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Abstract
Background: Studies on natural hazard mortality are most often hazard-specific (e.g. floods,
earthquakes, heat), event specific (e.g. Hurricane Katrina), or lack adequate temporal or geographic
coverage. This makes it difficult to assess mortality from natural hazards in any systematic way. This
paper examines the spatial patterns of natural hazard mortality at the county-level for the U.S. from
1970–2004 using a combination of geographical and epidemiological methods.

Results: Chronic everyday hazards such as severe weather (summer and winter) and heat account
for the majority of natural hazard fatalities. The regions most prone to deaths from natural hazards
are the South and intermountain west, but sub-regional county-level mortality patterns show more
variability. There is a distinct urban/rural component to the county patterns as well as a coastal
trend. Significant clusters of high mortality are in the lower Mississippi Valley, upper Great Plains,
and Mountain West, with additional areas in west Texas, and the panhandle of Florida, Significant
clusters of low mortality are in the Midwest and urbanized Northeast.

Conclusion: There is no consistent source of hazard mortality data, yet improvements in existing
databases can produce quality data that can be incorporated into spatial epidemiological studies as
demonstrated in this paper. It is important to view natural hazard mortality through a geographic
lens so as to better inform the public living in such hazard prone areas, but more importantly to
inform local emergency practitioners who must plan for and respond to disasters in their
community.

Background
Outcomes of natural hazard events can be grouped into
two general categories; economic losses (including prop-
erty, agricultural, direct, and indirect losses) and casualties
(injuries and fatalities). Despite these two potential
impacts on populations, contemporary hazards research
in the United States focuses more on economic losses and
loss reduction rather than examining casualties. This bias
reflects the downward trend in casualties and the dramatic
increases in hazard losses over time in the United States
and other more developed countries [1,2]. Despite the

downward trend in human casualties, developed coun-
tries are still susceptible to significant losses of life from
natural hazard events as shown by Hurricane Katrina, the
2003 European heat wave, and the 1995 Chicago heat
wave.

Previous hazard mortality studies often lack a breadth of
hazard types and utilize limited geographic scales. Nota-
ble exceptions include a global risk analysis that includes
various hazard types [3], and a U.S. based historical anal-
ysis of hazard mortality [4]. However, researchers often
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examine deaths for only one particular type of hazard
such as floods [5,6], earthquakes [7,8], tornadoes [9], or
heat [10]. Although detailed examination of hazard
related deaths for one hazard type is important, this frag-
mented and unitary approach leaves many unanswered
questions about the geography of deaths from natural
hazards as a whole. It also limits comparability between
hazard event types. Certain hazard types (e.g., heat,
floods) often are described as the number one cause of
hazard related death without an appropriate multi-hazard
study to substantiate such claims. Indeed, claims of exam-
ining "the deadliest hazard" often are used as justification
for studying the mortality associated with a particular haz-
ard type.

This paper examines the spatial patterns associated with
hazard mortality at a sub-state level for the United States
using a combination of geographical and epidemiological
methods, and a sub-county georeferenced hazards events
and losses database, SHELDUS. Two specific research
questions are examined: 1) Which natural hazard contrib-
utes most to hazard-induced mortality, and 2) What is the
spatial patterning of natural hazard mortality in the
United States?

Studying death geographically
Studying any type of mortality is inherently geographical.
Since the initial work of John Snow [11], countless mor-
tality atlases have been produced such as those for, cancer
[12], toxic hazards exposure [13], and all causes [14,15].
Mortality mapping permits the exploration of spatial pat-
terns [16,17]; the development of more robust mortality
mapping approaches [18,19]; testing for statistically sig-
nificant spatial clusters of mortality [20,21]; and temporal
analysis [22,23].

