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Abstract
Background: In the context of ecological studies, the Bayesian hierarchical Poisson model is of
prime interest when studying the association between environmental exposure and rare diseases.
However, adding spatially structured extra-variability in the model fitted to the data when such
extra-variability does not exist conditionally on the covariates included in the model (over-fitting)
may bias the estimation of the ecological association between covariates and relative risks toward
the null. In order to investigate that possibility, a simulation study of the impact of introducing
unnecessary residual spatial structure in the estimation model was conducted.

Results: In the case where no underlying extra-variability from the Poisson process exists, the
simulation results show that models accounting for structured and unstructured residuals do not
underestimate the ecological association, unless covariates have a very strong autocorrelation
structure, i.e., 0.98 at 100 km on a territory of diameter 1000 km."

1 Background
Ecological regression studies investigate potential associa-
tion between geographical variation in disease rates (or
counts) and environmental covariates. For example, a
recent study evaluated the ecological association between
indoor radon concentration and acute leukaemia inci-
dence among children [1]. For rare diseases and/or small
areas, Bayesian hierarchical Poisson model is commonly
used where within-area variability of disease is modelled
at the first stage as a Poisson process and ecological rela-
tionships between disease and covariates are introduced
at the second stage of the hierarchical model. Spatially
extra-Poisson variability potentially due to aggregated
effect of unknown confounders is commonly taken into

account through spatially structured residuals added in
the second stage of the model.

In that context, the BYM (Besag, York and Mollié) model
[2] is a standard model for estimation of the ecological
associations. The overall variability of a health indicator is
broken down into a random Poisson component, a spa-
tially structured area-specific random effect and an
unstructured random term, across geographic units. It has
been extensively shown that not accounting for an actual
spatial variability may lead to major biases [3].

Conversely, if the spatial variability of a health indicator
is completely explained by that of environmental factors
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and the other ecological covariates taken into considera-
tion, regression residuals do not have spatial structure.
Modelling the spatial structure of residuals could then
lead to a biased estimate of the ecological association via
a phenomenon of over-fitting [4-7].

To the author's knowledge, the quantitative impact of fit-
ting a model including extra-Poisson variability to analyse
data generated by a model where such extra-Poisson vari-
ability does not exist conditionally on the covariates
included in the model (over-fitting) has not previously
been explicitly and quantitatively investigated. Robust-
ness of residuals modelling as BYM was studied in a differ-
ent inferential context. In the frame of an extensive
investigation of the statistical performances of a number
of spatial models, Lawson et al. [8] studied the perform-
ance of such models on relative risks estimates in the case
of mapping modelling, i.e. without covariates, where dif-
ferent true spatial structures of residuals were simulated.
The authors showed that BYM model performed well on
risks estimations except when the true residuals were
resulting from a mixture structure. Different models were
compared to detect effect from a putative source on a reg-
ular lattice [9]. They concluded in particular that the intro-
duction of a spatially structured area-specific random
effect leads to much less bias in the parameter estimate
and that BYM model is the least biased. Notably, biases in
parameter estimation appear when the random effects are
not acounted for. In the present study we focused on eco-
logical association estimate when covariates with spatially
structure are introduced. Such covariates are often of inter-
est in epidemiology when environmental exposures are
studied. In our work we focus on a particular model with
France mainland as study domain. The aim of our study
was then to determine the robustness of the BYM model
in the absence of residual spatial variation, i.e., the impact
on the ecological association estimate on an irregular
domain. The estimates performances were discussed and
characterized according to the covariates structure. Simu-
lations protocols assumed systematically a Poisson model
at the first stage of the hierarchical model and log linear
relationship between the incidence of the disease and
exposure at the second stage without addition of extra-
Poisson residuals. Various spatial structures of exposure
were considered. The explained spatial variability is thus
fully specified/attributable by the covariate structure.

First, ecological models that do or do not allow spatially
structured or unstructured heterogeneity will be consid-
ered. Various simulation protocols for parameter values
enabling balanced or unbalanced between/within area
variability will then be presented. The results of the vari-
ous simulation protocols will then be considered in terms
of their performances with regard to the estimation of eco-

logical associations. The paper will conclude with a dis-
cussion.

2 Methods
2.1 Statistical Models
Let D be the study area of interest, partitioned into m geo-
graphic areas. The data consist in the observed Yi and
expected Ei disease counts for each area i, (i = 1,...,m). Let
Xi be an ecological variable of interest in area i. The eco-
logical Poisson M0 model is expressed in hierarchical form
as follow:

in which Ri is the relative risk in area i. The second stage
models the relationship between the relative risk and
exposure variable. The ecological model M0 does not
include any spatially structured or unstructured heteroge-
neity.

