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Abstract
Background: We conducted spatial analyses to determine the geographic variation of cancer at the neighbourhood 
level (dissemination areas or DAs) within the area of a single Ontario public health unit, Wellington-Dufferin-Guelph, 
covering a population of 238,326 inhabitants. Cancer incidence data between 1999 and 2003 were obtained from the 
Ontario Cancer Registry and were geocoded down to the level of DA using the enhanced Postal Code Conversion File. 
The 2001 Census of Canada provided information on the size and age-sex structure of the population at the DA level, in 
addition to information about selected census covariates, such as average neighbourhood income.

Results: Age standardized incidence ratios for cancer and the prevalence of census covariates were calculated for each 
of 331 dissemination areas in Wellington-Dufferin-Guelph. The standardized incidence ratios (SIR) for cancer varied 
dramatically across the dissemination areas. However, application of the Moran's I statistic, a popular index of spatial 
autocorrelation, suggested significant spatial patterns for only two cancers, lung and prostate, both in males (p < 0.001 
and p = 0.002, respectively). Employing Bayesian hierarchical models, areas in the urban core of the City of Guelph had 
significantly higher SIRs for male lung cancer than the remainder of Wellington-Dufferin-Guelph; and, neighbourhoods 
in the urban and surrounding rural areas of Orangeville exhibited significantly higher SIRs for prostate cancer. After 
adjustment for age and spatial dependence, average household income attenuated much of the spatial pattern of 
lung cancer, but not of prostate cancer.

Conclusion: This paper demonstrates the feasibility and utility of a systematic approach to identifying 
neighbourhoods, within the area served by a public health unit, that have significantly higher risks of cancer. This 
exploratory, ecologic study suggests several hypotheses for these spatial patterns that warrant further investigations. 
To the best of our knowledge, this is the first Canadian study published in the peer-reviewed literature estimating the 
risk of relatively rare public health outcomes at a very small areal level, namely dissemination areas.

Background
Interest in mapping and spatial analysis of disease burden
and healthcare utilization has increased substantially
over the past two decades [1-5]. Within local health
authorities (e.g., public health units or PHUs), this inter-
est has shifted from large to small area analyses, in keep-
ing with emerging responsibilities in neighbourhood-
based planning and environmental risk assessment [6-8].
With the increasing availability of data on health and

population characteristics, as well as on environmental
hazards and behavioural risk factors and other determi-
nants of ill-health, PHUs and other agencies now have
access to huge georeferenced data holdings [9-11].
Advances in computing power and the availability of
sophisticated mapping software [12-14], as well as the
public's keen interest in the effects of environmental pol-
lution, add urgency to the use of geographic information
systems in public health [15-19]. The recent introduction
of the Ontario Public Health Standards has reinforced the
importance of PHUs using a "determinants of health"
approach to identifying risk at the local level [6]. For
PHUs, this equates to the examination and understanding
of health status variation across small area geographies to
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tailor public health interventions, address inequities,
reduce risk, and better meet the needs of priority popula-
tions. Health units in Ontario need powerful analytical
tools to meet the growing surveillance requirements of
the new foundational standards. This paper focuses on
cancer incidence mapping within one PHU area.

Disease mapping is often carried out to visualize and
explore spatial variations in risk. This may generate new
causal hypotheses, perhaps to provide an important con-
text for future analytic studies, or it may support program
planning and evaluation. Generally, several goals may be
important for mapping disease risk using choropleth
maps: 1) to accurately estimate the rate or risk within
each area; 2) to discover spatial patterns or clusters in the
data, whether for unusually high or low rates; and 3) to
compare the pattern between maps [20-22]. It is impor-
tant to note that no single approach is generally optimal
for all goals; thus, prioritization may be important in
planning the spatial analysis [21,22]. Here, we define a
cluster as one or more contiguous areas (dissemination
areas or DAs) having an excess of cases indicated by ele-
vated standardized incidence ratios (SIR) and relatively
high probabilities of exceeding background estimates of
risk, as determined from a hierarchical Bayesian model
[3,23]. It is the aim of this paper to illustrate the feasibility
and utility of generating informative maps of the spatial
pattern of public health problems at the small area level,
within a single PHU area, using various types of cancer as
examples.

