alone
as the predictor variable in separate regression models.
Of these, the model with the lowest BIC determined the
cumulative precipitation measure used in the subsequent
logistic regression candidate models. The five predictor
variables (TWI, soil, LULC, distance to stream, and
precipitation) were then used in all 31 possible combina-
tions to build candidate logistic regression models for
each of the two datasets. To restrict the candidate model
sets to relatively simple models with easily interpretable
parameters, interactions among the five predictor vari-
ables were not included. The top models were again se-
lected according to the lowest BIC. While the locations
of larval An. gambiae s.l. habitats are generally clustered,
we did not account for spatial autocorrelation in the lo-
gistic regression models presented here. Previous studies
modeling larval habitats have found similar results for
logistic regression models with and without parameters
accounting for spatial autocorrelation [19-21]. The logis-
tic regression models were implemented in the statistical
software R 2.14.2 (R Development Core Team, Vienna,
Austria).
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Figure 4 Number of larval habitats by cumulative precipitation.
Scatter plot of the number of habitats recorded in Aduoyo-Miyare
and Nguka each month (n = 15) by the cumulative 30-day
precipitation for the last day of ground surveys for that month.
Line shows prediction of linear regression, R2 = 0.1931, p = 0.1012.
The red and blue boxes highlight variation in the residual error
discussed further in the text.
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We implemented the random forest approach using
the R package ‘randomForest’ [41]. The best cumulative
precipitation measure for use in the random forest
models was determined by the mean decrease in the
Gini impurity criterion when removing the variable from
the full model (TWI, soil, LULC, distance to stream, and
precipitation). The cumulative precipitation measure
with the highest mean decrease in the Gini impurity
criterion was used in the final random forest models.
Gini impurity criteria were also used to measure variable
importance in the random forest models. A greater
mean decrease in the Gini impurity criterion suggests a
stronger association with the response variable [36].
The top models from both approaches within each

dataset were evaluated by determining their accuracy
at predicting larval habitat presence and absence for
holdout data. Fifty percent of each dataset was randomly
selected as a holdout dataset before model building.
Evaluation of model accuracy required the selection of a
threshold at which to convert predicted probabilities
into larval habitat presence or absence. Because thresh-
old specific accuracy statistics can be sensitive to the
threshold used for conversion, we generated an optimal
threshold value by minimizing the absolute value of the
difference between sensitivity and specificity [42]. This
approach was chosen because both sensitivity and speci-
ficity were equally important for the intended applica-
tion of the predictive models. To assess the performance
of each model, we calculated the sensitivity, specificity,
percent correctly classified (PCC), and kappa of each
approach at each of the thresholds from the methods
above. We also calculated the threshold-independent
area under the curve (AUC) statistic [43] from receiver
operating characteristics (ROC) plots using the R package
‘SDMTools’ [44].
Finally, we calculated Pearson’s correlation coefficient

among the cumulative precipitation measures to assess
differences among the temporal-resolution/modeling-
approach combinations. To quantify the contribution of
cumulative 30-day precipitation to variation in the number
of habitats found each month in Aduoyo-Miyare and
Nguka, we used simple linear regression.

Results
In the 31 sampling quadrats selected from the 10 by
10 km study site, we recorded the locations of 1,673 lar-
val An. gambiae s.l. habitats. Six of the quadrats did not
have any larval habitats, while the mean number of habi-
tats per 500 by 500 m quadrat was 54. Anopheles larvae
were present in 921 of the 1,673 habitats on the day
each habitat was recorded. As detailed in the methods,
Anopheles larvae and pupae were collected from 141 of
the habitats, 77% of which were occupied by An. gam-
biae s.l. on the day of collection. Most of the larvae and
pupae (79%) were identified as An. gambiae s.l. The
other species collected were An. funestus (1.1%), Anoph-
eles coustani Laveran (6.7%), Anopheles rufipes (Gough)
(5.3%), Anopheles maculipalpis Giles (2.5%) and Anoph-
eles pharoensis/squamosus Theobald (3.9%).
In 15 monthly ground surveys in Aduoyo-Miyare and