In order to account for those variabilities, the BYM model
[2] was proposed :

in which δi denotes the set of labels of the neighbours of
area i, ni is the number of neighbours i, Ui (i = 1,...,m)
models the spatially-structured area-specific random
effect based on the conditional autoregressive approach
CAR [10], and Vi (i = 1,...,m) is the unstructured random
effect. The BYM model is the benchmark parametric
model and is widely used in disease-mapping studies
mainly because of the flexibility of the residuals.

2.2 Design of the simulation study

Processes X and Y are simulated on D under model M0

accordingly to parameters values. The simulation parame-
ters were selected with reference to the overall variability
of the estimated relative risks, thus enabling realistic and

reasonable values for relative risks. More precisely, let 

= Yi/Ei be the maximum likelihood estimate of the relative

risk for the area. If Xi ~ N(0, 1), then:

If the relative risks are spatially independent of the
expected disease counts Ei,
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where  is the harmonic mean of Ei (i = 1,...,m). The

overall variance may be expressed as:

This variance may be broken down into a Within area var-

iability term Wv = 1/  × exp(-α + β2) and a Between area

variability term Bv = β2. Let p denote the proportion of

between area variance, p = Bv/Var[log( )], a high value

of p corresponds to high between-area variability, that is a
high amount of information with which to estimate the

ecological link β. Hereafter, without any loss of generality,

α will be considered equal to 0.

The geographic scale unit consisted in the 94 Departements
of mainland France (Corsica excluded). The expected dis-
ease counts (Ei) consist in the expected cases of acute leu-

kaemia in children aged less than 15 years for the period
1990–1998 in Departement i. The cases were retrieved
from the French National Registry of Childhood Leukae-
mia and Lymphoma [11]. The expected numbers ranged
from 4.2 to 204, with a harmonic mean of 23.35. Scenar-
ios in which the within-area variance was either doubled

(  = 46.6) or divided by 10 (  = 2.33) were also con-

sidered.

Given that Xi ~ N(0, 1), within-area variance depends on

3 parameters, namely: the harmonic mean of expected

disease counts , the ecological link β and the autocor-

relation structure of Xi.

As X has a standardized normal distribution, the 2.5
(p2.5%) and 97.5 (p97.5%) percentiles of the relative risks are

under model M0 exp(α ± 1.96β) and their ratio Q = p97.5%/

p2.5% is exp(2 × β × 1.96). The quantile ratios were consid-

ered equal to 1.0, 1.5, 2.0 and 3.0, equivalent to no effect,
weak, moderate and strong effects, respectively. The corre-

sponding values for β were 0.00, 0.12, 0.21 and 0.33. The
proportions of between-area variance, p, by ecological link

β and  breakdown are summarized in Table 1.

For  = 23.35, the between area variance proportion

ranges from 0 to 71%, with a balanced case for an ecolog-

ical link when β = 0.21. For  = 46.69, p ranges from 0

to 83%, while p ranges from 0 to 19% when  = 2.33.

The autocorrelation of the exposure variable was also
modulated. The following exponential autocorrelation
structure was considered: cov(Xi, Xj) = exp(-d(i, j)φ), in
which d(i, j) is the distance between areas i and j. Let ρxx =
exp(-100φ) be the autocorrelation of two areas 100 km
distant from each other. The following values for ρxx =
(0.40, 0.90,0.95, 0.98) were studied. That correlation
structure is shown in Figures 1. High values of ρxx may
mimic a spatial bloc structure.

For each combination of parameters ( , β, ρxx), 400 rep-

licates of (X, Y) = ((Xi, Yi), i = 1,...,N) were generated using

the M0 model. For each replication, the ecological link was

estimated by both models (M0 and BYM) in a Bayesian

framework.

