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Abstract
Background: There are few studies that have investigated uncertainties surrounding the scientific
community's knowledge of the geographical distribution of major animal diseases. This is
particularly relevant to Rift Valley fever (RVF), a zoonotic disease causing destructive outbreaks in
livestock and man, as the geographical range of the disease is widening to involve previously
unaffected regions. In the current study we investigate the application of methods developed in the
decision sciences: multiple criteria decision making using weighted linear combination and ordered
weighted averages, and Dempster-Shafer theory, implemented within the geographical information
system IDRISI, to obtain a greater understanding of uncertainty related to the geographical
distribution of RVF. The focus is on presenting alternate methods where extensive field data are
not available and traditional, model-based approaches to disease mapping are impossible to
conduct.

Results: Using a compensatory multiple criteria decision making model based on weighted linear
combination, most of sub-Saharan Africa was suitable for endemic circulation of RVF. In contrast,
areas where rivers and lakes traversed semi-arid regions, such as those bordering the Sahara, were
highly suitable for RVF epidemics and wet, tropical areas of central Africa had low suitability. Using
a moderately non-compensatory model based on ordered weighted averages, the areas considered
suitable for endemic and epidemic RVF were more restricted. Varying the relative weights of the
different factors in the models did not affect suitability estimates to a large degree, but variations
in model structure had a large impact on our suitability estimates. Our Dempster-Shafer analysis
supported the belief that a range of semi-arid areas were suitable for RVF epidemics and the
plausibility that many other areas of the continent were suitable. Areas where high levels of
uncertainty were highlighted included the Ethiopian Highlands, southwest Kenya and parts of West
Africa.

Conclusion: We have demonstrated the potential of methods developed in the decision sciences
to improve our understanding of uncertainties surrounding the geographical distribution of animal
diseases, particularly where information is sparse, and encourage wider application of the decision
science methodology in the field of animal health.
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Background
Uncertainty is a major feature of human and animal
health decision-making and increasing attention is being
paid to methods that detect, measure and reduce uncer-
tainty in a range of settings. Uncertainty can be any error,
ambiguity or variation in a decision process or the data on
which the decision process is based [1]. Uncertainty is par-
ticularly apparent in the relatively data-starved environ-
ment of tropical health – nowhere more so than on the
African continent. Inadequate demographic data in com-
bination with variable disease surveillance activities create
an incomplete knowledge of the distribution, epidemiol-
ogy and impact of a range of tropical diseases.

Recent advances in geographical information system and
remote-sensing (GIS/RS) technologies have been applied
in a wide range of studies of the spatial distribution of
tropical diseases and the factors that influence disease pat-
terns. To a lesser extent, geographical studies have also
had the objective of improving resource allocation to dis-
ease control and surveillance activities [2]. However, the
paucity of data often renders traditional model-based
approaches to disease mapping impossible to conduct,
while the need for producing such maps as policy and
resource allocation tools remains stronger than ever. In
this study we aim to present a pragmatic approach to dis-
ease mapping that can be applied relatively rapidly for
directing disease control activities, while maintaining
honesty about the different levels and sources of uncer-
tainty in the absence of extensive field data. We illustrate
our approach using the example of Rift Valley fever (RVF)
in Africa.

In the current study we explicitly considered decision rule
uncertainty, which refers to uncertainty in the way param-
eters are specified and combined in the decision process.
In our analysis, the decision frames were whether geo-
graphical units (pixels) were suitable or not suitable for
the occurrence of endemic RVF or RVF epidemics accord-
ing to specific criteria. Criteria refer to factors that influ-
ence the suitability of a given location. Fuzzy logic can be
applied to model decision rule uncertainty, where the
possibility of a criterion being satisfied is defined on a
continuous scale by a membership function, which can
take any shape (e.g. rectilinear, sigmoidal, exponential,
etc.).

As RVF distributions are multifactorial, a method needed
to be adopted within the context of multiple criteria deci-
sion making (MCDM) to combine membership functions
for different criteria – one such method is weighted linear
combination (WLC). With WLC, the criteria are standard-
ised for comparison on a common scale, weights are
applied so that more important criteria are able to exert a
greater influence on the outcome, and a weighted average

across criteria is calculated for each pixel, giving the final
suitability estimates.

MCDM models using WLC to construct the decision rule
are fully compensatory models – a low score for a given
factor may be compensated by a high score for another
factor. We also considered the application of ordered
weighted averages (OWA) analysis, which allows manip-
ulation of the degree to which a high score for a criterion
can compensate for a low score in another. With OWA,
criteria are weighted for a given pixel according to the rank
of their suitability scores within that pixel. For a less com-
pensatory model, the lower ranked factors are given a
higher relative weight [3].

