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Abstract

Background: Our progress towards the goal of eliminating racial health disparities requires
methods for assessing the existence, magnitude, and statistical significance of health disparities. In
comparing disease rates, we must account for the unreliability of rates computed for small minority
populations and within sparsely populated areas. Furthermore, as the number of geographic units
under study increases, we also must account for multiple testing to assure we do not misclassify
disparities as present when they actually are not (false positive). To date and to our knowledge,
none of the methodologies in current use simultaneously address all of these important needs. And
few, if any studies have undertaken a systematic comparison of methods to identify those that are
statistically robust and reliable.

Results: We introduced six test statistics for quantifying absolute and relative differences between
cancer rates measured in distinct groups (i.e. race or ethnicity). These alternative measures were
illustrated using age-adjusted prostate and lung cancer mortality rates for white and black males in
688 counties of the Southeastern US (1970—-1994). Statistical performance, including power and
proportion of false positives, was investigated in simulation studies that mimic different scenarios
for the magnitude and frequency of disparities. Two test statistics, which are based on the
difference and ratio of rates, consistently outperformed the other measures. Corrections for
multiple testing actually increased misclassification compared with the unadjusted tests and are not
recommended. One-tailed tests allowed the researcher to consider a priori hypotheses beyond the
basic test that the two rates are different.

Conclusion: The assessment of significant racial disparities across geographic areas is an
important tool in guiding cancer control practices, and public health officials must consider the
problems of small population size and multiple comparison, and should conduct disparity analyses
using both absolute (difference, RD statistic) and relative (ratio, RR statistic) measures. Simple test
statistics to assess the significance of rate difference and rate ratio perform well, and their
unadjusted p-values provide a realistic assessment of the proportion of type | errors (i.e. disparities
wrongly declared significant).
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Background

One of the goals of Healthy People 2010 is to "eliminate
health disparities among segments of the population, including
differences that occur by gender, race or ethnicity, education or
income, disability, geographic location, or sexual orientation"
[1]. This initiative requires the measurement of health dis-
parities, the tracking of differences across various health
indicators and geographic areas, and the monitoring of
temporal trends. Keppel et al. wrote several methodologi-
cal reports whose guidelines provide a consistent frame-
work for describing the size and directions of health
disparities, facilitating the comparison of disparities over
time and across health indicators, geographic areas, and
populations [2,3]. They define a disparity as "The quantity
that separates a group from a specified reference point on a par-
ticular measure of health that is expressed in terms of a rate,
percentage, mean, or some other quantitative measure". This
reference point can be any one of the groups in the popu-
lation (usually the group with the better health status or
the lower risk is chosen), or it could be a standard such as
healthy People Target [1].

Cancer data are often aggregated within areas to prevent
disclosure of patient identity. These geographic units can
span a wide range of scales, such as census units [4],
school districts [5], counties [6], and even State Economic
Areas [7,8]. Analyses of health disparities in these aggre-
gated datasets can help public health practitioners gain an
improved understanding of the causes underlying
observed disparities in cancer incidence, mortality, and
morbidity, as well as a better assessment of the benefits of
current strategies for reducing these disparities.

For comparisons over time or across geographic areas,
populations, or indicators, disparities should be meas-
ured in both absolute and relative terms since they can
lead to contradictory conclusions when not considered
together [2]. To illustrate this effect, temporal trends in
cervix and prostate cancer mortality were explored using
directly age-adjusted cancer mortality rates from the Atlas
of Cancer Mortality in the United States [9]. The absolute
difference and ratio of rates for black and white popula-
tions were calculated for each of the 506 SEA units and
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five time periods available: 70-74, 75-79, 80-84, 85-89,
90-94. The population-weighted averages of these two
statistics are reported in Table 1. The analysis of rate dif-
ferences suggests a temporal decline in the magnitude of
disparities for cervix cancer, while the disparity widens for
prostate cancer. This interpretation however ignores the
fact that for both races prostate cancer mortality has
increased while the mortality has decreased for cervix can-
cer over the same period. Expressed in terms of relative
risks (i.e. ratio), the racial disparities appear to be fairly
stable for both cancers across the 25 year time period.

The analysis of health disparities is frequently hampered
by the presence of noise in the rates, which is caused by
unreliable extreme values estimated from small popula-
tions. This effect, known as the "small number problem"
[10], is particularly pronounced for minority populations
as the analysis proceeds to finer scales, such as neighbor-
hood level commonly used in contextual analysis.
Because the observed rates are uncertain, the value of any
disparity statistic must also be supplemented by a stand-
ard error, allowing the statistical testing of whether the
disparity is significant or not [2,3,8]. Standard errors for
the disparity statistics are typically computed from the
standard errors of rates either through analytical expres-
sions or bootstrap procedures. Keppel et al's report gives
an example where these standard errors are calculated
using SUDANN [11], a statistical package that adjusts for
the effects of the complex design of the National Health
Survey. A straightforward alternative, which is imple-
mented in the present paper, is to adopt a Binomial or
Poisson distributional model and compute the standard
error from the size of the population at risk. For example,
the magnitude of differences between sub-population
rates can be quantified, and its significance tested, using
the large-sample test procedure for equality of two popu-
lation proportions, also known as t-test [12]. A third
option is to capitalize on the spatial correlation between
rates measured in neighboring areas to obtain better esti-
mates on the underlying mortality risks and compute the
associated standard errors. This spatial analysis can be
conducted using a model-based approach, such as Pois-

Table I: Population-weighted means of absolute and relative disparity measures computed over 506 State Economic Areas.
Calculations are based on age-adjusted mortality rates for black males (BM), white males (WM), black females (BF) and white females

(BF).
Disparity measures 1970-1974 1975-1979 1980-1984 1985-1989 1990-1994
Prostate
|BM-WM| 23.49 26.66 27.56 28.47 32.22
BM/WM 2.03 2.14 2.16 2.13 222
Cervix
|BF-WF| 8.769 6.816 5.065 5212 4.074
BF/WF 2.66 2.75 2.50 2.94 242
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son kriging [13,14] or the complex suite of methods
developed within the Bayesian framework [15,16].

