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Abstract
Background: Many different test statistics have been proposed to test for spatial clustering. Some
of these statistics have been widely used in various applications. In this paper, we use an existing
collection of 1,220,000 simulated benchmark data, generated under 51 different clustering models,
to compare the statistical power of several disease clustering tests. These tests are Besag-Newell's
R, Cuzick-Edwards' k-Nearest Neighbors (k-NN), the spatial scan statistic, Tango's Maximized
Excess Events Test (MEET), Swartz' entropy test, Whittemore's test, Moran's I and a modification
of Moran's I.

Results: Except for Moran's I and Whittemore's test, all other tests have good power for detecting
some kind of clustering. The spatial scan statistic is good at detecting localized clusters. Tango's
MEET is good at detecting global clustering. With appropriate choice of parameter, Besag-Newell's
R and Cuzick-Edwards' k-NN also perform well.

Conclusion: The power varies greatly for different test statistics and alternative clustering models.
Consideration of the power is important before we decide which test statistic to use.

Background
A large number of tests for spatial randomness that adjust
for an uneven background population have been pro-
posed. Such test statistics are used to test whether or not
the geographical distribution of disease is random. They
are also used in many other areas such as genetics, geo-
morphology and ecology [1-6].

When we use these test statistics, it is important to know
whether they have good power. There have been some
studies comparing such test statistics [7-14], but there
have been few simultaneous comparisons of three or
more tests. When evaluating tests for spatial randomness,

the best way is to compare them using the same simulated
data sets.

For our study, we use existing benchmark data [10], sim-
ulated from the female population in the Northeastern
United States, to evaluate the power of different test statis-
tics for various kinds of clusters.

Previous studies have shown that the spatial scan statistic
has good power in detecting hot spot clusters, and Tango's
MEET has good power in detecting global clustering [10].
We compare the power of these two test statistics with six
additional tests: Besag-Newell' R, Cuzick-Edwards' k-NN,
Swartz' entropy test, Whittemore's test, Moran's I and a
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modified version of Moran's I. These tests are selected for
different reasons. Some tests are widely used, such as
Moran's I and Cuzick-Edwards' k-NN. Most of them are
published in well reputed statistics journals.

Methods
Benchmark data sets
The benchmark data sets are based on the 1990 female
population in the 245 counties and county equivalents in
the Northeastern United States, consisting of the states of
Maine, New Hampshire, Vermont, Massachusetts, Rhode
Island, Connecticut, New York, New Jersey, Pennsylvania,
Delaware, Maryland and the District of Columbia. Each
county is represented by a centroid coordinate. The data is
available at 'http://www.commed.uchc.edu/biostat/data
sets/'. The benchmark data and how it was generated has
been described in detail elsewhere [10]. We provide a brief
summary here.

Under the null hypothesis of no clustering, 100,000 ran-
dom data sets were generated by randomly allocating 600
cases to the various counties, with probabilities propor-
tional to the county population. The null data is used to
estimate the critical values, which is the cut-off point for
the significance. Two kinds of clustering models were
evaluated, hot spot clusters and global chain clustering.

Hot spot clusters
Hot spot clusters were generated by setting the relative risk
in some counties to be larger than 1. Three different sets
of local clusters are constructed in a rural, urban and
mixed area respectively. Within each of these three sets,
there are five different sized clusters with 1, 2, 4, 8 and 16
counties respectively. The center of the rural cluster is
Grand Isle County in Vermont. The center of the mixed
cluster is Allegheny County (Pittsburgh) in Pennsylvania.
The center of the urban cluster is New York county (Man-
hattan) in New York. The relative risks and counties
included in each cluster are listed in Table 1.

In order to evaluate how the disease clustering tests per-
form when there are multiple hot-spot clusters, the bench-
mark data also include 15 alternate models with two
clusters and 5 models with three clusters by using differ-
ent combinations of the original clusters. In a model, all
clusters had the same number of counties.

Global chain clustering
In the global chain clustering model, every county has the
same expected number of cases under the null and alter-
native hypothesis. The counties are tied together sequen-
tially on a chain that passes through the centroid of each
county exactly once, after which it reconnects with the first
county on the chain, forming a Hamiltonian cycle. A map
of the Hamiltonian cycle used has previously been pub-
lished [10].