Methods
Data Sources
Four data types are typically required to conduct geo-
graphic analysis of disease risk: (1) health outcome data;
(2) potentially explanatory covariate data; (3) geographic
boundary files; and (4) population data. A description of
these four data types follows.
Incident cancers
All incident cancers from 1999 through to 2003, used as
numerator data, were obtained from The Ontario Cancer
Registry (OCR), administered by Cancer Care Ontario.
The OCR is a passive registry that covers the entire prov-
ince, capturing all new cases of invasive neoplasia, except
for non-melanoma skin cancers. In terms of complete-
ness of case ascertainment, an independent field study
conducted in 2002 estimated that completeness of histo-
logically confirmed cases was 98.5% [24]. Completeness
of the 6-digit postal code describing residence at the time
of diagnosis was 97.9%, for cases incident over the inter-
val 1999-2003. It should be noted that information on
race and ethnicity are absent from the OCR, and stage at
diagnosis was only captured for a minority of registered
cases over the period of inquiry. Further details about the
operation of the OCR, and data quality, can be found in a

recent monograph [25]. First and later primary cancers
were included in the analyses described in this paper.

Geocoding of the incident cancer file was done using a
postal code conversion file (PCCF+ Version 4J) [26]. This
conversion file assigns a full range of geographic identifi-
ers, based on the 2001 Canadian Census. Statistics Can-
ada classifies Canadian geography using two systems; the
Standard Geographic Classification (SGC) [27] and the
Statistical Area Classification (SAC) [28]. The SGC is a
hierarchical classification that breaks down provinces
and territories into census divisions (CDs), CDs into cen-
sus subdivisions (CSDs), and CSDs into DAs. DAs are the
smallest geographic unit at which Statistics Canada
reports complete census information and typically con-
sists of between 400 and 700 people [29]. The SAC is also
used for data dissemination purposes and breaks down
urbanized areas of Canada into census metropolitan
areas (CMAs), census agglomeration areas (CAs), census
tracts (CTs) and DAs. For valid postal codes, PCCF+ can
assign geographic codes accurately [26]. Where postal
codes serve more than one DA, which occurs in both
rural and urban areas of Canada, postal codes are
assigned to DAs based on an unbiased, population
weighted random allocation method. In cases where valid
postal codes cannot be used to assign the full range of
geographic identifiers, the first two or three characters in
the postal code are used to assign partial geography.

PCCF+ also assigns the Neighbourhood Income Quin-
tile (QAIPPE) [26]. The Neighbourhood Income Quintile
used in this study is based on the average 2000 income
per single-person equivalent for 2001 DAs. The quintile
value assigned to a given DA is based on the distribution
of average household income values of DAs that fall
within the local census CMA or CA, or among those DAs
that fall outside the boundaries of any CMA/CAs [30].

Cancer sites were selected for the four most common
incident cancers and those sites for which statistically sig-
nificant spatial aggregation was reported in recent Cana-
dian cancer atlases (Additional file 1 - Table S1 lists the
sites) [31,32]. For each site, the indirectly adjusted SIRs
and 95% confidence intervals were calculated for the total
study area (Wellington-Dufferin-Guelph or hereafter,
WDG), using DA-coded case data and all Ontario as the
comparator [33]. Since the Besag-York-Mollié (BYM)
model [13] (described in Additional file 2 - Appendix A),
is time consuming to apply to many sites, we first utilized
Moran's I to test the spatial distribution of the observed
SIR values for spatial autocorrelation (Additional file 1 -
Table S1) [34-37]. Those sites with statistically significant
one-tailed p-values (p < 0.002, adjusted for 24 tests using
Bonferroni correction) and positive values of Moran's I
were then analyzed with the BYM model to better esti-
mate areal rates and visualize spatial patterns.
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Geographic Boundary Files
The geographic boundary files used for analysis in this
paper are electronic map layers based on each of the hier-
archical divisions in the SGC and SAC classifications
described above. These boundary files were obtained
from the Public Health Agency of Canada [38] and were
formatted for use within the Rapid Inquiry Facility (RIF)
(see data processing below) and WinBUGS (Bayesian
inference Using Gibbs Sampling, running under Micro-
soft Windows) [39,40] to characterize and visualize the
areas of interest.
Populations
Ontario population counts, stratified by five-year age
groups (0 to 85+), sex, and various geographic areas
described above, were obtained from the Statistics Can-
ada 2001 Census. These Ontario population data were
used to calculate indirectly standardized rate ratios.