Research that examines the spatial aspects of mortality has
grown significantly over time, forming a niche in spatial
epidemiology, which merges spatial analysis techniques
from geography with mortality studies from public
health/epidemiology [18,24,25]. Within spatial epidemi-
ology, considerable research effort has focused on the
computation of robust measures of mortality [26,27], dif-
ferent clustering techniques to analyze spatial patterns
[21,28], and the creation of a reliable map of disease or
mortality that is free of spurious statistical variation [29].

Natural hazard mortality
Despite the advancement of health geographics, the appli-
cation of spatial epidemiological methods has not been
applied systematically to deaths from natural hazards in
the United States. Perhaps the biggest hindrance to con-
ducting such broad spatial-analytical research on the
geography of hazard deaths has been the lack of quality
data. In order to explore hazard related deaths in a mean-

ingful way, researchers need a large data repository that
stores information on a variety of hazard types at a resolu-
tion fine enough to detect spatial patterns. A comprehen-
sive, centralized, and reliable accounting of georeferenced
natural hazard deaths has thus far been unavailable. Also
the rarity of hazard deaths, especially in developed coun-
tries introduces the methodological issue of the "small
number" problem resulting from calculating mortality
rates for a rare cause of death in small areas.

Despite these limitations, there is an emerging literature
on natural hazard mortality. For example, a number of
studies have been conducted on the patterns of death in
specific disaster events such as Hurricane Andrew [30,31],
the Northridge Earthquake [32,33], and the Chicago heat
wave [10]. These types of studies are useful for determin-
ing specific causal mechanisms between hazards and
death, but out of necessity, they are highly localized, and
event specific. Other research has focused on more general
causes and circumstances of hazard mortality from spe-
cific hazard types such as floods [34], or heat [35], and
generalized effects of climate on mortality [36,37].
Although informative and useful, the geography of hazard
mortality is often an ancillary piece of the research, not
the primary focus.

The spatial patterning of hazard mortality is less under-
stood and studied. For example, Kalkstein and Davis [38]
examined the effect of temperature on mortality using var-
ious cities throughout the United States as sample points,
thereby providing a comparative regional analysis of
urban areas. Two different studies examined tornado and
flood deaths in the United States using spatially gridded
data. A 40 km cell size was chosen to analyze flood deaths
to approximate normal county size [5], yet a larger cell
size was used for tornado deaths (60 km) without justifi-
cation [9]. Although an interesting approach, questions
remain on the reasoning behind the choice of a particular
pixel size, and the lack of size consistency for studying
deaths from different hazards. Finally, Thacker et al. [4]
was one of the first studies to examine multi-hazard mor-
tality analysis using the CDC's Compressed Mortality File. In
terms of encompassing a broad range of natural hazard
types, their work most closely resembles the scope of this
paper. However, Thacker et al. [4] cover a shorter time
period (1979–2004) and fail to provide a strong spatial
component to their research despite having county-level
data. They offer a tabular analysis of mortality rates for
various regions in the United States, but fail to provide a
systematic spatial analysis.

A review of the literature shows that some studies contain
a spatial-analytic component but not a range of hazard
types, while other studies examine multiple hazards but
use aspatial techniques. A natural hazard mortality study
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that combines spatial analysis at a fine resolution for a
wide variety of natural hazards is missing. This paper
improves the spatial resolution and analytic techniques of
previous studies and includes a broader range of natural
hazards in the analysis, thus providing a more complete
picture of the geography of natural hazards mortality in
the U.S.

Methods
Data
The mortality data for this paper were culled from the Spa-
tial Hazard Event and Loss Database for the United States
(SHELDUS)(available at http://www.sheldus.org). This
database provides hazard loss information (economic
losses and casualties) from 1960 – 2005 for eighteen dif-
ferent hazard types at county level resolution [39] for all
50 states. To maintain consistency in the county level enu-
meration units and the quality of the mortality data, three
adjustments were made. First, Alaska and Hawaii were
excluded from the analysis. Second, to maintain consist-
ent geographic units through time any changes in county
boundaries were attributed to the original county for the
entire time-period (this includes counties that were split
or merged). Finally, all independent cities in Virginia,
Maryland, and Missouri were absorbed into their respec-
tive counties. After these modifications, 3,070 county
level enumeration units were used in this study.