Table 1: The hot spot clusters

Counties Counties included E [c|H0] E [c|HA] Relative
risk

Rural clusters 1 Grand Isle, VT 0.05 10 192.89
2 above + Franklin, VT 0.46 12 27.03
4 above + Clinton, NY, Chittenden, VT 2.69 18 7.05
8 above + Lamoille, VT, Washington, VT, Essex, NY, Addison, VT 4.16 22 5.35
16 above + Orleans, VT, Franklin, NY, Caledonia, VT, Orange, VT, Essex, VT, Rutland,

VT, Warren, NY, Windsor, VT
7.32 28 3.90

Mixed clusters 1 Allegheny, PA 14.43 39 2.85
2 above + Washington, PA 16.41 42 2.70
4 above + Beaver, PA, Westmoreland, PA 22.52 51 2.40
8 above + Butler, PA, Armstrong, PA, Lawrence, PA, Fayette, PA 27.47 58 2.24
16 above + Greene, PA, Indiana, PA, Clarion, PA, Mercer, PA, Somerset, PA,

Venango, PA, Cambria, PA, Jefferson, PA
34.22 67 2.10

Urban clusters 1 New York, NY 15.97 42 2.73
2 above + Hudson, NJ 21.78 50 2.43
4 above + Bronx, NY, Kings, NY 59.99 100 1.81
8 above + Queens, NY, Bergen, NJ, Essex, NJ, Richmond, NY 101.96 150 1.63
16 above + Union, NJ. Nassau, NY, Passaic, NJ, Rockland, NY, Westchester, NY,

Morris, NJ, Middlesex, NJ, Monmouth, NJ
154.94 209 1.53
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To generate clusters, a certain number of cases are first
located randomly on the map, according to the null
hypothesis. These original cases then generate other new
cases close by. If each original case generates one addi-
tional case, it is called twins. If two additional cases are
generated, it is called triplets.

A total of 26 chain clustering models are constructed with
the distance between the twins (triplets) along the chain
being either constant or exponentially distributed with
different means. If the distance is zero, the twins (triplets)
are in the same county. The chain does not imply that the
disease itself spreads around the chain, just that twins and
triplets cases are located in either of the two directions, as
defined by the chain.

Test statistics
Notation
Denote ci as the number of cases in county i, ni as the pop-
ulation size of county i, C as the total number of cases, N
as the total population size, H as the total number of
counties and dij as the distance between county i and j.

Let Dj(i) be the total number of cases in county i and its j
closest neighbors, and let Uj(i) be the population size in
county i and its j closest neighbors.

Besag-Newell's R
Besag-Newell's R statistic [15] has been used to study
leukemia in upstate New York [16]. The test statistic is

defined as , where Mi is a

random variable denoting the minimum number of coun-
ties needed to have at least k cases in county i and its Mi

closest neighboring counties, mi is the observed value of
Mi, that is, mi = min{j : (Dj(i) + 1) ≥ k}. k is a parameter set
by the user. Usually, a large k is more sensitive to large
clusters and a small k is more sensitive to small clusters. I
is the indicator function with value 1 when P(Mi ≤ mi) <
0.05 and 0 otherwise. P(Mi ≤ mi) is calculated by

The null hypothesis of no clustering is rejected when R is
large.

Cuzick-Edwards' k-NN
Cuzick-Edwards' k-NN (k-Nearest Neighbors) test [17]
has been widely used, for example for leukemias and lym-
phomas among young people in New Zealand [18] and
the association of Ixodes pacificus and quine granulocytic
ehrlichiosis in California [19].

This test statistic was originally designed for point data,
but can easily be adapted for aggregated data. The test sta-
tistic is defined as

where k is a parameter chosen by the user and for each

county i,  denotes the number of k nearest neighbors

which are cases. To be more precise,  = D(h-1)(i) + th(i)

where h is decided so that U(h-1)(i) ≤ k, Uh(i) >k and

. U(-1)(i) is defined as 0.

The null hypothesis of no clustering is rejected when Tk is
large.

The spatial scan statistic
The spatial scan statistic [20] has among other things been
used to study human granulocytic ehrlichiosis near Lyme
in Connecticut [21], soft-tissue sarcoma and non-Hodg-
kin's lymphoma clusters with high dioxin emission levels
[22], childhood mortality in rural Burkina Faso [23],
bovine tuberculoisis in Argentina [24] and Toxoplasma
gondii infection of southeast sea, otters [25].