Many of the factors that are known to influence RVF suit-
ability do so indirectly, via their relationships with vector
and host populations. In this study we also considered
methods for making inference from indirect evidence. The
method of choice was Dempster-Shafer theory (DST)
[4,5], a generalisation of Bayes theory that is thought to
better represent uncertainty in near-ignorance situations
[6]. Inference using this approach involved statements
about belief in, and plausibility of, a given pixel being
suitable for RVF occurrence given the evidence presented
by different climatic and hydrological indicators. In the
current study we used DST to investigate suitability of pix-
els for RVF epidemics.

Results
Suitability maps are presented on a graduated green-yel-
low-orange-red scale, with delineations between green/
yellow, yellow/orange and orange/red occurring at scores
of 140, 150 and 200 (range 0 to 255). For descriptive pur-
poses we interpreted model outputs in the green scale to
indicate unsuitability, outputs in the yellow scale to indi-
cate low suitability, outputs in the orange scale to indicate
moderate suitability and outputs in the red scale to indi-
cate high suitability.

Endemic suitability
With the exception of the coasts of Liberia, Sierra Leone
and Cameroon and the arid areas of South Africa, Bot-
swana, Namibia, Kenya, Somalia, Ethiopia, Eritrea and
Djibouti, most of Sub-Saharan Africa (SSA) was suitable
for the presence of endemic RVF according to our WLC
model (Figure 1). The whole of the Sahara was unsuitable,
although less arid areas of the Maghreb countries
(Morocco, Algeria and Tunisia) were moderately suitable.

The endemic suitability map derived from our moderately
non-compensatory OWA model is presented in Figure 2.
The areas that were estimated to be suitable were more
limited than in the WLC analysis. For example, both the
Central African Republic and Angola were entirely suita-
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ble for endemic RVF according to the WLC model, but a
large proportion of the area covered by both countries was
unsuitable according to the OWA analysis.

Epidemic suitability
High-suitability areas for RVF epidemics (Figure 3)
occurred, according to our WLC model, in the more arid
areas of the continent, particularly near the large lakes and
rivers, such as the Senegal, Niger and Nile Rivers and
Lakes Chad and Turkana, in addition to many other
smaller hydrological features. There were a number of
high-suitability areas in the Maghreb countries, particu-
larly in Morocco and Tunisia. Low-suitability areas for
RVF epidemics included the southern areas of West Africa,
all of the high-rainfall tropical areas of Central Africa and
the Ethiopian Highlands.

The epidemic suitability map derived from our OWA
model is presented in Figure 4. Moderate and high suita-
bility estimates were more strictly limited than in the WLC
analysis to those areas that had a close proximity to hydro-
logical features in the arid areas of the continent.

Sensitivity analysis
Changing the weights of the lower-weighted factors had
little impact on the WLC suitability maps (Table 1),
whereas changing the weights of the highest-weighted fac-

tors (rainfall in both models) had a bigger, but still not
extreme, impact on the suitability estimates. Changing the
shape of the relationship between rainfall and endemic
suitability from symmetrical to monotonic had the big-
gest impact. Overall, the models were more sensitive to
changes in model structure than to 25% increases or
decreases in relative weights between the factors.

Validation
Overlays of serological prevalence for RVF in ruminant
livestock in Senegal and estimated suitability for endemic
and epidemic RVF based on our WLC models are pre-
sented in Figures 5 and 6 respectively. High serological
prevalence was observed in the northern part of the coun-
try (the Senegal River basin) and the southern part of the
country, particularly in the Cassamance region. This latter
area corresponded to an area of high estimated suitability
for endemic RVF, whereas the high serological prevalence
in the Senegal River basin corresponded to an area of high
estimated suitability for RVF epidemics. The intermediate
area in central Senegal with low observed serological prev-
alence was characterised by moderately low suitability for
either endemic or epidemic status.

Comparison of the epidemic suitability map with the map
of known RVF epidemics in Africa (Figure 7) showed that
many of the areas with high estimated suitability had

Endemic suitability map for Rift Valley fever in Africa based on ordered weighted averages analysisFigure 2
Endemic suitability map for Rift Valley fever in Africa 
based on ordered weighted averages analysis. Suitabil-
ity scores range from 0 (completely unsuitable) to 255 (com-
pletely suitable).