The estimations were made with BRugs [12] software. For
each data set, a burn-in of 5000 iterations was used and
Bayesian inferences were based on 45000 iterations from
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Table 1: Between area variance proportion, p(3), according to ecological link β and 

β(1)\ 2.33 23.35 46.6

0.00 0.00 0.00 0.00
0.12 0.03 0.25 0.40
0.21 0.09 0.50 0.67
0.33 0.19 0.71 0.83

(1)β: Ecological link

 (2) : Harmonic mean of expected disease counts 

(3)p = Bv/Var[log( )]: Between area variance proportion
(*) : Indicator of p-value < 5% from McNemar's test (1)(2)(3) for comparing proportions 1 - π(0) under M0 and BYM models.
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Gibbs sampling giving Monte Carlo standard errors of less
than 5% of the posterior standard deviation of each
parameter [13]. The Monte Carlo standard error is an esti-
mate of the difference between the mean of the sampled
values and the true posterior mean. Non-informative pri-
ors were chosen for the parameters: α ~ U(-∞; +∞), β ~
N(0.0, 1.0E + 5), τU ~ Γ(0.5, 0.0005), τV ~ Γ(0.5, 0.0005)
[14], in which Γ(a, b) denotes the Gamma distribution
with expectation equal to a/b.

For each triplet ( , β, ρxx), the ecological link was esti-

mated using the M0 and BYM models. Let  be the pos-

terior mean estimates of β at the jth replication,  the

posterior standard error of  and CIj(β) the 95% cred-

ibility interval of β. The following criteria were computed
for 400 replications (j = 1,...,400):

• The empirical mean of the estimated posterior expecta-

tions of 

• The empirical mean of the estimated posterior standard

deviations of 

• The empirical standard deviation of the 400 estimated
posterior means of β (sd(βsim))

• The mean relative bias (MB) and its standard deviation
(sd(MB)),

• The root mean square error (RMSE),

• The proportion of coverage, π(β): the percentage of time
when β lay within its 95% credibility interval

• The proportion of non-coverage 1 - π(0): the percentage
of time when 0 did not lie within its 95% credibility inter-
val

When β ≠ 0, 1 - π(0) quantifies the ability of the estima-
tion model to detect the existence of an association, which
is analogous to the frequentist power. McNemar's test for
comparing proportions from paired data (estimates of β
from M0 and BYM based on the same replicated data set)
was used to test whether the π(β) (or 1 - π(0)) values were
significantly different. The over-fit of the BYM model
(compared to the M0 model) was assessed via that crite-
rion.

3 Simulation Results
Simulations results are structured as follow: firstly, we

present results for an harmonic mean  = 23.35 of

expected disease counts equal to those from acute leukae-

Eh
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Replicates of a gaussian covariate with autocorrelation strenght of ρxx = 0.80 (left) and ρxx = 0.98 (right) at 100 km, (in quartiles)Figure 1
Replicates of a gaussian covariate with autocorrelation strenght of ρxx = 0.80 (left) and ρxx = 0.98 (right) at 100 km, (in quar-
tiles).
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mia in children for 1990–1998 in France and a covariate
X with null to moderate autocorrelation. Secondly, for the

same harmonic mean , we study the influence of strong

autocorrelations for the covariate X and finally, variations

of  (smaller and greater than 23.35) are explored.

3.1 Moderate covariate autocorrelation

The first scenario considered  = 23.35 and the autocor-

relation equal to 0.0 or 0.4; the results are shown in Table
2. In that setting, the between-area variance varied from 0
to 71%. In the absence of any spatial structure for

X (ρxx = 0), the estimate of β was unbiased, irrespective of

the estimation model. The mean bias was less than 1%
and the RMSE was less than 0.02 for the four values of the
ecological link (for both models). The coverage propor-

tions π(β) were similar for the two models and greater
than 94.5%. The coverage proportion of the BYM model
was consistently slightly greater than that of the M0

model. For β = 0, π(β) was close to 95% and, equivalently,

1 - π(0) was close to 5%. The BYM model thus handles the
scenario in which the covariate has no spatial structure.

When the autocorrelation was increased to 0.4, the results
were similar to those with the previous setting. The mean
bias was less than 1%. There was a slight increase in the
RMSE but it remained less than 0.02. The β coverage pro-
portion with the BYM model was greater than that with
the M0 model. The non-coverage proportion was equal to
1, except when there was no association (β = 0). The non-
coverage proportions were significantly different when
β = 0. The proportion the closest to 5% was obtained with
the M0 model. Irrespective of the value of β, the variability
of β was always slightly over-estimated with the BYM
model. The coverage proportion of the M0 model varied
from 94.5 to 95.8% (96.8 to 97.5% for the BYM model).
In the absence of, or with moderate, autocorrelation, the
over-fitting effect was not observed. Both models provided
an almost unbiased estimate of the ecological link.

3.2 Strong covariate autocorrelation

The scenario of strong autocorrelation for X was then con-

sidered: ρxx = 0.90, 0.95, 0.98 at 100 km with  = 23.35.