The spatial scan statistic imposes a circular window on the
map and lets the circle centroid move across the study
region. For any given position of the centroid, the radius
of the window is changed continuously to take any value
between zero and some upper limit.

Let Lj(i) be the likelihood under the alternate hypothesis
that there is a cluster in county i and its j closest neighbors,
and let L0 be the likelihood under the null hypothesis. It
can then be shown that

As this likelihood ratio is maximized over all circles, it
identifies the one that constitutes the most likely cluster.
The test statistic is

where I is the indicator function with value 1 when

 and 0 otherwise. The null hypothesis of

no clustering is rejected when T is large.
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Tango's Maximized Excess Events Test (MEET)
For a given parameter λ, the Excess Events Test statistic
[11] is defined as

The choice of λ relates to the geographical scale of cluster-
ing. Large λ makes the test sensitive to geographically large
clusters, while small λ will make the test more sensitive to
small clusters.

To be able to detect clustering irrespectively of its geo-
graphical scale, Tango [12] proposed the Maximized
Excess Events Test (MEET)

where eet(λ) is the observed value of the Excess Events Test
statistic conditioning on λ, and U is the upper limit on λ.
Practical implementation of the test uses 'line search' by
discretization on λ, and the MEET statistic is evaluated
using Monte Carlo hypothesis testing [26].

The null hypothesis of no clustering is rejected when the
test statistic is small.

Swartz' entropy test
Swartz [27] proposed a test for spatial randomness based
on the concept of entropy. The test statistic is defined [28]
as

The null hypothesis of no clustering is rejected when T is
small.

Moran's I
Moran's I [29] was originally proposed to analyze contin-
uous data. Subsequently, this statistic has also been used
to analyze count data, such as Lyme disease in New York
State [30] and cancer incidence in Canada [31].

The Moran' I statistic is defined as

where  and

We also consider a modified version of Moran's I:

In both cases, we reject the null hypothesis of no cluster-
ing when I is large.

Whittemore's test
Whittemore et al. [32] proposed the statistic

We reject the null hypothesis of no clustering when T is
small.

Power calculation
For Besag-Newell's R, Cuzick-Edwards' k-NN. Swartz'
entropy test, Moran's I and Whittemore's test, the power
estimate is calculated using C++ code written by the
author. For the spatial scan statistic and Tango's MEET, the
power estimates are obtained from the paper by Kulldorff
et al.[10].

Results
Hot spot clusters
Table 2 shows the estimated power of the test statistics in
detecting the hot spot clusters. For each type of hot spot
cluster, the highest power is highlighted. The spatial scan
statistic has good power in detecting all three kinds of hot
spot clusters: rural, mixed and urban clusters, and it per-
forms best for detecting rural clusters. Tango's MEET per-
forms best for the urban clusters, but not very well for the
rural clusters.

With the right choice of parameter, Besag-Newell's R has
the best power for detecting mixed clusters, but its
strength is very sensitive to choice of parameter. The
power of Cuzick-Edwards' k-NN also depends on the
parameter. It has good power in detecting all three kinds
of hot spot clusters with the right choice of parameter. The
choice of parameter depends on the size of the cluster.
Usually, for large clusters, large parameter values perform
better, while for small clusters, small parameter values are
better.

Swartz' entropy test has good power in detecting the rural
clusters, but not very good for mixed or urban clusters.
Moran's I can detect the rural clusters except for the cluster
with only one county. The modified Moran's I has similar
performance to Moran's I, but it performs better for the
rural clusters, especially for the cluster with one county.
Whittemore's test does not perform as well as the other
test statistics in detecting hot spot clusters.

EET e c n
C

N
c n

C

N
d

i i j j
ji

ij( ) ( )( ).
/λ λ= − −−∑∑ 4 2 2

MEET P EET eet H
U

= >
≤ ≤
min ( ( ) ( )| , ),

0
0

λ
λ λ λ

T ln C ln N C ln c ln n ci i i
i

= + − − + −∑( !) (( )!) ( ( !) (( )!)).

I
r r r r a

r r

i jj i
H

i
H

ij

ii
H

=
− −

−

= +=

=

∑∑
∑

( )( )

( )
.

11

2
1

r
H

r r
c
ni i

i

i
i
H= ==∑1

1
,���

aij =
1

0

if county i and j are neighbors

if county i and j ar

.

ee not neighbors.