Endemic suitability map for Rift Valley fever in Africa based on weighted linear combinationFigure 1
Endemic suitability map for Rift Valley fever in Africa 
based on weighted linear combination. Suitability 
scores range from 0 (completely unsuitable) to 255 (com-
pletely suitable).
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experienced epidemics of the disease, such as the Senegal
River basin, areas adjacent the Nile in Egypt and Sudan
and parts of southern Africa, including South Africa,
Namibia and Zimbabwe. A number of areas in SSA had
high estimated suitability but had not experienced major
epidemics, such as areas adjacent the Niger River and Lake

Chad. Additionally, parts of the Maghreb had high esti-
mated suitability but had not experienced epidemics. One
important example of an area that did experience a major
epidemic that we did not estimate to be highly suitable
was north-eastern Kenya. However, we did estimate the

Table 1: Average changes in endemic and epidemic suitability scores at 10,0000 randomly-selected locations in Africa.

Parameter variation Average change in suitability score

Endemic suitability model Epidemic suitability model

Weight for rainfall increased 10.30 8.84
Weight for rainfall decreased 10.26 8.83
Weight for temperature increased 5.01 0.86
Weight for temperature decreased 5.01 0.89
Weight for elevation increased 1.70 1.58
Weight for elevation decreased 1.70 1.53
Weight for distance to major river increased 2.89 4.19
Weight for distance to major river decreased 2.81 4.10
Weight for distance to minor river increased 1.55 0.96
Weight for distance to minor river decreased 1.49 0.92
Weight for livestock density increased 2.11 1.60
Weight for livestock density decreased 1.99 1.49
Monotonic increasing temperature and rainfall 27.30 -

Parameters of multiple criteria decision making models for Rift Valley fever were varied, including relative weights for factors, which were increased 
and decreased by 25% of their initial value.

Epidemic suitability map for Rift Valley fever in Africa based on weighted linear combinationFigure 3
Epidemic suitability map for Rift Valley fever in 
Africa based on weighted linear combination. Suitabil-
ity scores range from 0 (completely unsuitable) to 255 (com-
pletely suitable).

Epidemic suitability map for Rift Valley fever in Africa based on ordered weighted averages analysisFigure 4
Epidemic suitability map for Rift Valley fever in 
Africa based on ordered weighted averages analysis. 
Suitability scores range from 0 (completely unsuitable) to 255 
(completely suitable).
Page 4 of 12
(page number not for citation purposes)



International Journal of Health Geographics 2006, 5:57 http://www.ij-healthgeographics.com/content/5/1/57
neighbouring area around Lake Turkana to be highly suit-
able for RVF epidemics.

Dempster-Shafer analysis
The three outputs of the DST model: belief, plausibility
and belief interval are presented in Figure 8. Evidence sup-
ported the belief that semi-arid areas such as the Sahelian
zone of West Africa, the Maghreb countries, Egypt, Sudan,
Somalia, northern and north-eastern Kenya, southern
Namibia and western South Africa were suitable for the
occurrence of RVF epidemics. In addition, the models sug-
gested that it is plausible that many other areas of the Afri-
can continent were suitable for the occurrence of RVF
epidemics, but no strong statement about the belief that

these areas are suitable could be made. The areas with the
highest belief interval, which were those with the greatest
level of uncertainty in terms of whether or not they were
suitable for RVF epidemics, included the Ethiopian High-
lands, south-western Kenya, southern Nigeria, parts of
Cameroon, Sierra Leone and the coastal areas of Guinea
and Liberia.

Discussion
Fuzzy logic, implemented with a WLC framework, has
been applied to assist spatial MCDM in a wide range of
settings, as divergent as determining the desirability of
houses in the real estate industry [7] and prioritising areas
for disease vector control [8]. However, there are few
examples in the field of human or animal health. Fuzzy
logic has been used to define the continental distribution
of malaria in Africa, taking into account experimental evi-
dence on the relationships between malaria transmission
and temperature and rainfall, and observed malaria trans-
mission patterns in specific climatic zones [9]. A single
suitability estimate was calculated, where high suitability
was associated with stable endemic transmission and low
suitability was associated with malaria epidemics. This
contrasts to the current study where we attempted to sep-
arate endemic and epidemic occurrence of RVF. However,
similarities were evident in that epidemic and endemic
areas in the current study were largely exclusive. Also, val-
idation of the malaria suitability map was attempted by
visual comparison to existing data sources as in the cur-
rent study. An expert system based on fuzzy logic was used

Locations of Rift Valley fever epidemics since the beginning of the 20th centuryFigure 7
Locations of Rift Valley fever epidemics since the 
beginning of the 20th century.