Inconsistencies in the SHELDUS database were first
addressed before any mortality measures were con-
structed. For the implementation of spatial epidemiologi-
cal methods, two problems embedded in the design of
SHELDUS warrant a brief discussion. These include event
thresholds and geographic attribution of deaths.

These event thresholds were due to the reliance in
SHELDUS on its primary data source, NCDC's Storm Data,
which reported events on a categorical damage scale
(Table 1) [39,40]. Prior to 1995, only events that gener-
ated at least $50,000 (Category 5) in economic damage
were included in the SHELDUS database. SHELDUS used
the lower bound of each damage category when reporting

losses to maintain the most conservative estimate of losses
possible. After 1995, however, NCDC increased the preci-
sion of loss information for hazard events, reporting
losses as exact dollar amounts rather than logarithmic cat-
egories. Thus, SHELDUS contained two time-periods with
markedly different standards regarding which events were
included in the database. For example, prior to 1995,
mortality from events that failed to reach the monetary
threshold (such as lightning) would be excluded. To
adjust for this problem, any event in Storm Data that
caused a death and less than $50,000 in economic dam-
ages was added to the SHELDUS database for the period
1970–1995. Correcting these problems for 1960–1969 is
currently underway by the SHELDUS developers and was
unavailable for use in this paper.

The second issue with the original SHELDUS data is the
geographic attribution of deaths. When events affected
multiple counties, and there was no information on the
specific county where the fatality or the monetary losses
occurred, all losses and casualties were evenly distributed
across the affected counties, leading to fractional deaths
and injuries [39]. After 1995, however, Storm Data became
more geographically precise in defining the locations of
events, and the attribution of those losses and deaths to
specific counties. Accordingly, SHELDUS was more delib-
erate in attributing deaths to their proper geographic loca-
tion. This inconsistency necessitated a quality control
analysis on SHELDUS data prior to 1995. From 1970 to
1995, every event in SHELDUS with a death was verified
against Storm Data for geographic accuracy. In instances
where the county of death was specified in Storm Data,
SHELDUS was changed to reflect that information.

Mapping
The simplest way to characterize mortality in the form of
a rate is to map crude rates by dividing the number of
deaths by the population at risk (usually the mid-year
population) [41,42]. Although crude rates can indicate
where the magnitude of deaths is large [43], a major draw-
back is that they do not account for differences in the pop-
ulation structure of different areas [43]. To account for
varying age structures between counties, we employed
indirect age standardization to our data and calculated
standardized mortality ratios (SMRs) for each county.
Indirect standardization was necessary for this analysis
because SHELDUS data lacks the age at death for hazard
fatalities. Although there is debate in the epidemiologic
literature as to the utility of SMRs [44], they are a widely
used and accepted measure of mortality in spatial epide-
miology research [18,27,44].

Often referred to as the small number problem, spurious
variation in rates can result from small denominator data
(i.e. population) [45,46]. Counties with small popula-

Table 1: NCDC damage categories

Category Damage Range

1 < $50
2 $50 – $500
3 $500 – $5,000
4 $5,000 – $50,000
5 $50,000 – $500,000
6 $500,000 – $5,000,000
7 $5,000,000 – $50,000,000
8 $50,000,000 – $500,000,000
9 $500,000,000 – $5,000,000,000
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tions demonstrate extremely high mortality rates when, in
fact, there are few actual recorded deaths. Furthermore,
greater than expected fluctuation in mortality rates occurs
with the addition of only one or two extra cases in low
population counties. To adjust for spurious variation
without compromising spatial resolution, mortality rates
were transformed using an empirical-bayes operation to
remove artificial extreme values, yet maintain the struc-
ture of broad spatial trends. This technique is commonly
used with small-area rate data and is encouraged over reg-
ular SMRs [18].