Nguka, a total of 6,770 larval An. gambiae s.l. habitats
were recorded. The number of larval habitats in this area
varied by month, ranging from 104 to 953 with a mean
of 451. The number of larval habitats recorded in the
two villages each month increased with increasing cu-
mulative 30-day precipitation on the final day of ground
surveys each month, though considerable variation was
observed (R2 = 0.1931, p = 0.1012; Figure 4).
The best cumulative precipitation total to use in the

models differed between the datasets and between the
modeling approaches. For the 15 monthly ground sur-
veys in Aduoyo-Miyare and Nguka, the logistic regres-
sion model for 30-day cumulative precipitation had the
lowest BIC within the precipitation candidate models
(Figure 2), whereas the random forest model using the
cumulative 21-day precipitation (Figure 2) had the high-
est mean decrease in the Gini impurity criterion. For the
10 by 10 km data, the logistic regression model for 6-
day cumulative precipitation had the lowest BIC within
the precipitation candidate models (Figure 3), while the
random forest model using the cumulative 14-day pre-
cipitation (Figure 3) had the highest mean decrease in the
Gini impurity criterion. Each of these precipitation mea-
sures was used within its respective dataset and modeling



Table 2 Top four logistic regression candidate models for
the 15 monthly ground surveys in Aduoyo-Miyare and
Nguka

Model BIC ΔBIC w

TWI + LULC + DS + Soil + Precip. 45933.1 NA 0.9999

TWI + DS + Soil + Precip. 45955.6 22.5 <0.001

TWI + LULC + DS + Precip. 46045.5 112.3 <0.001

TWI + DS + Precip. 46073.7 140.5 <0.001

Based on Bayesian information criterion (BIC), in order of increasing difference
in BIC from the top model (ΔBIC) and decreasing BIC weight, w. TWI,
topographic wetness index; LULC, land use-land cover; DS, distance to the
nearest stream; Precip., cumulative 30-day precipitation total; NA,
not applicable.
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approach moving forward. However, it should be noted
that these cumulative precipitation totals were moderately
to highly correlated with each other (Table 1).
The environmental variables used in the best logistic

regression models for predicting the locations of larval
An. gambiae s.l. habitats differed slightly between the
datasets. For the 15-month dataset from Aduoyo-Miyare
and Nguka, the logistic regression model with the lowest
BIC included all five of the variables (Table 2). No other
model had a ΔBIC less than 20. Larval habitats were
more likely to be found in locations with a lower TWI
(i.e. wetter because of a lower slope to contributing area
ratio), closer to streams, in agricultural land use, and in
the friable clay/sandy clay loam soil type (Table 3). The
probability of a larval habitat increased with increasing
cumulative 30-day precipitation (Table 3).
For the 10 by 10 km dataset, the logistic regression

model with the lowest BIC included four of the variables
(TWI, distance to stream, soil type, and cumulative 6-
day precipitation). No other model had a ΔBIC less than
9 (Table 4). Larval habitats were again more likely to be
found in locations with a lower TWI, closer to streams,
and in the friable clay/sandy clay loam soil type (Table 5).
Counterintuitively, the probability of a larval habitat
according to this model decreased with increasing
cumulative 6-day precipitation.
The most accurate model for predicting larval An.

gambiae s.l. habitat locations in the 10 by 10 km area
was the random forest method with all five variables
(AUC= 0.864). In this model, TWI had the greatest mean
decrease in the Gini impurity criterion, followed by
distance to stream, precipitation, soil and LULC (Figure 5).
Removing the cumulative 14-day precipitation from this
model reduced the accuracy of the model (Table 6). The
best logistic regression model for the 10 by 10 km area
was less accurate than the random forest model when
evaluated against the holdout data (Table 6). When the
Table 1 Pearson’s correlation coefficient (r) matrix of
cumulative precipitation measures