The results are shown in Table 3. When ρxx = 0.90, the

mean bias and the RMSE were low (0.03). The mean bias
decreased as the value of the ecological link increased,

Eh

Eh

Eh

Eh

Table 2: Estimation of the ecological link β when  = 23.35 and ρxx = 0.0, 0.4 (400 replications)

ρxx
(1) β Model

sim
(2) MB(4) sd(MB) sd(βsim)(5) RMSE(6) π(β)(7) 1 - π(0)(8)

0.0 0.00 M0 0.000 1.63 1.73 1.73 0.953 0.047
BYM 0.000 1.76 1.74 1.73 0.958 0.042

0.12 M0 0.119 1.61 -0.44 0.69 1.67 1.67 0.930 1.000
BYM 0.120 1.72 -0.31 0.70 1.68 1.68 0.955 1.000

0.21 M0 0.210 1.60 0.49 0.39 1.64 1.64 0.948 1.000
BYM 0.210 1.72 0.58 0.39 1.66 1.66 0.960 1.000

0.33 M0 0.329 1.57 -0.28 0.23 1.58 1.58 0.953 1.000
BYM 0.329 1.70 -0.24 0.24 1.58 1.58 0.968 1.000

0.4 0.00 M0 -0.001 1.72 1.76 1.76 0.955 0.045*
BYM -0.001 1.90 1.78 1.78 0.975 0.025

0.12 M0 0.121 1.73 0.79 0.73 1.75 1.75 0.945 1.000
BYM 0.121 1.91 0.78 0.74 1.78 1.78 0.968 1.000

0.21 M0 0.211 1.72 0.41 0.39 1.66 1.66 0.958 1.000
BYM 0.211 1.90 0.50 0.39 1.67 1.67 0.973 1.000

0.33 M0 0.332 1.70 0.71 0.25 1.68 1.69 0.945 1.000
BYM 0.332 1.89 0.70 0.25 1.70 1.71 0.973 1.000

(1) ρxx : autocorrelation at 100 km

(2) 
sim : 100 * mean of posterior means 

(3)  : 100 * mean of posterior standard deviations 
(4) MB : 100 * Mean Bias
(5) sd(βsim) : 100 * standard deviation of posterior means 
(6) RMSE : 100 * Root Mean Square Error 
(7) π(β) : Coverage proportion β ∈ CI(β) 
(8) 1 - π(0) : Non-Coverage proportion 0 ∉ CI(β) 
(*) : Indicator of p-value < 5% from McNemar's test (1)(2)(3) for comparing proportions 1 - π(0) under M0 and BYM models.

Eh

β σ β sim

β
σ β sim
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reflecting an increase in between-area variability. The cov-
erage proportion with the BYM model was higher than the

coverage proportion with the M0 model for all values of β.

The non-coverage proportions were significantly different

for β = 0.00 and β = 0.12, in favor of the M0 model. For ρxx

= 0.95, the bias was still small and the RMSE increased to
0.04. The non-coverage proportions were again signifi-

cantly different in the cases in which β = 0.00 and β = 0.12

in favor of the M0 model. Lastly, for ρxx = 0.98 and for the

first three values of β (β = 0.00, 0.12, 0.21), the non-cov-
erage proportions were significantly different, again in
favor of M0. When the ecological link was null, the non-

coverage proportion was again smaller with the BYM
model, a consequence of the over-estimation of parameter

variability. The β coverage proportions were lower for M0

for 4 values of β. When the autocorrelation increased from
0.90 to 0.98, the RMSE increased from 2.99 to 6.48,
mainly due to the decrease in independent information. A
slight increase was observed for all the other criteria. The

bias was weak, resulting in very small RMSE and sd(βsim)

in both models. At high autocorrelation values, the over-
all variability of the estimates increased. There was more

variability for each β value with the BYM model. This is
exemplified by the mean posterior standard deviation,

which increased four-fold (for all β values) between the

first (ρxx = 0.00) and last (ρxx = 0.98) autocorrelation sce-

nario. This was also the case for sd(βsim).