Another issue related to the analysis of health disparities
over small geographic areas is the multiple testing (or
multiple comparison) problem caused by the repeated
use of statistical tests. As the number of tested areas
increases, it becomes increasingly likely that some tests
will turn out significant by chance alone (even if the null
hypothesis of rate equality is true in all cases). For exam-
ple, the independent testing of 10 counties under a signif-
icance level of 0.05 will lead to a 0.4 probability that at
least one test is significant even if none of the 10 counties
actually exhibits rate disparity. There are a myriad of
approaches to control the rate of these false positives or
type I errors. Many of those methods were recently
reviewed by Castro and Singer [17] who distinguish two
main categories: the experiment-wise or family-wise error
rate (FWER) approach (e.g. Bonferroni) and the false dis-
covery rate (FDR) approach. These methods were imple-
mented within the framework of detection of local
clusters of high or low values. A small simulation study
showed a significant gain in identification of meaningful
clusters when using the FDR approach, while FWER tests
are too conservative, leading to a large proportion of real
clusters being missed. However, the efficiency of these
approaches for testing significant disparities across geo-
graphic areas has yet to be studied.

Several tests for comparing rates of disease and other
health outcomes in specific populations have been devel-
oped [2,3], but their application in a spatial context is
rare. Critical issues, such as the uncertainty arising from
the small size of minority populations or the inflated false
discovery rate caused by multiple testing, have not been
studied. In general, there is an almost complete lack of
comparative evaluations of methods for detecting health
disparities, despite the burgeoning analyses in the health
science literature [18-21] devoted to the detection of racial
disparities. In this study, six test statistics for quantifying
absolute and relative differences between disease rates
measured in distinct groups (e.g. race or ethnicity) are
compared, in combination with four common procedures
to correct for multiple testing. Formal statistical power
evaluation and proportion of false positives have been
carried out using simulation studies that mimic different
scenarios for the magnitude and frequency of disparities.
In order to generate realistic scenarios, simulations were
based on actual geographies, population sizes and cancer
mortality rates. Two cancers with a high (i.e. prostate) and
low (i.e. lung) level of disparity were chosen and the anal-
ysis focused on age-adjusted cancer mortality rates
recorded for white and black males in 688 counties of the
Southeastern US (1970-1994).
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Methods

Cancer data sets

Our simulations used directly age-adjusted mortality rates
for two cancers with different levels of racial disparity and
mortality: lung (low disparity, higher mortality) and pros-
tate (high disparity, lower mortality). Because of the small
numbers problem, lower mortality rates are expected to
be less reliable estimates of the underlying risk. These data
are part of the Atlas of Cancer Mortality in the United
States [9]. The analysis was conducted at the county-level,
which corresponds to the smallest geography available in
the Atlas, and for the only period (1970-1994) where
rates for both white (WM) and black males (BM) are
reported. The rates were adjusted using the 1970 popula-
tion pyramid. To reduce the frequency of missing values,
the analysis was restricted to 688 counties of the South-
eastern US which has the largest minority population.

Figure 1 shows the spatial distribution of mortality rates
for both cancers and races. The use of the same color scale
for WM and BM rates emphasizes the large magnitude of
the disparity for prostate cancer mortality: the population-
weighted average is 21.7 per 100,000 person-years for
white males and 47.9 per 100,000 person-years for black
males. For lung cancer mortality the population-weighted
average is 82.7 per 100,000 person-years for white males
and 87.3 per 100,000 person-years for black males. For
both races, the population at risk was computed as:
100,000 x the total number of deaths from all cancers
over the 1970-1994 period divided by the age-adjusted

Prostate cancer (BM)

e
& .;fm:
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Figure |

Maps of age-adjusted prostate and lung cancer mor-
tality rates in 688 counties of the Southeastern US.
The fill color in each county represents the age-adjusted
mortality rates per 100,000 person-years recorded over the
period 1970—1994. To highlight racial disparities, the same
color scale is used for both white males (WM) and black
males (BM). Hatched areas correspond to missing data (zero
death count).
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cancer mortality rate; both datasets are available on the
NCI website.

Simulated data sets

An objective assessment of the performance of the differ-
ent test statistics requires knowledge of the "true" under-
lying risk maps, which are unknown in practice.
Simulation provides a way to generate, for both races,
multiple realizations of spatial distributions of cancer
mortality rates whose modeled risks are known, and can
then be tested for significant disparities using alternative
approaches. Results from the different methods can then
be interpreted and compared in an experimental setting
(the simulations) in which the true magnitude of differ-
ences between risk values is known.

For both cancers, the simulation proceeded as follows:

(1) A reference risk map for white males (WM) was gener-
ated by a local Bayes smoothing [22] of observed WM
mortality rates.

(2) The WM risk map was modified to create a risk map
for black males (BM), according to a given scenario for fre-
quency and magnitude of disparities (see below).

(3) For each county and each frequency/magnitude sce-
nario, 50 pairs of WM and BM rates were simulated by
random sampling of a Poisson distribution characterized
by the county population size and the WM and BM risk
values from Steps 1 and 2.

(4) The six disparity statistics were computed for each sim-
ulated pair of WM and BM mortality rates, and three dif-
ferent procedures were applied to account for multiple
testing (see below).