0-day 6-day 14-day 21-day 30-day

A) 17 May - 4 July 2011 (temporal scale for 10 by 10 km dataset)

6-Day 0.411 1.000 0.721 0.477 0.611

14-Day 0.332 0.721 1.000 0.794 0.578

B) April 2011 - June 2012 (temporal scale for Aduoyo-Miyare and Nguka
dataset)

21-Day 0.408 0.555 0.841 1.000 0.979

30-Day 0.336 0.537 0.819 0.979 1.000

(A) For the 22 days of larval habitat ground surveys in the 10 by 10 km area
from 17 May to 4 July 2011, and (B) For the last day of larval habitat ground
surveys each month in Aduoyo-Miyare and Nguka from April 2011 to June
2012. 0-day refers to precipitation total for the day of ground surveys, while
6-day, 14-day, 21-day, and 30-day refer to the cumulative precipitation total
for the day of the ground surveys plus the previous 6 days, 14 days, 21 days,
or 30 days, respectively.
probabilities of larval habitat location across the entire 10
by 10 km study site were estimated using the most accur-
ate models from each method, the random forest model
clearly produced a more heterogeneous landscape at a fine
scale than that produced by the logistic regression method
(Figure 6).
The most accurate model for predicting larval An.

gambiae s.l. habitat locations over the 15 monthly
surveys in Aduoyo-Miyare and Nguka was the random
forest method with all five variables (Table 7). As above,
removing the cumulative 21-day precipitation from the
model reduced its accuracy. The best logistic regression
model for the 15 monthly surveys in Aduoyo-Miyare
and Nguka was less accurate than the random forest
model when evaluated against the holdout data (Table 7).

Discussion
The use of models to predict the distribution of species
is common in ecology [37], and novel approaches to
building these models such as random forest have
become more widely available in recent years. We used
two methods to predict the probability of larval An.
gambiae s.l. habitat across the landscape and over time,
and the random forest method produced more accurate
models than the logistic regression method. This may be
Table 3 Odds ratios for top logistic regression model
from the Aduoyo-Miyare and Nguka data (15 monthly
surveys)

Odds ratio 95% lower 95% upper

(Intercept) 0.0378 0.0334 0.0426

TWI 0.9365 0.9324 0.9405

LULC, Ag:NonAg 1.3371 1.2096 1.4780

DS 0.9980 0.9978 0.9981

Soil, Type3:Type2 0.7127 0.6715 0.7564

Precip. 1.0033 1.0029 1.0036

Odds ratios are presented with 95% CI. TWI, topographic wetness index; LULC,
land use-land cover; DS, distance to the nearest stream; Precip., cumulative
30-day precipitation total; Ag:NonAg, odds ratio of agricultural to nonagricultural
LULC; Type3:Type2, odds ratio of the firm, silty clay/clay soil type to the friable
clay/sandy clay loam soil type.



Table 4 The top five logistic regression candidate models
for the 10 by 10 km area

Model BIC ΔBIC w

TWI + DS + Soil + Precip. 6482.6 0 0.9822

TWI + LULC + DS + Soil + Precip. 6491.8 9.3 0.0096

TWI + DS + Precip. 6492.2 9.6 0.0082

TWI + LULC + DS + Precip. 6502.0 19.4 < 0.001

TWI + DS + Soil 6658.0 175.4 < 0.001

Based on Bayesian information criterion (BIC), in order of increasing difference
in BIC from the top model (ΔBIC) and decreasing BIC weight, w. TWI,
topographic wetness index; LULC, land use-land cover; DS, distance to the
nearest stream; Precip., cumulative 30-day precipitation total.