I r r r r amod i j
j i

H

i

H

ij= − −
= +=
∑∑ ( )( ) ,

11

T d c cij i j
ji

= ∑∑1
2

.

Page 4 of 8
(page number not for citation purposes)



International Journal of Health Geographics 2003, 2 http://www.ij-healthgeographics.com/content/2/1/9
All the test statistics have good power for multiple hot
spot clusters except Whittemore's test and Moran's I. The
spatial scan statistic, Tango's MEET and Cuzick-Edwards'
k-NN perform very well in detecting multiple clusters.

Global chain clustering
Table 3 shows the estimated power of the test statistics for
global chain clustering. The highest power for each type of
global clustering is highlighted. Note that as the distance

between the cases increases, there is less clustering in the
data, and all tests have lower power.

For most alternative models, Tango's MEET has the high-
est power. The spatial scan statistic performs well, but not
as well as Tango's MEET. Swartz' entropy test is good when
the distance is small, but the power decreases very quickly
as the distance increases. Besag-Newell's R, Moran's I,

Table 2: Power of the test statistics for the hot spot clusters.

Besag-Newell's R Cuzick-Edwards' k-NN Spatial 
Scan 

Statistic

Tango's 
MEET

Swartz' 
Entropy 

Test

Moran's Whittemore's 
Test

k = 6 12 30 100K 500K 1000K I Imod

Rural (edge) 1 0.707 0.388 0.089 0.752 0.168 0.038 0.998 0.196 0.939 0.000 0.315 0.010
2 0.792 0.466 0.074 0.810 0.199 0.049 0.991 0.221 0.804 0.743 0.793 0.006
4 0.839 0.754 0.239 0.874 0.425 0.109 0.973 0.229 0.607 0.449 0.505 0.004
8 0.830 0.854 0.309 0.851 0.540 0.157 0.971 0.213 0.639 0.752 0.814 0.002
16 0.821 0.880 0.505 0.758 0.621 0.247 0.969 0.229 0.706 0.715 0.806 0.004

Mixed (corner) 1 0.037 0.023 0.983 0.648 0.919 0.899 0.936 0.925 0.270 0.053 0.045 0.000
2 0.129 0.024 0.989 0.655 0.886 0.913 0.939 0.896 0.289 0.059 0.051 0.000
4 0.157 0.095 0.980 0.645 0.822 0.931 0.937 0.838 0.269 0.078 0.061 0.000
8 0.217 0.222 0.956 0.608 0.777 0.903 0.941 0.817 0.291 0.130 0.099 0.000
16 0.293 0.284 0.914 0.598 0.715 0.838 0.949 0.832 0.354 0.193 0.165 0.000

Urban (central) 1 0.037 0.027 0.952 0.627 0.856 0.893 0.922 0.941 0.264 0.049 0.045 0.296
2 0.033 0.214 0.819 0.587 0.786 0.937 0.903 0.920 0.245 0.056 0.049 0.334
4 0.026 0.049 0.190 0.378 0.684 0.864 0.892 0.961 0.119 0.052 0.043 0.579
8 0.022 0.022 0.459 0.292 0.637 0.817 0.913 0.983 0.078 0.061 0.043 0.758
16 0.015 0.059 0.368 0.257 0.648 0.795 0.926 0.986 0.047 0.069 0.045 0.887

Rural and Mixed 1 0.624 0.270 0.981 0.956 0.943 0.860 1.000 0.964 0.975 0.000 0.310 0.000
2 0.803 0.356 0.987 0.969 0.926 0.891 0.999 0.952 0.923 0.727 0.780 0.000
4 0.841 0.739 0.983 0.977 0.930 0.929 0.997 0.930 0.813 0.460 0.508 0.000
8 0.867 0.906 0.972 0.973 0.939 0.916 0.996 0.931 0.849 0.767 0.823 0.000
16 0.857 0.938 0.970 0.949 0.939 0.891 0.996 0.941 0.914 0.729 0.810 0.000

Mixed and Urban 1 0.020 0.012 0.999 0.929 0.997 0.998 0.987 0.998 0.545 0.049 0.041 0.009
2 0.084 0.132 0.995 0.918 0.990 0.998 0.984 0.995 0.499 0.057 0.045 0.012
4 0.082 0.069 0.946 0.807 0.962 0.996 0.966 0.991 0.303 0.080 0.048 0.034
8 0.107 0.114 0.915 0.710 0.935 0.987 0.954 0.990 0.222 0.136 0.073 0.070
16 0.120 0.167 0.803 0.616 0.897 0.969 0.935 0.984 0.199 0.212 0.135 0.138