(5) For each combination of test statistics and multiple
testing procedures, performance criteria (e.g. proportions
of false negatives and false positives, power of test) were
computed by comparing test results with actual risk val-
ues.

Four scenarios for the frequency of disparities were con-
sidered: 0, 10, 20 and 30% of counties display disparities.
These percentages were achieved through a random sam-
pling of the total set of 688 counties. To attenuate the
impact of sampling fluctuations, 20 random subsets of
the same size were created for each scenario. Once a
county has been selected as having disparities, the BM risk
value was generated by multiplying the corresponding
WM risk by a factor ranging from 1.1 to 2.6. In other
words, the mortality risk for black males was modelled as
10 to 160% larger than the risk for white males. The mul-
tiplication factor was selected by random sampling of four
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triangular distributions displayed in Figure 2 and corre-
sponding to four scenarios for the magnitude of dispari-
ties. These distributions were constructed using a median
value of 1.225, 1.35, 1.475 and 1.60, respectively, and a
maximum equal to the median+2(median-minimum).

Notation

For a given number N of geographic units v; (e.g. coun-
ties), denote the observed mortality rates for two non-
overlapping categories of individuals (e.g. races, genders)
as z;(v;) and z,(v;). Each rate is computed as the ratio d(v;)/
n(v;), where d(v;) is the number of recorded mortality
cases and n(v;) is the size of the population at risk. The dis-
ease count d(v;) can be interpreted as a realization of a
random variable D(v;) that follows a Binomial distribu-
tion with mean n(v)R(v;) and variance n(v)R(v;)(1 -
R(v;)), where R(v;) is the mortality risk prevailing over v;.
From the normal approximation to the binomial, one can
derive for large samples that the rate z(v;) is normally dis-
tributed asymptotically with mean R(v;) and variance

R()(1 - R(1y)).

Without loss of generality, z, and R,will denote the cate-
gory that is likely to experience the largest population-
weighted mean rate (e.g. black males for prostate and lung
cancers). The disparity between the two risks R;(v;) and
R,(v;) can be measured either as a difference [R; (v;)-R,(v;)]
or a ratio R, (v;)/R,(v;). Following Lachin [23], these two
quantities will be referred to as risk difference (RD) and

relative risk (RR).

.o_Magnitude of disparities
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Figure 2

Four triangular probability distributions used to gen-
erate classes of magnitude of disparities in simulation
studies. The values sampled randomly from those distribu-
tions are multiplied by the white male (WM) risk values to
generate larger risk values for black males (BM) in a random
subset of counties.
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Two-tailed tests for risk difference
The null and alternative hypotheses for testing the equal-
ity of risks for two ethnic groups are:

Hy: Rl(”j) = Rz(vj)
Hyo: Ry (1) # Ry(v)
which can be rewritten in terms of risk differences as:
Hy: [RD(v)| =0
Halt: |RD(U]»)| #0
This test is two-tailed in that a difference is declared signif-
icant either if R, (v;) is sufficiently greater than R,(v;) or if
R,(vy) is sufficiently less than R,(v;). In other words, the
sign of the difference does not matter and the test is con-
ducted on the absolute value of the RD statistic. Following
Fleiss [24] and Lachim [23] the following four test statis-

tics, which all follow a standard normal distribution N(0,
1), are available:

|21 (v)) - 22(v))|

_ _ 1 1
““_“ﬂmwn+@wﬂ}

where z ; is the population-weighted average of rates:

Dispy (v;) = \/

z = ny(vj)z (vy) +na(vj)za(vj)
! ny(v;)+ny(v;)
The second statistic is more general in that there is no

restriction on the values of the two rates, i.e. they are not
averaged in order to compute the denominator:

Dispr (0] EXOEEAD)]
Y JZNwXI—QOqD+ZAwJU—ZAwD

"1('/]') nz(vj)

The last two statistics are obtained by subtracting from the
numerator the following Yates' correction for continuity:

1 1
c(vj)=0.5 +
m(vj) ny(v))
This correction accounts for the fact that a continuous dis-
tribution (i.e. normal) is used to represent the discrete dis-
tribution of sample frequencies. The corrected statistics
are expressed as follows:
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|21 (v) = 2 (v))| - c(v))

Dispyy(v;) = \/

_ _ 1 1
““‘“{m@ﬂ+@waJ

|21(v)) ~ 22(v))| - e(v))
a)-a0) | &0)0-50))
m (vj) ny(v))

Dispyy (v;) = \/

Two-tailed tests for risk ratio

The null and alternative hypotheses for testing the relative
equality of risks for two ethnic groups are expressed in
terms of ratios as:

Hy: Ry (v))/R,y(v)) = RR(v)) = 1
Hye: [Ry(v)/Ry(v))] = RR(v)) = 1

For the risk ratios, the domain is not symmetric about the
null value. Thus, the large sample distributions are better
approximated using the log transformation. As for the risk
difference, depending on the restrictions imposed on the
values of the two rates, two types of statistics can be

defined:
log z(v})
. z5(vj)
Dispy (v}) = —
(1-z))| 1 L1
zi | m(vj) mp(vy)
z1(v})
og| ——=
Dispyy(v;) = 220)
P T m) |, (-50)
n1(Vj)Z1(Uj) nz(Uj)Zz(Vj)

where z; is the population-weighted average of rates

defined earlier. Both test statistics follow a standard nor-
mal distribution.