Figure 5 Mean decrease in the Gini impurity criterion as a
measure of variable importance. Shown for the random forest
model in the 10 by 10 km dataset. Greater decreases indicate a
stronger association with the response. TWI, topographic wetness
index; LULC, land use-land cover; DS, distance to the nearest stream;
Precip., cumulative 14-day precipitation total.
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due to the differences in predicted heterogeneity of
larval habitats at fine scales between the two methods,
which can be compared across the entire 10 by 10 km
study site (Figure 6). Predictions from the random forest
model are more fragmented, showing a closer proximity
of high-probability locations to low-probability locations,
relative to the estimates from the logistic regression
model. The general pattern is similar for the predictions
of both models at broad scales (Figure 6). However, the
fine scale heterogeneity in the random forest estimates
more closely reflects the nature of actual larval habitat
distribution on the ground, where larval An. gambiae s.l.
habitats are distributed as many small patches rather
than one continuous, large patch.
The most important landscape variables for predicting

larval habitat presence in these models were TWI and
distance to the nearest stream. In the 10 by 10 km ran-
dom forest model, the mean decreases in the Gini im-
purity criteria of TWI and distance to the nearest stream
were much larger than those of LULC and soil (Figure 5),
indicating a stronger association with the prediction of
habitat presence [36]. In general practice, high quality
soil and LULC data can be difficult to acquire. Given
limited resources, our data suggest it is possible to build
reasonably accurate larval habitat models without these
two landscape variables. Nonetheless, soil and LULC do
Table 5 Odds ratios for the top logistic regression model
for the 10 by 10 km area data

Odds ratio 95% lower 95% upper

(Intercept) 0.3156 0.2472 0.4030

TWI 0.9117 0.8988 0.9248

DS 0.9973 0.9969 0.9977

Soil, Type2:Type1 1.9105 1.4994 2.4343

Soil, Type3:Type1 1.4970 1.2024 1.8639

Precip. 0.9700 0.9656 0.9745

Odds ratios are presented with 95% CI. TWI, topographic wetness index; DS,
distance to the nearest stream; Precip., cumulative 6-day precipitation total;
Type2:Type1, odds ratio of the friable clay/sandy clay loam soil type to the
friable clay soil type; Type3:Type1, odds ratio of the firm, silty clay/clay soil
type to the friable clay soil type.
show an association with habitat presence according to
the logistic regression models presented here.
An important question in the application of predictive

larval habitat models is whether models parameterized
with data for habitat locations in one season are applic-
able to another season [20]. The creation of larval An.
gambiae s.l. habitats (which are temporary, small bodies
of standing water) depends on rainfall, which varies
seasonally across the range of the species complex. One
strategy to model differences between seasons is to ac-
count for variation in precipitation. In the random forest
models, accumulated precipitation was less important
than TWI and distance to the nearest stream, but it was
a more important predictor variable than soil and LULC
(Figure 5). Additionally, we found more larval habitats
in months with more precipitation compared to the
same area in months with less precipitation (Figure 4).
Thus, including accumulated precipitation in our models
improved the accuracy of larval habitat location predic-
tions. These results should be interpreted with caution
given the use of a single location about 40 km from the
study site as the source of precipitation data. Daily
precipitation totals can be spatially heterogeneous at that
scale. Despite this limitation, it is clear from previous
work that variation in precipitation influences larval An.
gambiae s.l. habitats [12,16,19,20]. However, the rela-
tionship may be more complex than it first appears. For
example, it may not be linear. Rather, the number of



Table 6 Comparison of models predicting the presence of larval habitats in the 10 by 10 km area