To analyze the observed patterns spatially, we employed a
local cluster analysis on the map of hazard mortality. The
local Moran's I statistic [47] provided in the GeoDa 0.9.5-
i5 software package [48] was used to reveal contiguous
areas of elevated mortality. Such local statistics are useful
to analyze the spatial variation of clusters that are not
apparent in global measures.

Data classification changes
To better interpret SHELDUS deaths across hazard types,
the 18 original hazards were generalized into 11 distinct
categories (Table 2). For the purposes of analyzing deaths
across hazard categories, each event, regardless of how
many hazards were involved was assigned into one and
only one category. For example, an event with multiple
causes (e.g. hail, wind, lightning, and rain) was catego-
rized as Severe Weather. Even though lightning is associ-
ated with severe weather, it has its own category due to the
number of fatality inducing events reported with light-
ning as the only hazard.

As a result of adding deaths from events that generated
less than $50,000 in damages, the total number of fatali-
ties from 1970 – 2004 increased by 31% (Table 3). As
expected, lightning was the most affected category based
on the new corrections, increasing its number of fatalities
by 77%. This clearly demonstrates databases that record
hazard losses based solely on economic damages may not
be the most appropriate ones to use when studying hazard
mortality without first correcting for errors of omission.

Results
Deadliest hazard types
Figure 1 shows the distribution of deaths for 11 hazard
categories as a percent of total hazard deaths from 1970 –
2004. Heat/drought ranks highest among these hazard
categories causing 19.6% of total deaths, closely followed
by severe summer weather (18.8%) and winter weather
(18.1%). Geophysical events (such as earthquakes), wild-
fires, and hurricanes are responsible for less than 5% of
total hazard deaths combined. What is noteworthy here is
that over time, highly destructive, highly publicized, often
catastrophic singular events such as hurricanes and earth-
quakes are responsible for relatively few deaths when
compared to the more frequent, less catastrophic events
such as heat waves, and severe weather (summer or win-
ter).

Spatial distribution
Using the corrected SHELDUS data, natural hazard mor-
tality was mapped to visually illustrate its geographic dis-
tribution. We first aggregated the data to a regional scale
using the geographic divisions of the Federal Emergency
Management Agency (FEMA), and then we produced a
county-level map. Comparing county-level mortality

Table 2: Generalized SHELDUS hazard types

SHELDUS Category Generalized Category

Coastal Coastal (e.g. storm surge, rip currents, coastal erosion)
Flooding Flooding (e.g. flash, riverene)
Earthquake Geophysical
Tsunami/Seiche
Volcano
Drought Heat/Drought
Heat
Hurricane/Tropical Storm Hurricane/Tropical Storm
Lightning Lightning
Avalanche Mass Movement
Landslide
Fog Severe Weather
Hail
Severe Storm/Thunderstorm
Wind
Tornado Tornado
Wildfire Wildfire
Winter Weather Winter Weather
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maps to those at a higher level of spatial aggregation
serves two analytical purposes. First, similar spatial trends
between the county and the aggregated regional map
(which provide stable mortality estimates) increase the
confidence that stability was achieved in the transformed
county-level maps. Second, similar patterns at different
spatial scales support the notion that the observed county-
level patterns are not a function of scale-dependent proc-
esses, thereby increasing the confidence that this is an
accurate representation of hazard-induced mortality.
These county-level maps not only provide a stable mortal-
ity map for reference purposes, but also present hazard
mortality estimates at enumeration units that are relevant
to local emergency managers and public health officials.

Mortality data were indirectly standardized to the year
2000 national hazard mortality rate using standardized
mortality ratios. At the county level, adjusted SMRs were
calculated using the empirical bayes procedure provided
in GeoDa 0.9.5-i5 [48] and log-transformed to achieve a
normal distribution. The data were mapped using stand-
ard deviations from the mean.