Data Processing
The RIF Version 3.12, developed by the Small Area
Health Statistics Unit at Imperial College London, is an
extension to ArcGIS Desktop [12]. Designed for spatial
surveillance through the creation of disease maps, and for
assessment of health risks related to environmental haz-
ards, the RIF uses open database connectivity to calculate
directly and indirectly standardized rates and rate ratios
by user-selected geographic areas [41]. The geographic
areas available for our analyses were defined during the
creation of the RIF database, which may be in either
Microsoft Access or Oracle. Additionally, the RIF inter-
faces with WinBUGS and SaTScan to provide Bayesian
hierarchical smoothing and cluster identification, respec-
tively [39,42]. The SIRs by 2001 DA for the WDG study
area were calculated using the RIF [41], and BYM spatial
smoothing was performed using the RIF interface with
WinBUGS. Final map production was performed using
ArcGIS Desktop version 9.3 [43]. In testing for spatial
clustering, our null hypothesis was that the SIRs at the
DA level were independent; our alternate hypothesis was
that the SIRs at the DA level were clustered, where spatial
covariance was stationary throughout the study area.

Moran's I was calculated for the distribution of SIRs to
assess the overall spatial correlation between neighbour-
ing DAs, while adjusting for population density [35-37].
Moran's I ranges from -1 to +1, with a positive/negative
sign representing positive/negative spatial autocorrela-
tion and zero representing no spatial autocorrelation [44].
While testing for spatial autocorrelation is typically per-
formed with the asymptotic normal distribution of
Moran's I test statistic, this assumption of normality is
often not satisfied [45]. Thus, we implemented a para-
metric bootstrap Moran's I from the DCluster package in
R using the observed and expected counts for each DA
[36]. Sample code is provided in Additional file 3 (Appen-

dix B). This implementation of Moran's I simulated the
observed values for each DA, based on the Poisson distri-
bution, to calculate the likelihood of the observed pattern
occurring randomly. Thus, Moran's I provides both a test
of significance and measure of the strength of clustering
or dispersion. First-order neighbours were used for con-
sistency with the definition of neighbours used in the
BYM model and were favoured over distance-based
neighbours given the large variation in geographic size of
the DAs resulting from the mix of rural and urban envi-
ronments in the study area.

Estimation of Small Area Relative Risk
The observed count Yi of incident cases in area i is influ-
enced by the age- and sex-adjusted expected count Ei and
the area's relative risk, θi. The RIF computes the Ei from
the vector Pi of age- and sex-specific population counts of
area i, and a vector of estimated rates, ψ for each of these
groups, with Ei = Pi'ψ. The age- and sex-specific rates ψ
are estimated using the Ontario-wide dataset for the
same time period. Within the RIF, when an explanatory
variable is included (e.g., average household income), this
variable must be categorical (quintiles in this paper) and
the incidence rate is calculated for each age/sex/income-
quintile group. The Ei are then calculated as above.

As the number of cases in an area is often small and the
outcome rare, the case counts are modeled with a Poisson
distribution with

the maximum likelihood estimate of θi is known as the
Standardized Incidence Ratio, θi = Yi/Ei. However, the
small counts for the Yi typically make the SIRs unreliable
with a large proportion of zeros; often, the most extreme
risks present in small regions with low Ei and one
observed incident case. To overcome this problem, a spa-
tial random effects model is specified.