Overlay of observed serological prevalence and estimated endemic suitability for Rift Valley fever in SenegalFigure 5
Overlay of observed serological prevalence and esti-
mated endemic suitability for Rift Valley fever in Sen-
egal. Suitability estimates were derived using weighted linear 
combination.

Overlay of observed serological prevalence and estimated epidemic suitability for Rift Valley fever in SenegalFigure 6
Overlay of observed serological prevalence and esti-
mated epidemic suitability for Rift Valley fever in 
Senegal. Suitability estimates were derived using weighted 
linear combination.
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to model the distribution of a tick species, where the
membership functions were derived from a data-driven
process of relating tick capture frequencies to a range of
climate variables [10]. OWA has also been applied in a
range of settings, with one example being an assessment
of earthquake vulnerability [11].

A number of common pitfalls in the application of WLC
were presented and discussed by Malczewski [12], who
stated that the criteria should be measurable and com-
plete (i.e. they cover all relevant aspects of the decision
problem). Factor selection on the basis of data availability
was criticised. However, comprehensive data on a number
of important disease factors are not available for many
developing countries (e.g. animal movement data in
Africa) and it remains a necessity to select attributes from
limited available data resources. We believe that, in the
current analysis, most of the important large-scale spatial
determinants of RVF ecology were accommodated but as
more information becomes available the maps will be
updated as part of an ongoing process.

Correlation between attributes was also highlighted as an
important issue – Malczewski [12] stated that this results
in redundancy due to "double-counting". In our models,
temperature and elevation were moderately correlated,
however both were kept in the models as the influence of
elevation was thought not to be solely related to its asso-
ciation with temperature, but also to its influence on
hydrological systems (e.g. low elevations were thought to
be more prone to accumulation of ground surface water
and flooding, leading to greater risk of RVF epidemics).
Slightly lower weights were given to both elevation and

temperature to reduce the impact of "double-counting".
The issue of spatial scale and levels of aggregation (the
modifiable area unit problem) have also been highlighted
[12]. In our analysis, we used data that had a common
spatial resolution, which was relatively high, and we
believe that bias arising from the modifiable area unit
problem was likely to be minimal. A possible exception to
this is the rainfall variable, which was interpolated using
weather station data sampled at different densities across
the continent. However, without having the original rain-
fall data it is impossible to judge what the effects of the
modifiable area unit problem was likely to have been for
this variable.

We acknowledge that our approach to validation of the
maps was qualitative in nature and further work is
required for quantitative validation across the African
continent. Another major issue with the methods applied
in this study is subjectivity, particularly with regards to
defining the weights in the WLC models, and the basic
probability assignments in the DST analysis. A number of
sources of information may be utilised for these purposes,
including expert opinion [8], statistical data and pub-
lished literature [13]. In our WLC analysis we derived
crude weights according to the relative frequency by
which each factor was mentioned in the published litera-
ture. Sensitivity analysis revealed that increasing and
decreasing the weights by 25% had a modest effect on the
outcome suitability estimates and it appears that correct
definition of the model structure and, perhaps, the order
of importance of the factors in relation to the objective is
more important than achieving a precise estimate of the
weights.

Outputs of decision-rule uncertainty analysis using Dempster-Shafer theoryFigure 8
Outputs of decision-rule uncertainty analysis using Dempster-Shafer theory. A) Belief in Rift Valley fever (RVF) epi-
demic suitability, B) plausibility of RVF epidemic suitability and C) belief intervals for RVF epidemic suitability.
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There are an increasing number of reports of DST applica-
tions in engineering and climatology, such as analyses of
water quality [14] and climate change uncertainties [6].
However, there is a dearth of applications in epidemiol-
ogy, particularly in a spatial context. We have presented,
to our knowledge, the first published application of this
methodology to a spatial analysis of a disease of veteri-
nary or public health importance.

In the current study, we investigated the suitability of the
environment, defined by a number of key parameters, for
the occurrence of endemic and epidemic RVF. Environ-
mental suitability for the disease is only one possible con-
sideration when planning allocation of resources to
disease surveillance and control activities. Other factors
such as the proximity of testing laboratories or other
important infrastructure, the distribution of the popula-
tion at risk, the quality of roads and topography, amongst
a wide range of other possible factors, may also be impor-
tant in determining the cost-effectiveness of disease inter-
ventions and surveillance systems. An important area of
further research is investigating the applicability of deci-
sion sciences to spatially-explicit cost-effectiveness analy-
ses of different resource allocation strategies.