One-tailed tests

In some situations such as prostate cancer mortality, the
disparity between rates is so large and systematic that two-
tailed tests are not highly informative: they simply con-
firm that the rates for black and white males are signifi-
cantly different over most of the counties. A more
interesting hypothesis, such as the exceedence of a partic-
ular disparity threshold A, can be tested using the follow-
ing one-tailed test:
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Hy: RD(v) = Ay
Hy 0 RD(v)) > A

For example, setting A, = 10 would lead to the identifica-
tion of counties where the BM mortality rate exceeds WM
rate by an amount that is significantly greater than 10
deaths/100,000 habitants. The statistics introduced for
the two-tailed tests can be easily adapted to the new type
of assumption; e.g. for the first two statistics:

e (o) (m1(v))—22(v))) - Ao
ispi(v)) = G+ 8015 +0))_ 5(1-%)
nl(’/j) nz(vj)

DlSp (y.): (Zl(vj)_ZZ(vj))_AO
N J 500=50) 200 20)

ny(v;) ny(v;)

Note that even when A, = 0 one-tailed and two-tailed tests
might not lead to the same conclusion for the same signif-
icance level a. One-tailed tests are more powerful than
two-tailed tests since it is easier to reject the null hypothe-
sis of equality of rates when the rates differ in the direction
specified by the alternative hypothesis. The trade-off cost
is that the investigator needs to formulate a priori assump-
tions regarding the direction (i.e. sign) of the difference
between rates. However, the scientific importance of
detecting a difference in the unexpected direction (e.g.
prostate cancer mortality larger for white males than black
males) may exceed yet another confirmation of the differ-
ence being in the expected direction [24].

Using a similar reasoning, one-tailed tests can be formu-
lated for the ratio of risks:

Ho: RR(v) = (1 +A4)

H,.: RR(vj) > (1+A4)
where the disparity threshold A, is now expressed as a pro-
portion; e.g. 0.2 to test whether the BM mortality rate is
significantly greater than 120% of the WM rate. The statis-

tics introduced for the two-tailed tests can be easily
adapted to the new type of assumption; e.g.:

log[ a() }— log(1+Ag)

Zz(Uj)
(I—Z]-x(1+AO ) (1-%)

nl(l/j)z]‘X(l‘i‘Ao) le(Uj)Zj

DispV (U] ) = \/
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z1(v;
log al;) —log(1+Ag)

2y (vj)
(1-z(v)) | (=2(;)
”1(”;‘)21(1/]') ”z(Uj)Zz(Vj)
Once again, if A; = 0 the one-tailed and two-tailed test sta-
tistics are the same, but since the significance level o is

assigned to a single direction in the one-tailed test it will
be more powerful than the corresponding two-tailed test.

DISPVI (U] ) = \/

Multiple testing corrections

Regardless of the type of hypothesis under consideration,
once the test statistic Disp(v;) has been computed, its sig-
nificance must be evaluated. This step typically requires
computing the probability of obtaining a result as extreme
as the test statistic by chance alone, under the null hypoth-
esis of equality of rates. This probability, called the p-value
of the test, is obtained by comparing the test statistic to its
expected distribution under the null hypothesis, which is
a standard normal distribution for all of the tests consid-
ered. One thus rejects the null hypothesis if the p-value
exceeds the significance level a which is typically set to
0.05 (significant difference) or 0.01 (highly significant
difference). In other words, one rejects the null hypothesis
if it appears very unlikely (i.e. 0.05 or 0.01 probability)
that such a difference between rates could be observed if
the two underlying risks were, in fact, equal. Using the
notation P, for the p-value of the j-th test, the decision rule
can be expressed as:

Reject Hy for unit v;if P;< o

The significance level o of a test represents the probability
of incorrectly rejecting the null hypothesis, that is declar-
ing two risks significantly different when they are, in fact,
not different. This wrong decision is known as a "false
positive" or a "type I error". In the present application, the
test will be repeated for each geographic area under study
(e.g. county). As the number of tested areas increases, it
becomes increasingly likely that some tests will turn out
significant by chance alone (even if the null hypothesis of
rate equality is true in all cases). For example, the inde-
pendent testing of n counties under a significance level of
o will lead to a (1-(1-a)”) probability that at least one test
is significant even if none of the n counties actually has a
rate disparity. This probability is the "experiment-wise" or
"family-wise" error rate (FWER) and will increase as the
number of tests increases. For n = 10 counties and o = 0.05
the probability that a type I error does occur among all 10
hypotheses tested is 0.40, which is much larger than the
probability of 0.05 for each test separately that is known
as the "comparison-wise" error rate.
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Multiple testing corrections reduce the significance level
applied to each test so that the overall false positive rate is
kept to less than or equal to the user-specified significance
level a.. Methods to correct for multiple testing differ in
their ease of implementation and their stringency. The
more stringent or conservative a correction, the fewer false
positives are allowed but at the expense of a potential high
rate of false negatives (i.e. racial disparities go undetec-
ted). The most stringent method is the straightforward
Bonferroni correction whereby the significance level is
simply divided by the total number N of tests, leading to
the following decision rule:

Reject H for unit v;if P; < a0 = /N

In the context of geographical analyses, where hundreds
or thousands of tests can be carried out, this correction
quickly becomes excessive and can lead to many missed
meaningful findings (false negatives) [17]. For our exam-
ple with N = 688 counties tested, the Bonferroni correc-
tion results in a significance level o= 0.000073 = 0.05/
688 to detect any significant difference between rates.
Sidak [25] proposed a similar correction that proved to be
more powerful when the test statistics are independent,
which is the case here since each geographic unit is tested
independently of the others. The adjusted significance
level a4, is computed as 1-(1-a)'/N, leading for the ear-
lier example to a corrected level of 0.000075 = 1-(1-
0.05)1/688, Sidak's correction thus appears to be as con-
servative as the Bonferroni correction and so was not
investigated further in this paper.