Model AUC Sensitivity Specificity PCC Kappa

RF: TWI + DS + Soil + LULC + Precip. 0.864 0.806 0.789 0.790 0.216

RF: TWI + DS + Soil + LULC 0.808 0.750 0.725 0.726 0.145

LR: TWI + DS + Soil + Precip. 0.799 0.748 0.709 0.711 0.133

Two random forest (RF) models are shown, with and without Precip. (the cumulative 14-day precipitation total). The best logistic regression (LR) model is also
shown. TWI, topographic wetness index; LULC, land use-land cover; DS, distance to the nearest stream; AUC, area under the receiver operating curve; PCC, percent
correctly classified.
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larval habitats may increase monotonically with accumu-
lated precipitation up to a threshold, after which more
of the water on the landscape flows as surface sheet or
channeled water, which is unsuitable aquatic habitat for
An. gambiae s.l. larvae. Additionally, different habitat
types may respond differently to increasing accumulated
precipitation. Standing water forming in drainage chan-
nels and stream bed pools may be described better by a
threshold relationship than the water filling burrow pits,
hoof prints and tire tracks, because the former develops
from channel and sheet water made stationary by dimin-
ished water flows, whereas the latter forms from water
accumulating into various catchments not associated
with channels. These additional factors may explain some
of the uneven residual error seen in Figure 4, where the
4 months in the red box falling above the fitted regression
line have more larval habitats with a lower accumulated
precipitation relative to the 3 months in the blue box
falling below the fitted regression line.
The n-day cumulative precipitation measure used for

each modeling approach within each dataset was selec-
ted according to the criteria outlined in the methods to
maximize the predictive power of each model. However,
comparing across modeling approaches within each da-
taset, the cumulative precipitation measures were highly
correlated (Table 1). Thus, the choice between 21-day
Figure 6 Probability of larval habitat presence across the 10 by 10 km
TWI, distance to stream and soil type; and (B) the random forest model usi
cumulative precipitation and 30-day cumulative precipi-
tation, for example, may be less important in general
practice than using either measure instead of the daily
precipitation total (referred to as 0-day in Table 1).
Comparing across datasets, which differed in temporal
scale, the 6-day cumulative precipitation and the 30-day
cumulative precipitation are only moderately correlated.
Their differences in terms of model fit (BIC) could re-
flect temporal differences in hydrology on this landscape,
but it may also reflect a limitation of the 10 by 10 km
data collection (see below).
A counterintuitive result of this study was that the

odds of larval habitat presence decreased with increasing
cumulative 6-day precipitation using the best logistic re-
gression model of the 10 by 10 km data. Most likely this
reflects a limitation of the 10 by 10 km data collection
rather than the true influence of precipitation on larval
habitat presence, given the range of cumulative 6-day
precipitation over the 49-day period (1.5 mm – 51.1 mm;
Figure 3). The sampling strategy for those data was
designed to capture variation in landscape variables over
space. While precipitation varied among the days of the
ground surveys, we were not able to capture that variation
over the full range of values for the landscape variables.
Instead, the effect of accumulated precipitation in this par-
ticular model may be an indication of some other property
study site. As predicted by (A) the logistic regression model using
ng TWI, distance to stream, soil type and LULC.



Table 7 Comparison of models predicting the presence of larval habitats in Aduoyo-Miyare and Nguka

Method of optimizing AUC Sensitivity Specificity PCC Kappa

RF: TWI + DS + Soil + LULC + Precip. 0.871 0.820 0.773 0.774 0.102

RF: TWI + DS + Soil + LULC 0.827 0.659 0.936 0.930 0.268

LR: TWI + DS + Soil + Precip. 0.733 0.621 0.704 0.703 0.045

Two random forest (RF) models are shown with and without Precip. (the cumulative 14-day precipitation total). The best logistic regression (LR) model is also
shown. TWI, topographic wetness index; LULC, land use-land cover; DS, distance to the nearest stream; AUC, area under the receiver operating curve; PCC, percent
correctly classified.
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differing between the quadrats sampled on days of higher
and lower accumulated precipitation. Alternatively, the
temporal scale over which larval habitats respond to
variation in accumulated precipitation may be closer to
monthly than daily. That is, ground surveys conducted at
monthly intervals in the same area may be more likely to
be different than daily samples within a month in the
same area. As noted above, this may also reflect the use of
a single location as the source of all precipitation data.
In addition to the use of precipitation data from one