Finally, the question arises as to which of the approaches
is best for mapping RVF: WLC, OWA or DST. Each of the
approaches is based on different assumptions regarding
the epidemiology of RVF. Eastman [1] states that DST or
Bayesian modelling are more appropriate than fuzzy logic
where the evidence presented in the model criteria is indi-
rect. However, DST is more difficult to implement compu-
tationally and, while inference is enriched by presentation
of belief, plausibility and belief intervals, this approach
has not been widely adopted or tested in the field of spa-
tial epidemiology. A final decision as to which of the
approaches is best will depend on wider application of the
methodology and more epidemiological data being made
available to test the underlying assumptions of each
model.

Conclusion
The current study has demonstrated the potential of meth-
ods from the decision sciences, such as MCDM using WLC
and OWA, and DST, for enhancing the use of available
information in health-related decision making and
resource allocation. We believe this is one of the key ben-
efits of these methods: that existing published knowledge
as well as expert opinion, accrued over a long period of
time and by many individual workers, may be integrated
to address the issues of geographical uncertainty with
respect to different health problems in sub-optimal envi-
ronments where field data are not available or too expen-
sive to collect. The outputs from such analyses may be
particularly useful for development of control strategies,

as they can become available relatively quickly in emer-
gency situations and express suitability as well as its uncer-
tainty. We do, however, urge caution in the interpretation
of such maps as estimates may be affected by the necessar-
ily subjective nature of the approach, publication bias and
the personal perspectives of the experts from which
knowledge was obtained and the analyst who integrates
the information to produce the maps, and validation may
be difficult or impossible in the absence of supporting
data.

We stress that we do not see our mapping efforts as defin-
itive for the geographical distribution of RVF in Africa, but
as a valuable step towards the integration of epidemiolog-
ical knowledge in the context of spatially-defining
endemic and epidemic areas of the disease. Refinement of
the maps will continue to be an ongoing process as new
sources of information arise.

Methods
Multiple-criteria decision-making
MCDM involves a sequence of analytical steps. This
includes: 1) defining the objective(s), 2) defining the fac-
tors (continuous) and constraints (Boolean), 3) defining
the relationship between each factor and suitability, 4)
standardising the factors so they can be compared, 5)
defining the relative importance of each factor in relation
to suitability and 6) combining each of the factors and
constraints to produce a final weighted estimate of suita-
bility for each location in the study area. We identified
two additional steps as being important for determining
the credibility of the resultant maps: 7) sensitivity analysis
and 8) validation.

Defining the objectives
The overall analytical objective was to use available pub-
lished information to better describe the spatial distribu-
tion and associated uncertainties of Rift Valley fever at the
continental scale. Two specific objectives were identified:
1) to produce estimates of suitability for the presence of
endemic RVF activity and 2) to produce estimates of suit-
ability for the occurrence of epidemics of RVF, at all loca-
tions in mainland continental Africa. Here, we define an
epidemic as a large increase in the number of cases of RVF
in animals or animals and man (note: we do not distin-
guish between epizootics and epidemics), over a large but
defined geographical area and a short, defined period of
time. We do not consider small, localised outbreaks that
may occur in endemic areas, but focus on the massive,
devastating epidemics that have caused extensive morbid-
ity, mortality and economic losses in past decades. We
define endemic occurrence as stable transmission of RVF
as viewed from a large geographical scale, which could
occur at a low or a moderately high level, and which could
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possibly be characterised by small, localised epidemics,
but not large-scale epidemics as defined above.

Defining factors and constraints
In order to define the factors and constraints, the relation-
ship between the factors and suitability and the relative
importance of each factor, a systematic review of the pub-
lished scientific literature was conducted. A wide search
was conducted of three on-line databases: CAB abstracts
[15], PubMed [16] and ISI web of science [17]. A range of
Boolean search terms was used to extract relevant publica-
tions. One example was as follows: ("Rift Valley Fever" OR
RVF) AND (Spatial OR Geographic* OR Outbreak* OR
Epidemic* OR Epizootic* OR Endemic OR Enzootic OR
Survey*), where the asterisk "*" represents a root term.

In total, 65 publications with information relating to RVF
epidemics and endemic activity were obtained. An elec-
tronic database was created in Microsoft Access, for
recording information obtained from the selected publi-
cations. A list of all factors and constraints that were
referred to in the publications was created in the database
and queries were run to determine the number of publica-
tions that referred to each factor/constraint. The factors
were presented in the publications either as observations,
expressed opinions or statistical associations. In many
cases, observations on the epidemiology of RVF were
reported in multiple publications written by the same
author or groups of authors or they were made in relation
to the same epidemic or serological survey. To prevent
multiple inclusion of the same information, only a single
entry was made in the database for any observation relat-
ing to the same study or made by the same group of
authors.