Holm [26] proposed an 'improved Bonferroni procedure'
that is less stringent and starts with a ranking of all p-val-
ues from the smallest P;) to the largest P(y). The magni-
tude of the a-adjustment then decreases as the rank k of
the p-value increases, i.e. the division factor is (N-k+1).
Holm's procedure rejects the null hypothesis of equality
of rates for the j-th unit if its p-value and each of the p-val-
ues of lower rank are less than the adjusted significance
level:

Reject H, for unit v; (P - rank = k) if P;) < o/ (N - i+1) Vi =

Jeser

Similar stepwise procedures were developed afterwards,
such as Simes' procedure [27] or the 'extended Simes pro-
cedure' [28].

All the methods introduced so far belong to the category
of family-wise approaches that tend to produce conserva-
tive results. Recently, a set of procedures based on a new
criterion called the false discovery rate (FDR) was devel-
oped. Instead of controlling the chance of any false posi-
tive, one aims to control the expected proportion of true
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null hypotheses rejected out of the total number of rejec-
tions. FDR approaches are thus less restrictive and more
powerful than FWER approaches. Benjamini and Hoch-
berg [29] proposed a stepwise FDR procedure for inde-
pendent tests. Like the 'improved Bonferroni procedure’,
the first step is to rank all p-values by ascending order and
apply a correction that decreases as the rank k of the p-
value increases, i.e. the division factor is k/N. The decision
rule is however sequential and involves checking that the
p-value of rank k does not exceed the adjusted significance
level, starting with the larger p-value (k = N). Once this
condition has been met for a given rank k', the adjusted
significance level apy is set to k' /N and applied to all
tests of hypothesis. The decision rule can then be formu-
lated as:

Find the largest k' = N, N-1,...,1 such that Py < k'a/N
Then Reject Hy, for all units v; with P;< Py,

Results and discussion

Simulated data sets

For each set of simulated rates, the six types of disparity
statistic and the corresponding p-values were computed
for both one-tailed (A, = 0) and two-tailed tests. Differ-
ences between WM and BM rates were then declared sig-
nificant if the p-value did not exceed a given significance
level a.. Two types of errors could occur: misclassification
of a county with same underlying WM and BM mortality
risk as displaying significant racial disparities (type I error
or false positive) and misclassification of a county with
actual risk disparities (called target county hereafter) as
non-significant (type II error or false negative).

Results were first assessed using the Receiver Operating
Characteristic (ROC) curves since they do not require the
choice of a particular significance level o and thus are
insensitive to the multiple testing corrections. ROC curves
plot the probability of false positive versus the probability
of detection [30]. The probability of detection corre-
sponds here to the proportion of target counties that are
detected with disparities as the significance level increases.
In practice, the significance levels are identified with the p-
values of the target counties. For each of them the proba-
bility of false positive is computed as the proportion of
non-target counties that are wrongly declared significant.
Figure 3 shows the ROC curves obtained for each cancer
and six types of disparity statistics (two-tailed tests).
Results are plotted for the low and high disparity magni-
tude classes and the 10% frequency class, and are averaged
over all 1,000 realizations (20 simulations of frequency
class x 50 simulations of rate values for each scenario).

The most efficient statistic is the one that allows the detec-
tion of a larger fraction of target counties at the expense of
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Figure 3

Receiver Operating Characteristic (ROC) curves for
the six disparity statistics. ROC curves plot the probabil-
ity of false positive versus the probability of detection. These
curves were obtained under two different scenarios for the
magnitude of disparities (low = magnitude |, high = magni-
tude 4) and a 10% frequency (i.e. 10% of counties have signif-
icant disparities). The average proportion of false positives
(FP) is listed for each type of disparity statistics (two-tailed
tests).

fewer false positives; that is the ROC curve should be as
close as possible to the vertical axis. A quantitative meas-
ure of the detection efficiency is the relative area above the
ROC curve, which represents the average proportion of
false positives (FP). The smaller this value, the better the
disparity statistic. As expected, the proportion of false pos-
itives tends to increase when the disparities are of small
magnitude (top graphs) and the mortality rates are less
reliable because of the small number problem (prostate

http://www.ij-healthgeographics.com/content/6/1/32

cancer). In all cases, the best results are obtained for the
statistics Disp; (RD type) and Dispy, (RR type), with Dispy
being a close third for prostate cancer. In other words, the
use of the population-weighted average of rates z j instead
of individual ethnic rates works best for the rate differ-
ence, while the opposite result is found for the relative risk
statistic. This ranking is confirmed in Table 2 that lists
results obtained for all four classes of disparity magnitude
(FP values are averaged over all three frequency classes
since it does not affect the results). In addition to the pro-
portions of false positives averaged over all 1,000 simula-
tions, the percentage of simulations where the particular
statistic yields the best results is also reported. According
to this new criterion, the risk ratio statistic (Dispy;) out-

performs the other statistics in the most critical scenario,
i.e. disparities of smaller magnitude and less reliable rates.
The benefit of this statistic is even more pronounced for

the one-tailed tests (A, = 0), with a percentage of best

results of 68-87% for prostate and 63-67% for lung
(Table not shown). For one-tailed tests with non-zero

thresholds Aj, RD and RR type statistics can not be com-
pared since they correspond to different null hypotheses.