location, there were other limitations to this study. First,
we did not account for spatial autocorrelation in the
logistic regression models. Doing so may have slightly
increased the confidence intervals associated with the
parameters of those models, but it is unlikely to have
changed the model comparisons or accuracy evaluations
presented here. Previous studies modeling An. gambiae
s.l. larval habitat locations have found similar results for
logistic regression models with and without parameters
accounting for spatial autocorrelation [19-21]. Second,
there were additional variables we could have included
in our analysis, such as a model-based wetness index
(MWI) or normalized difference vegetation index (NDVI).
MWI are similar to TWI, but MWI use simulations of
distributed catchment models to account for differences
between groundwater gradients and surface gradients,
thereby creating more accurate topographic data [45].
We used TWI here because it has performed well in
other models of Anopheles larval habitats [19-21], and
is easily implemented compared with MWI. While our
models using TWI showed high accuracy, further studies
comparing the use of MWI and TWI in larval habitat
modeling are needed. NDVI has also been associated with
the distribution of malaria [46,47], although some studies
have found contradicting results [17,48,49]. NDVI is an in-
direct measure of available moisture, but NDVI values are
additionally influenced by vegetation type and phenology.
Thus, we used accumulated precipitation as a measure of
available moisture.
Finally, the models developed here exclusively used

physical and environmental factors as predictor vari-
ables, but the formation of larval An. gambiae s.l. ha-
bitats also depends on human behavior. For example,
landowners in Asembo create small drainage channels
around fields. Standing water left behind in the channels
creates habitats for An. gambiae s.l. larvae [15]. The lo-
cations of these drainage channels are often in low-lying
agricultural areas, and therefore our models were able to
predict the locations of most of the drainage channels.
However, drainage channels are not found in 100% of
low-lying agricultural areas, probably in part because of
individual variation in landowner decision-making. Lar-
val habitats formed from burrow pits and aggregations
of hoof prints are also subject to variation in human be-
havior. While our models were able to correctly predict
the locations of most of these habitats, interactions be-
tween the physical landscape and human behavior likely
account for some of the locations identified incorrectly
by the models.
The sampling designs of these two datasets allowed us

to address two complementary goals. The monthly
surveys in Aduoyo-Miyare and Nguka captured variation
in precipitation across both dry and rainy seasons in the
same landscape. This provided a stronger logical basis
for inferences about the relationship between seasonal
variation in precipitation and variation in the location
and number of larval habitats. The small spatial extent
of Aduoyo-Miyare and Nguka made monthly surveys
more feasible, but it also limited the applicability of the
model results across a larger area. Conversely, limiting
the ground surveys of the 31 quadrats from the 10 by
10 km study site to one season likely impeded our ability
to infer much about the effect of precipitation on these
data. On the other hand, concentrating our sampling
effort to increase replication across space in the 31
quadrats captured more variation in landscape variables,
allowing us to apply the results of models based on these
data to a larger area.
As a general application, the spatially stratified sam-

pling strategy used in the 10 by 10 km site could serve
as a framework for creating predictive larval habitat
models for larval control. Targeted larval control is often
cited as a useful application of predictive larval habitat
models [20,21], and we agree that there is potential for
this application. For example, malaria control programs
could identify areas suited to environmental manage-
ment such as filling in burrow pits and engineering drai-
nage channels to drain more completely. Additionally,
allowing larvicide application crews to focus on areas with
a higher probability of larval habitat presence would
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reduce the time, and therefore the cost, of larviciding.
However, models fitted to data from a single geographic
location may have limited generalizability [50]. Malaria
control programs could overcome this limitation by using
spatially stratified random samples, repeated across a
variable landscape, to build models that are useful over
larger areas.
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