The simplest and most commonly used spatial model
for disease mapping applications is the BYM model,
which models the risk in a hierarchical Bayesian fashion,
incorporating appropriate random effects terms for both
spatially correlated and uncorrelated random errors
[13,15,23,46-48]. Further details about the BYM model
we employed is described in Additional file 2 (Appendix
A), along with explanatory notes. This model is in a form
that supports Bayesian inference with the software pack-
age WinBUGS, which uses a Markov chain Monte Carlo
algorithm with Gibbs sampling [39,40]. Model fitting was
carried out using three separate chains starting from dif-
ferent initial values. Convergence was checked by visual
inspection of time series plots of samples of: SIRs; auto-
correlations; standard deviations of the spatial and non-

Y Ei i i~ ( );Poisson q
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spatial random effects; and by computing the Gelman-
Rubin diagnostic [49,50]. The first 100,000 samples from
each chain were discarded as burn-in. Then, each chain
was run for a further 1,000,000 iterations, with every
200th sample saved, yielding a total simulation of
3,000,000 iterations and 15,000 simulations to summa-
rize.

The predicted SIRs were calculated as the means of the
posterior distributions for each area, along with their 95%
credible intervals; the probability of each area having
above-average risk (i.e., SIR>1.0) was also computed. The
fraction of the variation in risk that could be attributed to
the spatial component was also estimated along with a
95% credible interval. We utilized elliptical analysis with
the spatial scan statistic (SaTScan) to corroborate find-
ings from the BYM model, with the intent to show results
from a commonly used package for spatial analysis with
which readers are likely familiar [42]. The added value of
the BYM model lies in the ability to map the smoothed
rates to display underlying spatial patterns that may exist
in the data.

Presentation of Results
Since colour scheme influences pattern recognition and
map readability, and diverging and sequential colour
schemes provide better recognition of clustering, we used
a red-grey scheme, where red hues represent higher rates,
grey shades represent lower rates, and white represents
rates comparable to the reference population's rates
[51,52]. We overlaid a layer of cross-hatching to indicate
the statistical significance of the SIR estimates, an
improvement to basic choropleth mapping [52].

While there is some evidence that quantile classifica-
tions provide more accurate interpretation of individual
values and improve pattern recognition, we used consis-
tent legend class intervals to facilitate between map com-
parisons [52,53]. Seven classes are used in our choropleth
maps - the recommended maximum number of classes
[52]. As we are mapping SIRs, a natural class centred
about 1.0, a diverging colour scheme that divides risks
into high and low classes is suitable. Class break points
were selected by examining the distribution of the raw
and smoothed SIRs and rounding the break points to
intuitive levels.

A box-plot (Figure 1), is used to display the distribution
of SIRs at the DA level and the shrinkage in these esti-
mates through fitting the BYM model.

Results
The area served by WDG Public Health is displayed in
Figure 2. It comprises 0.5% of the land area of Ontario,
and 2.1% of the population, as of the 2001 Census of Can-
ada (see Additional file 4 - Table S2). In terms of land use,
approximately 2.9% of WDG land area is designated as

urban (containing 61.5% of the WDG population), and
97.1% as rural (containing 38.5% of the WDG population)
[54].

Figure 1 Box plot of SIR variation at the DA level for male lung 
cancer and prostate cancer raw SIRs, BYM smoothed SIRs and 
household income adjusted, BYM smoothed SIRs. The length of 
the rectangular box represents the interquartile range (25th percentile 
to the 75th percentile), the line in the box represents the median value, 
the filled circles within the box represent the mean value, the lower 
whisker extends to the first quartile minus 1.5 times the interquartile 
range, the upper whisker extends to the upper quartile plus 1.5 times 
the interquartile range, the unfilled circles represent those data points 
that are beyond the upper whisker, and the dashed line at 1.0 repre-
sents the provincial average. The y-axis scale was reduced to improve 
the visibility of the box plot, and resulted in the removal of three ex-
treme values from LungSIR and one extreme value from ProstateSIR.
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Figure 2 Wellington-Dufferin-Guelph Health Unit location.
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The City of Guelph and the Town of Orangeville are the
most populous centres, comprising 45% and 11% of the
WDG population respectively. These urban centres are
located only 99 km and 84 km respectively from Toronto,
Canada's largest municipality. The entire land area of
WDG is divided into 331 DAs, of which all but 8 are pop-
ulated or have sufficient age-sex data available from the
2001 Census. In terms of average annual household
income, a larger proportion of the WDG population is in
the highest income quintile relative to Ontario as a whole
(see Additional file 4 - Table S2). Further, within WDG,
the rural areas of Wellington County (excluding Guelph)
and Dufferin County (excluding Orangeville) are charac-
terized by a larger proportion of the population in the top
two income quintiles relative to Guelph and Orangeville.