Another important performance criterion is the power of
the test, which measures the probability of rejecting the
null hypothesis when it is not true (i.e. probability of
detecting significant disparities). This probability is
expected to be a function of the magnitude of the dispari-
ties, and this relationship can be displayed using the so-
called power curve. Figure 4 shows the power curves
obtained for each cancer and six types of disparity statis-
tics (two-tailed tests with no correction for multiple test-
ing). Results are plotted for a significance level a = 0.05
and the disparity magnitude is expressed in terms of risk
ratio. Rates simulated under all scenarios for frequency
and magnitude classes are combined. As expected, it is

Table 2: Average proportion of false positives committed when detecting a significant disparity (two-tailed tests). Calculations are
conducted for the six test statistics and four classes of increasing magnitude for the disparity. Numbers into parentheses give the
percentage of simulations where the particular statistic yields the smallest proportion of false positives.

Disp, Disp,, Dispy, Disp,y Dispy Dispy,

Prostate

Magnitude | 0.384 (21%) 0.408 (1%) 0.385 (32%) 0.405 (1%) 0.407 (0%) 0.382 (45%)
Magnitude 2 0.297 (28%) 0.330 (0%) 0.301 (25%) 0.327 (0%) 0.329 (0%) 0.297 (47%)
Magnitude 3 0.234 (33%) 0.272 (0%) 0.239 (22%) 0.269 (0%) 0.269 (0%) 0.234 (45%)
Magnitude 4 0.186 (40%) 0.225 (0%) 0.191 (19%) 0.222 (0%) 0.222 (0%) 0.186 (41%)
Lung

Magnitude | 0.256 (48%) 0.277 (0%) 0.263 (6%) 0.279 (0%) 0.276 (0%) 0.257 (46%)
Magnitude 2 0.159 (55%) 0.182 (0%) 0.167 (4%) 0.185 (0%) 0.181 (0%) 0.160 (41%)
Magnitude 3 0.111 (57%) 0.135 (0%) 0.119 (4%) 0.137 (0%) 0.133 (0%) 0.113 (39%)
Magnitude 4 0.081 (56%) 0.105 (0%) 0.088 (4%) 0.106 (0%) 0.102 (0%) 0.083 (40%)
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easier to detect disparities of higher magnitude (i.e. higher
power); the increase in power is steeper for the more reli-
able lung cancer mortality rates. For a cancer more likely
to be affected by the small number problem, such as pros-
tate cancer mortality, the most powerful tests are system-
atically the ones based on the statistics Disp, (RD type)
and Dispy; (RR type), which confirms the results obtained
for the ROC curves.

Power curves were created for a couple of significance lev-
els and using three methods for multiple testing correc-
tion: Bonferroni, Holm, and false discovery rate (FDR).
Results were averaged over all magnitude classes and the
resulting average power is listed in Table 3. Clearly, the
Bonferroni and Holm corrections are too conservative and
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Figure 4

Power curves for the six disparity statistics. Each
power curve measures the probability of detecting significant
disparities as a function of the magnitude of the disparities
expressed in terms of risk ratio. The results were obtained
over all frequency and magnitude scenarios and using a signif-
icance level a = 0.05.
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substantially decrease the power of the test: only a small
fraction of target counties are declared significant. The
power increases for the less restrictive FDR approach, yet
it remains smaller than the power of the uncorrected tests.
No matter the type of correction, tests based on the statis-
tics Disp; (RD type) and Disp,, remain the most powerful.
A similar ranking is obtained for the one-tailed tests (A, =
0) which tend to be more powerful than the two-tailed
tests however. One-tailed tests based on RD or RR-type
test statistics cannot be compared for non-zero thresholds
A, since they correspond to different null hypotheses.
Nevertheless, tests based on the statistic Disp, are the most
powerful among RD types, while Dispy, leads to the most
powerful test among RR types.

For all methods, the power of the test increases for larger
significance levels a since it becomes easier to reject the
null hypothesis; see Table 3. The trade-off cost is the
increase in false positives which is acceptable as long as
that proportion of false positives is close to the signifi-
cance level a. The proportion of false positives was com-
puted for the same scenarios considered for the power
evaluation in Table 3. Table 4 indicates that for both a lev-
els the best agreement is found for uncorrected tests using
the statistic Disp; (RD type), with the risk ratio statistic
Dispy; being a close second. Multiple testing correction
strongly reduces the risk of false positives, yet at the
expense of a lower power as demonstrated in Table 3.

Cancer data sets

County-level disparities in the cancer mortality maps of
Figure 1 were investigated using the different types of dis-
parity statistics and multiple testing corrections. Table 5
reports the number of counties where disparities tested
significant for the statistics Disp,; (RD type) and Dispy, (RR
type) which performed best in the simulation studies.
These results illustrate the much wider extent of racial dis-
parities for prostate cancer versus lung cancer: 4 to 15
times more counties tested significant for prostate cancer.
For all scenarios, the risk ratio statistic (Dispy,) leads to
slightly fewer significant counties which form a subset of
the counties flagged using the risk difference statistic
(Dispy). As expected, multiple testing correction reduces
the proportion of significant tests. This reduction is partic-
ularly large when disparities are of smaller magnitude (i.e.
lung cancer) and so the p-values of the tests are larger.
Conversely, the unadjusted test and the False Discovery
Rate approach lead to very similar results for prostate can-
cer where the average mortality rate for black males is
twice the rate for white males.

Counties detected at the significance level o = 0.01 (unad-
justed tests) are displayed in two colors in the maps of Fig-
ure 5. Red is used to depict counties where BM mortality
rates exceed WM rates, information that is lost in two-
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Table 3: Average power of two-tailed tests for two significance levels (unadjusted and corrected for multiple testing). Results for the
six test statistics and two significance levels are averaged over all classes of disparity magnitude. Significance levels are either
unadjusted or reduced using the Bonferroni correction, the Holm's procedure or the False Discovery Rate (FDR) approach.