Table 3: Estimation of the ecological link β when  = 23.35 and ρxx = 0.90, 0.95, 0.98

(1)(2)(3)(4)(5)(6)(7)(8)(*)

ρxx
(1) β Model

sim
(2) MB(4) sd(MB) sd(βsim)(5) RMSE(6) π(β)(7) 1 - π(0)(8)

0.90 0.00 M0 0.003 2.96 2.98 2.99 0.945 0.055*
BYM 0.003 3.39 3.03 3.04 0.970 0.030

0.12 M0 0.122 2.98 2.07 1.24 2.99 3.00 0.958 0.973*
BYM 0.123 3.44 2.51 1.27 3.07 3.08 0.973 0.938

0.21 M0 0.213 2.96 1.38 0.79 3.32 3.34 0.930 0.998
BYM 0.213 3.41 1.31 0.81 3.41 3.42 0.955 0.998

0.33 M0 0.331 2.98 0.37 0.47 3.11 3.11 0.943 1.000
BYM 0.331 3.43 0.39 0.47 3.13 3.13 0.965 1.000

0.95 0.00 M0 0.002 4.07 4.04 4.04 0.950 0.050*
BYM 0.002 4.72 4.14 4.14 0.975 0.025

0.12 M0 0.121 4.05 1.03 1.82 4.38 4.37 0.945 0.843*
BYM 0.121 4.70 1.18 1.89 4.54 4.54 0.960 0.775

0.21 M0 0.208 3.99 -1.07 0.99 4.18 4.18 0.960 0.988
BYM 0.208 4.62 -0.80 1.03 4.31 4.31 0.978 0.983

0.33 M0 0.333 4.16 0.78 0.66 4.33 4.33 0.963 1.000
BYM 0.333 4.80 0.98 0.66 4.34 4.35 0.980 1.000

0.98 0.00 M0 0.002 6.29 6.48 6.48 0.950 0.050*
BYM 0.002 7.29 6.53 6.53 0.970 0.030

0.12 M0 0.121 6.23 1.22 2.49 5.98 5.98 0.953 0.545*
BYM 0.122 7.20 1.26 2.47 5.99 5.98 0.975 0.420

0.21 M0 0.207 6.35 -1.36 1.57 6.61 6.60 0.960 0.845*
BYM 0.207 7.35 -1.39 1.59 6.67 6.67 0.985 0.782

0.33 M0 0.330 6.27 0.09 1.00 6.64 6.63 0.935 0.985
BYM 0.331 7.28 0.24 1.01 6.69 6.68 0.975 0.978

(1) ρxx : autocorrelation at 100 km

(2) 
sim : 100 * mean of posterior means 

(3)  : 100 * mean of posterior standard deviations 
(4) MB : 100 * Mean Bias
(5) sd(βsim) : 100 * standard deviation of posterior means 
(6) RMSE : 100 * Root Mean Square Error 
(7) π(β) : Coverage proportion β ∈ CI(β) 
(8) 1 - π(0) : Non-Coverage proportion 0 ∉ CI(β) 
(*) : Indicator of p-value < 5% from McNemar's test (1)(2)(3) for comparing proportions 1 - π(0) under M0 and BYM models.
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β σ β sim

β
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3.3 Variation of (harmonic mean of) expected counts
The next scenario consisted in strong autocorrelation of
ρxx = 0.95 at 100 km with variation in number of expected
disease counts. The results for that scenario are shown in
Table 4.

For  = 46.6 (and ρxx = 0.95), the mean bias and RMSE

were smaller than in the scenario in which  = 23.3. The

β coverage rate was greater than 94.5% for both models
and the proportion was higher for the BYM model. The
non-coverage proportions were significantly different, in

favor of the M0 model, for β = 0.12. For β = 0, the non-cov-

erage proportion was again smaller with the BYM model.

For  = 2.33, the bias increased (up to 6%) and the

RMSE was the highest observed in the various cases (14%
approx.). The coverage proportion was smaller than in the
previous scenario but greater than 92%. The coverage pro-

portion π(β) was higher with the BYM model than with
the M0 model. While the non-coverage proportions of 0

were close to 1 (except for β = 0), the proportions

decreased by 16% for M0 and 13% for BYM for β = 0.12.

Moreover the non-coverage proportions of 0 for the two
models were significantly different and in favor of the M0

model for β = 0.12, 0.21, 0.33.