The frequency of select sites of incident cases diag-
nosed in WDG over the interval 1999-2003 is shown in
Additional file 1 (Table S1). These sites were selected
from recent atlases in which statistically significant spa-
tial aggregation was reported at the census division level
[31,32]. Not surprisingly, the number of incident cases
occurring within each DA is low, with a median value of
zero for all but the four commonest cancers. The SIR for
all DAs combined within WDG is significantly different
from unity only for female cutaneous melanoma (SIR =
1.33; 95% CL 1.10-1.61), relative to Ontario as a whole. In
terms of spatial autocorrelation, the Moran's I statistic
(bootstrapped) is significantly different from zero only
for male lung (p < 0.001) and prostate cancer (p = 0.002).
Moran's I provided a rapid assessment of those cancer
sites which most likely exhibited distinct spatial patterns;
thus, the computation-intensive BYM [13] models for
disease mapping were reserved for those sites where clus-
tering was most likely to be occurring.

Figure 3 is a map of average annual household income
at the DA level for the year 2000. The Moran's I value of
0.46 (p < 0.001) is indicative of strong spatial association.
Visually, average household income appears higher in the
non-urban areas surrounding Guelph and Orangeville.
This is confirmed in Additional file 4 (Table S2). This
finding is important because of the strong association
between household income (whether an individual or
areal measure) and other measures of socio-economic
status, and certain behavioural factors known to be asso-
ciated with cancer risk (e.g., smoking, obesity, physical
inactivity and screening behaviour) [55-57].

Male lung cancer smoothed risk ratios are displayed in
Figure 4. The original raw SIR map is not shown, both
because of residual risk of disclosure and because the
map is visually uninformative due to the instability of SIR
estimates. The raw SIR estimates input to the fully hierar-
chical Bayesian BYM model have undergone substantial
smoothing, illustrated in Figure 1, largely because of
strong spatial autocorrelation. This is evidenced by the

high value for the spatial fraction of the modeled random
variation, 93.5% (95% CI 43.8 - 99.9%). In the northeast
sector of Guelph, 63 of 94 DAs (67%) exhibit SIRs with
posterior probabilities of 0.80 or higher (i.e., relative to
the rate of lung cancer in Ontario males). Elliptical
SaTScan [42] analysis of the original raw SIRs also con-
firms a cluster in this same sector of Guelph (figure not
shown), including 67 contiguous DAs (SIR = 2.2, relative
to the remainder of WDG, p = 0.001; SIR = 1.53 relative
to Ontario, p < 0.001; Obs = 107 cases).

Adjustment of these SIR estimates by average annual
household income quintile shows considerable attenua-
tion in the range of SIR values (see Figures 1 and 5), now
with only one DA in the northeast sector of Guelph dis-
playing an increased SIR with an exceedence probability
of > = 0.80. Of relevance, the spatial pattern of SIRs for
female lung cancer did not show any evidence of spatial
structure association, whether unadjusted or adjusted for
household income (not shown). Further, comparison of
smoothed areal risk estimates of male oropharyngeal,
laryngeal, esophageal, bladder and renal cancers with
lung cancer failed to show any correlation, other than for
upper aero-digestive cancers combined (Spearman's rank
correlation coefficient, r = 0.48; p < 0.0001).