In total, observations were recorded from 47 separate
studies/author groups, six studies from North Africa, 10
from East Africa, 10 from Southern Africa & Madagascar,
two from Central Africa, 14 from West Africa, two from
the Arabian Peninsula and three not specific to a region.
Of the 47 separate reports, 25 were epidemic investiga-
tions, 19 were serological surveys and three were vector
studies. The factors were categorised into those that influ-
enced the distribution of the vector, including rainfall,
other climatic factors, topographic and land-cover factors
and hydrological factors and those that were related to
host suitability, including livestock density, human fac-
tors and animal movement (Table 2). A list of the publi-
cations used is available from the corresponding author.

Obtaining geographical data
A search was conducted to obtain data, suitable for inclu-
sion in a geographical information system (GIS), for the
spatial factors and constraints identified in the literature
search. The following data were obtained: satellite-derived

mean land surface temperature (LST) for 1982–1998,
obtained from the National Oceanographic and Atmos-
pheric Administration's (NOAA) Advanced Very High
Radiometer (AVHRR), elevation, obtained from an inter-
polated digital elevation model from the Global Land
Information System (GLIS) of the United States Geologi-
cal Survey [18], annual rainfall, interpolated by Texas A
and M University [19], perennial and non-perennial
water-body locations, obtained from FAOGIS at the Food
and Agriculture Organisation, Rome, Italy and livestock
density, derived by the Environmental Research Group,
Oxford, UK.

The data were imported into the GIS software IDRISI 32
(Clark Labs, Worcester, MA). Surfaces for distance to the
nearest major river and distance to the nearest minor river
were created in IDRISI. All surfaces were raster-based, with
pixel dimensions of 0.05 square decimal degrees (0.05
decimal degrees equals approximately 6 km at the equa-
tor), covering an area extending from -17.55 to 51.4
degrees of longitude and -34.85 to 37.35 degrees of lati-
tude, corresponding to the geographical limits of the Afri-
can continent.

Defining shapes of the membership functions
The "decision wizard" in the "decision support" menu of
IDRISI was used to conduct the WLC analysis (See East-
man [1]). The only Boolean constraint imposed on the
suitability maps was livestock density of >0 heads/km2 for
epidemic suitability as no epidemics were considered pos-
sible where livestock were absent. This constraint was not
imposed on the endemic suitability map due to the possi-
bility of a sylvatic component in the endemic cycle.

The shapes of the fuzzy set membership functions for the
non-Boolean factors are presented in Table 3. For rainfall,
we input a symmetrical relationship with endemic suita-
bility but a monotonic decreasing relationship with epi-
demic suitability because, in terms of endemic suitability,
low rainfall was assumed to be non-conducive to mainte-
nance of stable vector populations and extremely high
rainfall was assumed to limit the presence of stable habi-
tats for the developmental stages of the vector population
(due to wash-out of ponds, etc.), with intermediate rain-
fall being optimal, whereas for epidemics, the higher var-
iability of rainfall in arid areas was assumed to be
conducive to the precipitation of epidemics and the more
consistent rainfall in high-rainfall areas was assumed to
be non-conducive.

For temperature, we input a symmetrical relationship
with endemic suitability because the vectors were
assumed to have an optimal temperature range, with vec-
tor survival being limited by low temperatures and vector
life-spans shortened by excessively high temperatures [9].
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Intermediate temperatures were assumed to be most con-
ducive to stable vector populations and endemic virus cir-
culation. In contrast, we input a monotonic increasing
relationship between temperature and epidemic suitabil-
ity as viral transmission has been shown to occur more
quickly and at a higher rate for higher temperatures [20]
and it was assumed that shortened vector life-span at high
temperatures would be offset by higher reproductive rates
(within the temperature ranges that occur in Africa).
Long-term vector survival was assumed not to be a major
constraint for epidemics because of the short time periods
over which epidemics occur (rapid expansion of the vec-
tor population over the short term is the typical pattern
with RVF epidemics).

For elevation, distance to major rivers and distance to
minor rivers, we input monotonically decreasing relation-
ships with endemic and epidemic suitability as higher ele-
vations and greater distances from water sources were
assumed to be non-conducive to either suitability type.
For livestock density, we input a monotonically increasing
relationship with endemic and epidemic suitability as
there would be greater opportunity for host/vector inter-
actions and virus transmission with higher livestock den-
sities.

Defining thresholds of the membership functions
Table 3 also contains information on the thresholds used
to define the membership functions, which represent the
values between which linear scaling was performed (out-
side these thresholds, suitability remained constantly
high or low).