Eh

Eh

Eh

Table 4: Estimation of the ecological link β when ρxx = 0.95 while  varying

(1)(2)(3)(4)(5)(6)(7)(8)(*)

β Model
sim

(1) MB(3) sd(MB) sd(βsim)(4) RMSE(5) π(β)(6) 1 - π(0)(7)

46.6 0.00 M0 -0.001 2.84 2.76 2.76 0.958 0.042*
BYM -0.001 3.40 2.85 2.85 0.975 0.025

0.12 M0 0.118 2.81 -1.34 1.21 2.91 2.91 0.945 0.960*
BYM 0.119 3.38 -1.18 1.21 2.91 2.91 0.980 0.930

0.21 M0 0.212 2.87 0.94 0.69 2.89 2.89 0.955 1.000
BYM 0.212 3.47 0.75 0.70 2.95 2.96 0.983 1.000

0.33 M0 0.329 2.88 -0.21 0.47 3.10 3.10 0.953 1.000
BYM 0.330 3.45 -0.08 0.48 3.19 3.19 0.980 1.000

23.3 0.00 M0 0.002 4.07 4.04 4.04 0.950 0.050*
BYM 0.002 4.72 4.14 4.14 0.975 0.025

0.12 M0 0.121 4.05 1.03 1.82 4.38 4.37 0.945 0.843*
BYM 0.121 4.70 1.18 1.89 4.54 4.54 0.960 0.775

0.21 M0 0.208 3.99 -1.07 0.99 4.18 4.18 0.960 0.988
BYM 0.208 4.62 -0.80 1.03 4.31 4.31 0.978 0.983

0.33 M0 0.333 4.16 0.78 0.66 4.33 4.34 0.963 1.000
BYM 0.333 4.79 0.98 0.66 4.34 4.35 0.980 1.000

2.33 0.00 M0 0.007 12.4 13.5 13.4 0.935 0.065
BYM 0.008 13.3 13.4 13.4 0.948 0.052

0.12 M0 0.112 12.5 -6.94 5.38 12.9 12.9 0.953 0.162*
BYM 0.113 13.4 -5.65 5.43 13.0 13.0 0.965 0.130

0.21 M0 0.206 12.8 -1.92 3.45 14.5 14.5 0.927 0.410*
BYM 0.206 13.8 -1.98 3.46 14.6 14.5 0.940 0.368

0.33 M0 0.341 13.0 3.38 2.12 14.00 14.0 0.938 0.738*
BYM 0.343 13.9 4.05 2.14 14.1 14.2 0.960 0.715

(1)
sim : 100 * mean of posterior means

(2)  : 100 * mean of posterior standard deviations
(3) MB : 100 * Mean Bias
(4) sd(βsim) : 100 * standard deviation of posterior means
(5) RMSE : 100 * Root Mean Square Error
(6)π(β) : Coverage proportion β ∈ CI(β)
(7) 1 - π(0) : Non-Coverage proportion 0 ∉ CI(β)
(*) : Indicator of p-value < 5% from McNemar's test for comparing proportions 1 - π(0) under M0 and BYM models.

Eh

Eh β σ β sim

β
σ β sim
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High autocorrelations thus appear to influence the over-
fitting effect of the BYM model. The expected disease
counts, also modulates the overall accuracy of the estima-
tion. In fact, with highly correlated spatial structure and
low disease counts, the bias of the β estimate generated by
the BYM increases. But, even with a highly autocorrelated
covariate and adequate disease counts, when Ei is dou-
bled, the BYM model estimates the ecological link with lit-
tle bias.

4 Discussion
A simulation study was conducted in order to assess esti-
mation performance with respect to the ecological associ-
ation between covariates and health indicators. Key
parameters, such as the ecological link, expected disease
counts and autocorrelation strength were selected to
ensure that the simulation covered realistic situations. The
choice of parameters enabled coverage of balanced and
unbalanced between- and within-area variabilities.

For moderate autocorrelation structures, both the Poisson
model and the BYM model performed well and the esti-
mation performances were similar. Underestimation of
ecological links was only observed for high autocorrela-
tions. Overall, the posterior standard deviation of β was
slightly over-estimated with the BYM model, resulting in
conservative results when the true value of β was null.

The expected disease counts are also of interest because,
with a high autocorrelation, the underestimation of the
BYM model is present. In practice, this worst-case scenario
can nonetheless be found. Except for the extreme sce-
nario, strong spatial structure and low disease counts,
both models perform well, even with strong spatial struc-
ture. As a consequence, the BYM model can be used to
estimate ecological associations without fearing underes-
timation. The simulation results show that models
accounting for structured and unstructured residuals do
not underestimate materially the ecological association.
The rational is the following: not accounting for an actual
spatial variability leads to strong bias. Thus from a practi-
cal point of view, the BYM model should be preferred to
the Poisson if spatial autocorrelation of covariate is sus-
pected. Moreover, autocorrelation structure will be first
investigated via Moran's I test [15].
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