Hazard mortality is most prominent in the South (FEMA
regions IV and VI) (Figure 2). While FEMA region VIII
appears to have the highest risk level based on SMRs, this
finding must be interpreted with caution, and is likely a
function of the small population size within the region.
Although the SMRs were stabilized with the empirical
bayes procedure, hazard deaths are so rare that the small
number problem cannot be totally removed. These
regional patterns are due to the occurrence of various
severe weather hazards and tornadoes (region IV), winter
weather (region VIII), and floods and tornadoes (region
VI) as the primary causal mortality agents. Pie charts
located in each region show the proportion of the top
three causes of hazard deaths. The fourth section in each
pie chart, labeled "other", includes any of the generalized
event types listed in Table 2. The utility of this classifica-

tion approach is to visualize the relative significance of the
top three causes of death in each FEMA Region. A FEMA
Region with a very small "other" category as in Region 1
(Figure 2) suggests that the top three causes of death are
quite important to the overall impact of hazard deaths.
However, a large "other" category shows places such as
Region 4 (Figure 2), where deaths are more evenly distrib-
uted by hazard type. Although potentially useful at the
national emergency management level for assessing areas
of higher mortality, the regions are so large that they do
not show spatial variability in hazard mortality. While,
the South shows elevated mortality, the higher mortality
rates may be clustered in a few high- risk areas, not uni-
formly distributed throughout the region as the map sug-
gests.

County level hazard-induced mortality for the contiguous
United States shows more spatial variability than the
regional map (Figure 3). For instance, the highest values
in the South are along the Atlantic and Gulf Coasts, espe-
cially in the Florida panhandle, and along the Carolinas'
coast. Elevated mortality in southwestern Texas and
throughout Arkansas contributes to higher mortality for
FEMA region VI.

The initial visual analysis is suggestive of a regional pat-
terning of mortality from natural hazards. However, the
identification of clusters of elevated mortality should be
achieved through local spatial statistics rather than simple
visual interpretation because size, shape, and potential for
spurious rate variation of polygons can create the illusion
of clusters that are not statistically significant [49].

Cluster analysis
To test for the presence of spatial clusters of hazard mor-
tality, we employed spatial autocorrelation on the county
level SMRs using both global and local indicators using
the GeoDa. 0.9.5-i5 software package [48]. A global
Moran's I test was performed to assess whether the pattern

Table 3: Effect of fatality corrections in SHELDUS

Event Type SHELDUS Mortality Database Total Increase

Lightning 517 1,744 2,261 77%
Winter Weather 2,306 1,306 3,612 36%
Severe Weather 2,402 1,360 3,762 36%
Coastal 357 99 456 22%
Flooding 2,188 600 2,788 22%
Heat/Drought 3,227 679 3,906 17%
Tornado 2,006 308 2,314 13%
Mass Movement 154 16 170 9%
Hurricane/Trop. St. 279 25 304 8%
Geophysical 302 0 302 0%
Wildfire 84 0 84 0%
Totals 13,821 6,137 19,958 31%
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of SMRs had an average tendency to cluster in space [50].
Neighbors were designated based on first order queen
contiguity [48]. The likelihood of positive spatial autocor-
relation in the dataset was confirmed with a global
Moran's I coefficient of .30 (p < .001).

With a tendency for similar SMR values to cluster estab-
lished, a local indicator of spatial association was used to
identify the location of clusters. Local pockets of positive
spatial autocorrelation (areas where similar values are
clustered in space) for county level SMR data appear
throughout the continental United States) (Figure 4a).
Areas of high SMR values occur through the northern
Plains, mountain west, and South, particularly the Florida
panhandle, the Carolinas, lower Mississippi River, and
Rocky Mountain west. Other noticeable trends include

the tendency for large urban centers to demonstrate clus-
ters of low SMR values (e.g. Atlanta, San Francisco, and
New York). Low SMRs in urban areas do not mean that
there is less overall risk, but instead less risk of dying on
an individual basis since there are more people. Clusters
of low SMR values generally occur in the Midwest and
Northeast coastal corridor. All local clusters shown are sta-
tistically significant at 95% confidence. However, a confi-
dence map shows variation in significance values to
identify clusters that exceed 95% confidence (Figure 4b).