Prostate cancer risk in males, output from the BYM
model, is displayed in Figure 6. Similar to male lung can-
cer, the raw SIRs have undergone substantial smoothing,
largely because of strong spatial autocorrelation (see Fig-
ure 1). In the Town of Orangeville, and its suburban and
rural surroundings stretching north to Dundalk and
south beyond Erin, 57 of 74 DAs (77%) are displaying
higher SIRs with exceedence probabilities > = 0.80. Again,
elliptical SaTScan analysis corroborates this finding, with
detection of a statistically significant cluster of 58 contig-
uous DAs, in Orangeville and its surroundings (combined
SIR = 1.9 relative to the remainder of WDG; p = 0.001;
SIR = 1.53 relative to Ontario, p < 0.001; Obs = 227 cases).

Adjustment of these SIR estimates for prostate cancer
by average household income quintile shows minimal
attenuation in the range of SIR values, with a spatial pat-
tern little changed from the original Bayesian analysis
(see Figures 1 and 7).

Discussion
Within WDG, it is noteworthy that a significantly higher
risk of lung cancer (SIR = 1.53) exists in a substantial sec-
tion of the City of Guelph, in spite of an overall deficit in
risk across all WDG (SIR = 0.85). The dramatic attenua-
tion in this spatial pattern as a result of adjustment for
household income supports the hypothesis that higher
rates of smoking, historically, may be the predominant
causal factor, as opposed to local factors in the ambient
environment. Unfortunately, smoking prevalence esti-
mates collected in population sample surveys are unable
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to confirm this hypothesis, as they typically report only at
the much larger PHU area level [58]. However, the simi-
larity in spatial pattern for upper aero-digestive cancers
(oropharynx, esophagus and larynx), also known to be
associated with tobacco consumption [59], supports this
hypothesis. The lack of a similar spatial pattern for female
lung cancer may simply reflect the later evolution of
tobacco consumption in females, and the long delay in
appearance of associated solid tumours [60].

It should be noted that north Guelph had a strong man-
ufacturing presence for many decades, with about 25% of
the Guelph workforce employed in such manufacturing
sectors as transportation, equipment, machinery and fab-
ricated metal, wood, electrical and chemical production
[61]. Of note, an iron foundry opened in 1912 and was in

continuous operation up until 1989, when it abandoned
its operation in north Guelph leaving behind extensive
pollution on its 13 acre site [62]. Finally, the existence of a
large cigarette manufacturing facility for nearly 50 years
in north Guelph also adds credence to the hypothesis of a
high prevalence of smoking among local residents, many
of whom likely worked at this facility [63].

The data used from the cancer registry are somewhat
dated, and it will be informative to compare our findings
with more recent data, soon to be available for the period
2004-2008. Additionally, while we did examine spatial
patterns of other tobacco-associated cancers in men, the
associations with lung cancer were not consistent, possi-
bly because of the multifactorial etiology of these other
sites. Newer methods of joint pattern analysis, whether

Figure 3 2000 Average household income by 2001 DA, WDG. Moran's I: 0.46 (p < 0.001).
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spatial or spatio-temporal, may permit partitioning the
underlying risk surface into shared and disease-specific
components, thereby providing more convincing evi-
dence of real clustering [64,65]. Extension of Bayesian
spatio-temporal models to joint spatio-temporal models
will permit the comparison of patterns where the effects
may lag more in one group than another, as we hypothe-
size for female lung cancer [60].

Our finding of a significantly higher risk of lung cancer
in one part of Guelph demonstrates that the a priori iden-
tification of a local cluster, in the presence of plausible
risk factor attribution, can serve as a useful basis for

focused follow-up investigation and possible interven-
tions (e.g., local smoking cessation services) [66,67].