Test o =0.05 a=0.10
statistic

Unadj. Bonf. Holm FDR Unadj. Bonf. Holm FDR
Prostate
Disp, 0.371 0.091 0.091 0.175 0.450 0.103 0.103 0.215
Disp,, 0.328 0.067 0.068 0.153 0416 0.077 0.077 0.194
Dispy, 0.333 0.083 0.083 0.154 0.404 0.094 0.094 0.186
Dispyy 0.289 0.058 0.059 0.122 0.367 0.067 0.067 0.154
Dispy 0.329 0.066 0.067 0.151 0417 0.076 0.077 0.192
Dispy, 0.363 0.083 0.084 0.163 0.443 0.095 0.095 0.201
Lung
Disp, 0.386 0.076 0.076 0.157 0.474 0.087 0.088 0.203
Disp,, 0.353 0.068 0.068 0.143 0.446 0.077 0.077 0.184
Dispy, 0.362 0.072 0.073 0.144 0.445 0.083 0.083 0.185
Dispy 0.328 0.060 0.060 0.122 0416 0.068 0.069 0.159
Dispy 0.354 0.066 0.067 0.143 0.446 0.076 0.076 0.185
Dispy, 0.383 0.074 0.074 0.153 0471 0.085 0.085 0.198

tailed tests. For lung cancer, one of the four counties that
test significant for the risk difference but not the risk ratio
is Winston County in Alabama; see Figure 5 (star in left
bottom map). The mortality rate is 69.9 per 100,000 per-
son-years for white males and 376.7 per 100,000 person-
years for black males. The very high BM rate is likely unre-
liable given the small size of the population at risk: 616
versus 268,837 for white males. In this case, the risk ratio
statistic (Dispy;) assigns more importance to the lack of
reliability of the extreme rate than the extent of the differ-
ence between rates.

Even at the very low significance level o = 0.01, more than
half the counties tested significant for disparities in pros-
tate cancer mortality. The difference between rates is thus
so large and systematic that two-tailed tests are not highly
informative. One-tailed tests were used to identify subsets
of counties where the BM mortality rates exceed WM rates
by an amount that is significantly greater than a given
threshold A,. Three absolute thresholds were used for
one-tailed tests based on the risk difference statistic
(Dispy): 10, 20 and 30 deaths/100,000 habitants. For the
risk ratio statistic Dispy;, relative thresholds of similar

Table 4: Average proportion of false positives for two-tailed tests (unadjusted and corrected for multiple testing). Results for the six
test statistics and two significance levels are averaged over all classes of disparity magnitude. Significance levels are either unadjusted
or reduced using the Bonferroni correction, the Holm's procedure or the False Discovery Rate (FDR) approach.

Test o =0.05 a=0.10
statistic

Unadj. Bonf. Holm FDR Unadj. Bonf. Holm FDR
Prostate
Disp, 0.048 0.0 0.0 0.002 0.096 0.001 0.001 0.005
Disp,, 0.093 0.025 0.025 0.039 0.139 0.027 0.027 0.047
Dispy, 0.032 0.0 0.0 0.001 0.065 0.0 0.0 0.002
Dispy 0.063 0.012 0.012 0.020 0.098 0.013 0.013 0.024
Dispy 0.091 0.016 0.016 0.031 0.139 0.018 0.018 0.039
Dispy, 0.042 0.0 0.0 0.001 0.087 0.0 0.0 0.003
Lung
Disp, 0.049 0.0 0.0 0.004 0.098 0.0 0.0 0.009
Disp,, 0.068 0.016 0.016 0.022 0.115 0.016 0.016 0.028
Dispy, 0.039 0.0 0.0 0.003 0.079 0.0 0.0 0.006
Disp,y 0.054 0.009 0.009 0014 0.095 0.009 0.009 0.018
Dispy 0.068 0.012 0.012 0.021 0.116 0.013 0.013 0.027
Dispy, 0.047 0.0 0.0 0.003 0.095 0.0 0.0 0.008
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Table 5: Number of counties where the difference between cancer mortality rates is declared significant (two-tailed test). Results are
reported for the two test statistics that performed best in simulation studies. Significance levels are either unadjusted or reduced
using the Bonferroni correction, the Holm's procedure or the False Discovery Rate (FDR) approach. Agreement refers to the number

of counties declared significant by both tests.

Test a=0.01 o =0.05
statistic

Unadj. Bonf. Holm FDR Unadj. Bonf. Holm FDR
Prostate
Disp, 385 176 184 362 462 213 222 430
Dispy, 372 167 170 350 452 200 209 422
Agreement 372 167 170 350 452 200 209 422
Lung
Disp, 70 13 13 26 136 19 19 48
Dispy, 66 13 13 25 134 19 19 48
Agreement 66 13 13 25 134 19 19 48

magnitude (recall that the population weighted mean for
WM rates is 21.7 per 100,000 person-years) were chosen
as: 0.5, 1 and 1.5. In other words, one tested the following
null hypotheses: the BM rate is 50%, 100% or 150%
greater than the WM rate recorded in the same county.
Results displayed in Figure 6 allow a finer analysis of the
spatial distribution of racial disparities. In particular they
reveal a few counties in North Carolina and Tennessee
where the disparities are the largest. For both the 30 death
and 150% thresholds, the largest test statistic was found
for Alamance County (North Carolina): the WM mortality
rate is 21.35 per 100,000 person-years and the BM rate is

Prostate cancer (RR statistic)

Figure 5

Maps of counties with significant racial disparities for
prostate and lung cancer mortality rates. Two-tailed
tests based on the statistics Disp, (RD type) and Disp,, (RR
type) were conducted at a significance level a. = 0.01. White
polygons depict non-significant (NS) differences, while
hatched areas correspond to missing data. Thicker lines
delineate state boundaries. Significant disparities are color
coded according to the sign of the difference. The star in the
lung cancer map indicates Winston County where the RD
and RR statistics lead to different conclusions.