Rural and Urban 1 0.619 0.272 0.954 0.949 0.902 0.868 1.000 0.970 0.974 0.000 0.309 0.096
2 0.709 0.665 0.823 0.955 0.854 0.919 0.999 0.962 0.909 0.712 0.771 0.097
4 0.731 0.644 0.261 0.947 0.863 0.855 0.992 0.971 0.671 0.436 0.472 0.206
8 0.676 0.689 0.546 0.911 0.879 0.826 0.991 0.977 0.602 0.726 0.770 0.365
16 0.591 0.725 0.521 0.803 0.892 0.834 0.987 0.975 0.561 0.659 0.726 0.562

Rural, Mixed and 
Urban

1 0.541 0.185 0.998 0.992 0.998 0.994 1.000 0.999 0.991 0.000 0.291 0.002

2 0.735 0.565 0.993 0.994 0.994 0.997 1.000 0.998 0.960 0.697 0.755 0.001
4 0.735 0.611 0.949 0.987 0.984 0.995 0.996 0.994 0.799 0.433 0.456 0.003
8 0.728 0.759 0.922 0.972 0.980 0.984 0.992 0.989 0.759 0.730 0.769 0.007
16 0.642 0.766 0.840 0.909 0.962 0.962 0.977 0.983 0.744 0.672 0.737 0.023
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Whittemore' test are not very good at detecting global
clustering.

With the right choice of parameter, Cuzick-Edwards' k-NN
performs very well, especially for clustering with small
distances. Large parameter values tend to detect clustering
with large distance, while small parameter values perform
better for clustering with small distance.

The performance of the test statistics for twins clustering
with fixed and exponential distance is similar. All test sta-
tistics have better power in detecting triplet clustering
since there is more clustering there.

Discussion
Of the evaluated test statistics, Besag-Newell's R, Cuzick-
Edwards' k-NN, the spatial scan statistic, MEET, Whitte-
more's test are based on Euclidean distances. Moran's I is
based on the adjacencies of counties. Swartz' entropy test
does not use the spatial relationship among the counties.

The M statistic [33] proposed by Bonetti and Pagano is a
nonparametric test that uses the iriterpoint distance distri-
bution to study the spatial pattern of the data. The M sta-
tistic has also been evaluated using the same benchmark
data [10]. The M statistic does well for mixed and urban
clusters and has good power in detecting multiple clus-
ters. Generally, it does not perform quite as well as the
spatial scan statistic and MEET, but it is very competitive
compared to the other tests.

Table 3: Power of the test statistics for the global chain clustering.

Twins
Besag-Newell's R Cuzick-Edwards' k-NN Spatial 

Scan 
Statistic

Tango's 
MEET

Swartz' 
Entropy 

Test

Moran's Whittemore's 
Test

k = 6 12 30 100K 500K 1000K I Imod

No distance 0.00 0.477 0.491 0.423 1.000 0.925 0.728 0.791 0.990 0.999 0.049 0.136 0.132

Fixed Distance 0.005 0.076 0.242 0.332 0.488 0.644 0.570 0.392 0.624 0.357 0.116 0.101 0.128
0.01 0.057 0.077 0.231 0.159 0.319 0.383 0.285 0.406 0.143 0.078 0.068 0.122
0.02 0.060 0.060 0.118 0.077 0.107 0.154 0.194 0.264 0.079 0.056 0.054 0.116
0.04 0.061 0.054 0.055 0.060 0.065 0.067 0.124 0.174 0.062 0.051 0.050 0.097
0.08 0.056 0.054 0.050 0.059 0.059 0.058 0.080 0.109 0.059 0.050 0.051 0.073
0.16 0.060 0.051 0.042 0.059 0.056 0.045 0.055 0.059 0.060 0.053 0.054 0.053