The local Moran's I and significance maps confirm our vis-
ual analysis of the geographic distribution of mortality
from natural hazards. Those county level natural hazard
mortality patterns most statistically relevant in terms of
elevated mortality are found in the northen plains and

Hazard induced mortality by FEMA region 1970 – 2004Figure 2
Hazard induced mortality by FEMA region 1970 – 2004. *SMRs use Year 2000 as Standard Population.
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southern Texas. Similarly, areas of important decreased
mortality include the San Francisco Bay area and the
urbanized Northeast.

Discussion
The problems and corrections associated with SHELDUS
data raise questions about our decision to use this data
source over the CDC's Compressed Mortality File as was
done by Thacker et al. [4]. No dataset is perfect, and the
Compressed Mortality File, also has its share of problems.
First, unlike Storm Data (upon which SHELDUS is based),
the Compressed Mortality File is not solely focused on natu-
ral hazard events. Although both SHELDUS and the Com-
pressed Mortality File likely suffer from undercounting
hazard related deaths [4,39], it is known that the only rea-
son any of the deaths appear in Storm Data (and

SHELDUS) is because of some natural event. In the CDC's
Compressed Mortality File, deaths are interpreted from clas-
sifying the underlying cause listed on death certificates
[4], whereas SHELDUS mortality is derived from Storm
Data. NCDC, the parent source for Storm Data, uses death
estimates for hazard events that may or may not be veri-
fied [51]. The accuracy of these estimates is unknown, but
some level of undercounting is almost certain. However,
Storm Data remains the premier data source for weather
hazard related losses and deaths [52].

Second, the coding system used by the CDC underwent a
major revision after 1998, providing additional and more
specific categories for deaths attributed to natural hazards.
When undertaking a longitudinal study such as this, any
new classification scheme creates analytical problems by

County-level hazard induced mortality 1970 – 2004Figure 3
County-level hazard induced mortality 1970 – 2004. *SMRs use Year 2000 as Standard Population. **SMRs calculated 
using empirical bayes procedure and log transformed. Map colors based on http://www.ColorBrewer.org, by Cynthia A. 
Brewer, Penn State.
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County-level SMR clusters (A) and significance levels (B) from hazard induced mortality 1970 – 2004Figure 4
County-level SMR clusters (A) and significance levels (B) from hazard induced mortality 1970 – 2004. Map 
colors based on http://www.ColorBrewer.org, by Cynthia A. Brewer, Penn State.
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introducing a change in the specificity of the data struc-
ture. This is shown in the work by Thacker et al. [4] as they
were able to use only six types of natural hazards in their
analysis because the 1979 – 1998 data were not as
detailed as those from 1999 – 2004. Thacker et al. [4] also
mentioned that apparent increases in the number of
deaths for some natural hazard events might be a statisti-
cal artifact of this classification change rather than an
actual increase in hazard deaths. Unlike the CDC data dis-
parity, the inconsistencies in SHELDUS before and after
1995 were addressed in later versions of the database.

To create a more meaningful comparison between the two
datasets, SHELDUS data were modified temporally and
categorically to mimic the Thacker et al. [4] study. We
extracted a subset of the SHELDUS data for 1979 – 2004,
and grouped hazards according to the categories used by
Thacker et al. [4] (Table 4). A discrepancy between data-
bases lies in pairing "cold" and "storms/floods" from
Thacker et al. [4] with matching categories from
SHELDUS. For Thacker et al.'s [4] "cold," the SHELDUS
category "winter weather" was used, which includes cold
related and other winter weather deaths such as those
from blizzards and winter storms. These winter storms
would technically be categorized under "storms/floods"
in Thacker et al. [4]. In SHELDUS, however, cold and win-
ter storm deaths all fall under "winter weather." The pro-
portions of deaths by hazard type seem quite different,
with over half of Thacker et al.'s [4] deaths attributed to
cold, and the majority of SHELDUS deaths in storms/
floods (Figure 5). The proportional differences between
Thacker et al. [4] and our data by individual causal agent
are statistically significant (p < .01) with the exception of
earth movements which is statistically significant at p <
0.05.