72.77 per 100,000 person-years. Although other counties
display greater disparities in absolute or relative terms,
Alamance County has a larger population at risk, which
makes the rates more reliable and hence smaller differ-
ences are easier to detect. For the other thresholds, the
largest test statistic was found for the most densely popu-
lated county in Alabama: Jefferson, the county seat being
Birmingham. Once again the racial disparity is not the
most extreme (WM rate: 22.32, BM rate: 53.90) but these
rates are derived from large population sizes, which
greatly reduces their uncertainty.

Conclusion

Too often racial disparities are evaluated simply by com-
puting the difference between crude rates, ignoring the
lack of reliability of rates recorded for small minority pop-
ulations. The small number problem is even more pro-
nounced for diseases with low frequency of occurrence
(e.g. mortality rates for rare cancers or cancers with high
survival rate). Temporal change in rate differences is also
an incomplete measure of the progress towards the elimi-
nation of disparities [3]. The assessment of significant
racial disparities across geographic areas is an important
tool in guiding cancer control practices, and public health
officials must consider the problems of small population
size and multiple comparison, and should conduct dis-
parity analyses using both absolute (difference, RD statis-
tic) and relative (ratio, RR statistic) measures.

The test statistics introduced in this paper incorporate the
population size directly into the relative or absolute com-
parison of rates. These are well-known [23,24] test statis-
tics which have mainly been used in a non-spatial context
thus far. Their application to a set of geographic areas
requires one to consider the potential impact of multiple
testing on the rate of false positives. This paper reviewed
traditional (i.e. Bonferroni or Holm) and more recent
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Figure 6

Maps of counties with significantly greater prostate
cancer mortality rates for black males. The threshold
difference A is expressed either in absolute term (deaths/
100,000 habitants) or percentage, depending on the type of
statistic used (RD versus RR type). One-tailed tests were
conducted at a significance level a = 0.01. White polygons
depict non-significant (NS) differences, while hatched areas
correspond to missing data. Thicker lines delineate state
boundaries. The pointing arrows in the right maps indicate
the two counties (Alamance, NC: FIPS 37001, Jefferson, AL:
FIPS 1073) with the smallest p-value for the one-tailed tests.

approaches (False Discovery Rate) for multiple testing
correction.

According to our simulation studies, two statistics (RD
and RR type) systematically provided the largest power
across all scenarios for the frequency and magnitude of
disparities. Analysis of ROC curves showed the same two
statistics generated the smaller average proportion of false
positives. Best results (i.e. higher power and fewer false
positives) were obtained for simulations based on lung
cancer mortality rates since they are less affected by the
small number problem than prostate cancer. Somewhat
surprisingly, multiple testing did not appear to be an issue
and the unadjusted tests yielded the expected proportion
of false positives. Fewer false positives were observed after
multiple testing correction, yet the trade-off cost is the loss

http://www.ij-healthgeographics.com/content/6/1/32

of power which is particularly strong for conservative
methods, such as Bonferroni and Holm corrections. The
FDR approach yields intermediate results in terms of
power and false positives and could be a valuable alterna-
tive to unadjusted tests if false positives are deemed much
costlier than false negatives. If a predicted level of random
false positives is preferred, unadjusted tests are recom-
mended for the disparity statistics introduced in this

paper.

These recommendations are based on a necessarily
restricted set of simulation scenarios and should be
refined in future studies based on other distributions for
cancer rates and smaller geographies (e.g. ZIP codes)
where the small number problem is more pronounced.
The present research considered only the simple case of
detecting disparities among two ethnic groups (i.e. black
and white males). Given the increasing racial/ethnic
diversity of the US and the availability of race-specific
health outcomes, there is the need for methods to detect
disparities across three or more population groups. Kep-
pel et al. (2004) introduced an index of disparity [2] that
summarizes differences between the rates of several
groups and a "reference" rate which can be the rate for the
group with the most favorable health outcome, the total
population rate, or a predefined target. Standard errors for
the index of disparity are obtained using a type of resam-
pling or "bootstrap" procedure. This index was used to
detect disparities in infant mortality rates among six race
and ethnic groups. To identify which specific groups differ
significantly, this global measure of disparity should be
supplemented with the pairwise comparisons of rates
introduced in this paper. Research is needed to investigate
the impact of the repetition of tests both in space and
across population groups on the multiple comparison
problem.

The analysis of lung and prostate cancer mortality maps
illustrates the usefulness of test statistics to quickly iden-
tify counties with significant disparities and how one-
tailed tests allow one to consider more specific null
hypotheses. The incorporation of such tests in user-
friendly software should improve our ability to interpret
geographic variation in cancer disparities, detect changes
in space (e.g. cluster of counties with significant dispari-
ties) and through time (e.g. change in health disparities
following strategies to improve cancer prevention and
early detection), and to better understand the causes
underlying observed racial disparities in cancer incidence,
mortality and morbidity.

In the future, the straightforward statistics presented in
this paper will be compared to formulations where mor-
tality risks and the associated standard errors are esti-
mated using a model-based approach (e.g. Poisson or
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Bayesian methods) that capitalizes on the spatial correla-
tion between rates measured in neighboring units. In par-
ticular, this interpolation-based approach should allow
the detection and mapping of health disparities for small
geographies with a high frequency of missing data caused
by the small number of cases reported.
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