Our temperature data was LST, which is usually higher
than air temperatures measured above the ground-surface
level. As published experimental data involved measure-
ments in temperature-controlled environments, the selec-
tion of thresholds based on published literature was not
straightforward. We elected to increase the published
thresholds by approximately 10 degrees and also widened
the optimal temperature range for endemic suitability to
allow for multiple vector species with varying temperature
requirements.

Unfortunately, no information was available to guide
selection of thresholds for the other factors, other than
vague observations (low-lying as opposed to elevated;
near to a river or lake as opposed to far; high rainfall as
opposed to low, etc.). For these variables, the thresholds
were necessarily defined according to subjective theoreti-
cal reasoning (e.g. minimum suitability was set at the dis-

Table 2: Numbers of publications that reported specific factors as influential for occurrence of Rift Valley fever.

Factor Number of reports Epidemic or endemic? Geographic data coverage available?

Climatic factors:
Higher rain than normal/floods 17 Epidemic Indirectly
Annual rainfall 10 Both Yes
Vegetation/NDVI 6 Both Yes
Length and timing of rain 4 Epidemic Indirectly
Temperature 3 Both Yes

Hydrological factors:
Proximity to lake/dam 6 Both Yes
Irrigation 6 Both No
Dambos/accumulated water 5 Epidemic Indirectly
Proximity to river 3 Both Yes

Topographic factors:
Land-cover type 4 Both Yes
Low-lying elevation 3 Both Yes
Ecological zone 3 Both Yes

Host and vector factors:
Human factors 10 Epidemic No
Vector abundance 7 Both No
Importing infected animals 6 Epidemic No
Moving livestock to endemic focus 4 Epidemic No
Breed and other livestock factors 4 Both No
Sheep present 2 Epidemic Indirectly
Livestock density 1 Both Yes
Natural hosts/small mammals 1 Both No

Data were obtained via a systematic review of the literature. The availability of geographical information system-compatible electronic data for each 
variable was determined by a wide source of potential sources, including the internet.
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tance from a hydrological features beyond which it was
assumed vectors associated with that feature would not
reasonably be found), or were set to encompass the whole
range of values for that variable, but excluding extreme
outliers (e.g. for livestock density, where suitability did
not increase above 1000 heads/km2).

The factors were standardised on a linear scale using the
relationships described in Table 3, where each pixel was
given a suitability score on a byte scale ranging from 0
(totally unsuitable) and 255 (totally suitable) according
to the value of the factor in that pixel.

Weighted linear combination
Estimates of the order of importance of each factor were
determined by the numbers of publications which
reported each factor as being a determinant of suitability
for endemic or epidemic RVF activity. Therefore, we gave
rainfall the highest weight for both objectives as it was the
most commonly reported factor. As no reports presented
odds ratios or other measures of relative importance, the
actual weights were then assigned somewhat subjectively
according to the relative frequency of reporting. The rela-
tive differences in weights derived using this approach
were subsequently reduced to account for suspected over-
reporting of factors that were well-known to be important
(particularly rainfall) and the original weights of temper-
ature and elevation were decreased to account for colline-
arity. The weights, which were normalised to have an
additive value of one, are presented in Table 4. The suita-
bility maps were then created in IDRISI using WLC.

Sensitivity analysis
Sensitivity analysis involved varying the structure and
weighting values of the MCDM model parameters and
measuring the average change in suitability scores at
10,000 randomly selected locations on the map. In terms
of structure, the relationships between rainfall and tem-
perature and suitability were input as monotonic increas-
ing in the endemic suitability map, in contrast to the
symmetrical relationships in the original model. In terms
of weights, the weight of each factor was increased and
decreased while the relative weights of the other factors
were kept constant, giving a total of twelve subsequent
weighted estimates for each location. In the absence of
any statistical basis for choosing the amount to increase or
decrease the weights, we decided to select 25% of the ini-
tial value, as it provided for a wide range of uncertainty
while ensuring that the underlying model structure was
maintained.

Validation
Validation of the endemic suitability map was undertaken
by comparing the suitability estimates to observed sero-
logical data in Senegal. The methods of serological data
collection are published in detail elsewhere [21]. Valida-
tion of the epidemic suitability map was undertaken by
visually comparing the suitability estimates to a map of
the locations of known RVF epidemics that occurred dur-
ing the 20th century, in addition to the observed serologi-
cal data in Senegal.

Table 4: Weights applied to key variables regarding suitability for endemic and epidemic Rift Valley fever.