Exponential Distance 0.005 0.212 0.314 0.351 0.820 0.709 0.587 0.452 0.738 0.642 0.182 0.179 0.127
0.01 0.140 0.210 0.274 0.534 0.525 0.466 0.351 0.556 0.386 0.133 0.121 0.122
0.02 0.096 0.134 0.191 0.284 0.314 0.309 0.262 0.378 0.210 0.094 0.086 0.112
0.04 0.076 0.097 0.121 0.144 0.171 0.184 0.185 0.250 0.127 0.071 0.067 0.102
0.08 0.063 0.074 0.091 0.086 0.104 0.111 0.124 0.166 0.081 0.063 0.058 0.085
0.16 0.059 0.063 0.061 0.062 0.070 0.074 0.080 0.107 0.064 0.054 0.053 0.071

Triplets

No distance 0.00 0.742 0.780 0.716 1.000 0.999 0.964 0.995 1.000 1.000 0.052 0.196 0.188

Fixed Distance 0.005 0.088 0.333 0.587 0.715 0.885 0.856 0.674 0.884 0.559 0.178 0.148 0.179
0.01 0.064 0.092 0.368 0.228 0.470 0.587 0.491 0.646 0.202 0.102 0.087 0.171
0.02 0.067 0.062 0.149 0.092 0.132 0.212 0.318 0.430 0.098 0.065 0.060 0.149
0.04 0.060 0.063 0.057 0.076 0.079 0.084 0.189 0.265 0.072 0.054 0.053 0.118
0.08 0.058 0.056 0.044 0.069 0.063 0.057 0.102 0.141 0.066 0.052 0.048 0.078
0.16 0.060 0.057 0.035 0.066 0.053 0.044 0.046 0.050 0.064 0.053 0.053 0.043

Exponential Distance 0.005 0.315 0.524 0.629 0.977 0.939 0.867 0.762 0.960 0.884 0.317 0.314 0.176
0.01 0.185 0.323 0.473 0.786 0.773 0.721 0.610 0.826 0.598 0.200 0.185 0.170
0.02 0.118 0.184 0.303 0.438 0.489 0.490 0.436 0.599 0.315 0.127 0.117 0.154
0.04 0.084 0.110 0.180 0.202 0.251 0.272 0.289 0.390 0.161 0.085 0.077 0.135
0.08 0.073 0.075 0.099 0.110 0.118 0.139 0.171 0.226 0.098 0.062 0.060 0.102
0.16 0.060 0.066 0.065 0.070 0.071 0.078 0.091 0.115 0.067 0.053 0.054 0.071
Page 6 of 8
(page number not for citation purposes)



International Journal of Health Geographics 2003, 2 http://www.ij-healthgeographics.com/content/2/1/9
Besag-Newell's R and Cuzick-Edwards' k-NN are good test
statistics, but the power depends a lot on the parameter.
Usually large parameter value can make the test statistic
more sensitive to large clustering, whereas small parame-
ter value can detect the small clustering better. So if we
know the scale of clustering and choose a corresponding
parameter, these two test statistics may have good power.
In practice, we usually don't know the size of clustering. If
we try different parameter values, that will cause multiple
testing problems.

Sometimes we need to adjust the analysis for age or other
covariate. All the test statistics considered here can incor-
porate such adjustment except Swartz' entropy test,
although it can be modified to do so.

In terms of data resolution, Besag-Newell's R, Whitte-
more's test, Tango's MEET and Swartz' entropy test were
originally proposed to analyze aggregated data, while
Cuzick-Edwards' k-NN was proposed to analyze point
data. The spatial scan statistic was proposed to analyze
either aggregated or point data. Moran's I was designed for
continuous data, but has been used extensively for aggre-
gated count data as well. It is possible and maybe even
likely that these test statistics may perform differently
when applied to point data.

A strength of this power evaluation study is that the data
is typical of epidemiological applications, and uses actual
population and geographical data. The strength of the test
statistics will depend not only on the alternative model
though, but also on the spatial distribution of the areas
and the population size in this area. A limit of the study is
that the background population of the benchmark data is
from only one particular region, the female population of
Northeast United States. Under other alternate models
and background population, some test statistics may per-
form better or worse.

Conclusion
The power varies greatly for different disease clustering
test statistics. Consideration of the power is important
before deciding which test statistic to use. If the size or
scale of clustering is known, it is worth considering the use
of Besag-Newell's R or Cuzick-Edwards' k-NN. If not, we
feel confident recommending the spatial scan statistic for
the detection of local clusters and use Tango's MEET for
the general evaluation of clustering throughout the map.
Other tests may be equally good or better for alternative
models not considered in this paper.

List of abbreviations
k-NN: k-Nearest Neighbors.

MEET: Maximized Excess Events Test.
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