Hazard mortality data are fraught with inconsistencies
across databases. Differences manifest themselves from
the subjective nature of attributing any death to a hazard

event. Because of the lack of a standardized death classifi-
cation scheme [53], hazard deaths are not counted in the
same way for any two databases. In fact, even within a
national database (i.e. SHELDUS, Compressed Mortality
File), hazard death attribution likely varies geographically.
Therefore, we are cautious that the analyses and conclu-
sions drawn from hazard mortality data are based on esti-
mates of deaths from natural events.

Conclusion
There is considerable debate about which natural hazard
is the most "deadly". According to our results, the answer
is heat. But this finding could change depending on the
data source, or how hazards within a data source are
grouped, as we've shown here. Even if researchers could
definitively assert the 'deadliest hazard,' a better issue to
pose is where residents are more susceptible to fatalities
from natural hazards within the United States.

The spatial patterns revealed in the results are not surpris-
ing – greater risk of death along the hurricane coasts, in
rural areas, and in the South – all areas prone to natural
hazards as well as significant population growth and
expansion throughout the study period. However, the
interpretation of these patterns reveals the problems asso-
ciated with rare causes of death. Using this analysis as a
blueprint for hazard mortality 'hot spots' supports justifi-
cation for a more in-depth study of hazard- induced
deaths in specific regions or communities. It is at this local
scale where defining the deadliest hazard becomes impor-
tant and emergency management officials can take action
to try to reduce the number of future deaths.

There are limitations to this study (and others that study
mortality from a rare cause of death) that are worth not-
ing. First, we were able to visualize the spatial variation of
hazard related deaths for our study period for the entire
U.S., but in any given year or in any given county, very few
if any deaths may occur. This rarity of occurrence pre-
vented our analysis from providing detailed information
on hazard-specific mortality rates or SMRs. Calculation of
such measures would be highly unstable due to the mini-
mal number of deaths in many counties [See [4]]. Second,
there are limitations in the original data sources as noted
earlier.

This paper provides the foundation of a solid understand-
ing of the geography of hazard related mortality over time.
Future research can use this information to study specific
areas of elevated hazard mortality, and study its correlates
in different areas. Ultimately, greater local knowledge
about which types of hazards are deadliest in different
geographic regions is useful information for strategies
aimed at reducing the risk of death from natural hazards.

Table 4: Matching hazard categories between SHELDUS and 
Thacker et al. (2008)

Thacker Category SHELDUS Category

Cold Winter Weather
Heat Heat
Lightning Lighting
Storms/floods Coastal

Flooding
Hurricane/Tropical Storm
Severe Storm/Thunderstorm
Tornado

Earth Movements Avalanche
Earthquake
Landslide
Volcano
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Comparison of deaths by hazard type using Thacker et al. 2008 (A) and SHELDUS (B)Figure 5
Comparison of deaths by hazard type using Thacker et al. 2008 (A) and SHELDUS (B).
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The over-arching contribution of this work is not to com-
pare and contrast datasets, or even create the "best" possi-
ble map of hazard deaths. Rather, this work enables
research and emergency management practitioners to
examine hazard deaths through a geographic lens. Using
this as a tool to identify areas with higher than average
hazard deaths can justify allocation of resources to these
areas with the goal of reducing hazard deaths. One logical
avenue in achieving this goal is to assess the efficacy of
information dissemination from emergency managers to
the public. An important question is whether people in
areas of high mortality know what to do (or what not to
do) when a hazard event occurs. Improved understanding
of how to react in a hazard event will contribute to
reduced deaths from hazard events in high-mortality
areas.
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