Factor Weight: Endemic suitability Weight: Epidemic suitability

Rainfall 0.45 0.55
Land Surface Temperature 0.18 0.06
Elevation 0.08 0.13
Distance to major rivers 0.15 0.17
Distance to minor rivers 0.07 0.04
Livestock density 0.07 0.05

Ordering and allocation of weights was guided by the results of a systematic review of the published literature.

Table 3: Relationships between key variables and suitability for endemic and epidemic Rift Valley fever.

Endemic suitability Epidemic suitability

Factor Shape Maximum 
suitability

Minimum suitability Shape Maximum 
suitability

Minimum 
suitability

Rainfall Symmetrical 750–2000 mm <50 mm; >3000 mm Monotonic decreasing <10 mm >3000 mm
Land Surface Temperature Symmetrical 40 – 45°C <25°C; >50°C Monotonic increasing >40°C <25°C
Elevation Monotonic decreasing <10 m >2500 m Monotonic decreasing <10 m >2500 m
Distance to major rivers Monotonic decreasing <0.1 dec. degrees > 2.0 dec. degrees Monotonic decreasing <0.1 dec. degrees > 2.0 dec. degrees
Distance to minor rivers Monotonic decreasing 0.0 dec. degrees > 0.1 dec. degrees Monotonic decreasing 0.0 dec. degrees > 0.1 dec. degrees
Livestock density Monotonic increasing >1000 head/km2 <10 head/km2 Monotonic increasing >1000 head/km2 <10 head/km2

One decimal degree equals approximately 120 kilometres at the equator.
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Ordered weighted averages
We hypothesised that the biology of the vectors of RVF
may not support a fully compensatory model (e.g. low
temperatures may not be offset by high rainfall for
endemic suitability as the vector survival will be limited at
low temperatures regardless of rainfall). However, RVF
virus is known to exist in different ecological systems in
South Africa where it has different vector species [22].
Therefore, we also hypothesised that the wide range of
possible vector species, which may tolerate different envi-
ronmental conditions, favours a moderately non-com-
pensatory model over a fully non-compensatory model,
justifying the application of OWA. We chose the following
weights for the lowest to highest ranked factors for both
the endemic and epidemic suitability analysis: 0.29, 0.24,
0.19, 0.14, 0.09 and 0.05 to give a moderately non-com-
pensatory model. The OWA models were implemented in
IDRISI.

Dempster-Shafer analysis
Like Bayesian theory, DST represents knowledge and asso-
ciated uncertainty using probability distributions; in DST
definition of the distributions is termed basic probability
assignment (BPA). However, DST differs from the Baye-
sian approach in a number of key aspects: 1) in DST, prob-
abilities may be assigned to intervals of values (subsets)
that may be overlapping, whereas Bayesian probability
assignments can only be made to mutually exclusive point
values or non-overlapping intervals; 2) belief in a hypoth-
esis in DST is not necessarily the compliment of belief in
its negation and 3) ignorance is explicitly accommodated
in DST.

In this analysis we considered a single hypothesis with a
binary outcome: that a given pixel is suitable for RVF epi-
demics. Therefore, the "frame of discernement" (the DST
analogy of the "decision frame" in decision science termi-
nology) contained two elements: suitable (A) and not
suitable (B). In DST, BPA can relate to belief in A, which
is the actual support for A and plausibility of A, which rep-
resents the degree to which A cannot be disbelieved. The
difference between the belief estimate and the plausibility
estimate is the belief interval, which represents uncer-
tainty in the acceptance or rejection of A.

Eastman [1] states that BPAs are fuzzy measures and we
used the fuzzy sets defined in the WLC analysis, scaled to
have values ranging from zero to one, as the component
BPAs for belief and plausibility. In practice, the decision
regarding allocation of sources of evidence (the factors
identified in our literature search) to belief or plausibility
relates to the estimated strength of the evidence in support
of the hypothesis. We assumed that low (and therefore
unstable) rainfall and low elevation provided hard evi-
dence for RVF epidemic suitability and therefore com-

bined these elements in the belief estimation. In contrast,
we assumed that low temperatures, large distances from
major and minor rivers and low livestock density pro-
vided soft evidence for RVF epidemic suitability and com-
bined these elements in the plausibility estimation.

The fuzzy set membership functions were integrated using
Dempsters rule of combination, which states that the
probability assigned to A is the sum of the products of the
probability assignments of all subsets or values in the
component BPAs whose intersections correspond to A.
We implemented our DST analysis using the "belief"
module in IDRISI. For a detailed explanation of how DST
is implemented in IDRISI, see Eastman [1] and for an easy
to read interpretation of DST see Luo and Caselton [6].
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