Detection of a significantly higher risk of prostate can-
cer in the Town of Orangeville and its surroundings was
an unexpected finding in our analysis (SIR = 1.53). In
terms of potential explanatory factors, there are no
known etiologic factors that have as strong an association
as smoking and lung cancer. Prior to the prostate-specific
antigen (PSA, a screening test for detection of prostate
cancer) era, studies of the possible association between
socioeconomic status (SES) and prostate cancer were
inconsistent; however, since the introduction of PSA

Figure 4 Male lung cancer incidence 1999-2003 (337 observed cases), WDG, full Bayesian smoothing, by 2001 DA. Total: 331 DAs; Overall SIR: 
0.79 (95% CI: 0.70-0.90); WinBUGS fracspatial: 0.94 (95% CI: 0.44-1.00). Indirectly standardized incidence ratios calculated for all ages, using Ontario age-
specific rates, 1999-2003. Full Bayesian smoothing using the BYM model [13]. Excludes 3.1% of male lung cancer cases with missing or invalid residen-
tial postal code at diagnosis.
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screening in the late 1980s, a positive correlation is now
being reported more consistently, particularly in the
U.S.A. [68-71]. Our adjustment of SIR estimates for
neighbourhood income did not influence the spatial pat-
tern much, perhaps because SES is not related to prostate
cancer incidence in Ontario, or perhaps average house-
hold income quintile is not the ideal measure for SES. A
plausible hypothesis would be that PSA testing of older
men was more prevalent in the Orangeville area, leading
to more timely detection of prostate cancer, in both clini-
cally apparent and indolent forms. This is a common
hypothesis held by others in explaining recent spatial pat-

terns of prostate cancer [72-74]. Unfortunately, no infor-
mation about PSA testing exists during this period of
time to confirm this. While patients did not necessarily
pay for PSA screening, it was an uninsured test over this
period and payment largely depended on the type of labo-
ratory processing the specimen [75]. It should be noted
that the apparent size of this cluster of cases argues
against local environmental sources as causal agents.
There seems to be little difference in risk, whether men
live in urban or rural areas.

Finally, it will be useful to monitor this cluster more
closely, perhaps confirming initially its persistence in the

Figure 5 Male lung cancer incidence 1999-2003 (333 observed cases), WDG, full Bayesian smoothing and adjusted for average household 
income quintiles, by 2001 DA. Total: 331 DAs; Overall SIR: 0.91 (95% CI: 0.80-1.01); WinBUGS fracspatial: 0.61 (95% CI: 0.01-1.00). Indirectly standard-
ized incidence ratios calculated for all ages, using Ontario age-specific rates, 1999-2003, adjusted for average household income quintiles (2001 Cen-
sus DAs). Full Bayesian smoothing using the BYM model[13]. Excludes 3.1% of male lung cancer cases with missing or invalid residential postal code 
at diagnosis and 1.2% of cases due to suppressed income data for the 2001 Census.
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more recent period, 2004-2008, once these cancer data
are available. With the recent decision of the Government
of Ontario to permit labs to bill the Provincial Health
Plan for PSA screening, we may soon have georeferenced
data on PSA testing and be able to adjust our analysis
accordingly [76]. Finally, in order to sort out whether this
excess is mostly attributed to the more indolent form of
prostate cancer, spatial analysis using georeferenced mor-
tality data for prostate cancer would be useful, given that
stage at diagnosis was incomplete for cases registered in
the OCR up to 2006. From 2007 and on, though, efforts

are now being made to capture stage with sufficient com-
pleteness to support population studies.

DAs, CTs and other small administrative or statistical
areas have traditionally been viewed as less than optimal
for spatial analysis, because of their variability in size
(geographic and demographic), and inconsistency over
time. CT coverage is incomplete outside urban areas. For
example, in Ontario, approximately 20% of the popula-
tion, living across 96.6% of the land area of Ontario, are
not included in CTs [6]. For DAs, population coverage is
complete, but census data are suppressed or rounded
because of confidentiality concerns. In the Canadian cen-

Figure 6 Prostate cancer incidence 1999-2003 (735 observed cases), WDG, full Bayesian smoothing, by 2001 DA. Total: 331 DAs; Overall SIR: 
0.90 (95% CI: 0.82-0.98); WinBUGS fracspatial: 0.90 (95% CI: 0.46-1.00). Indirectly standardized incidence ratios calculated for all ages, using Ontario age-
specific rates, 1999-2003. Full Bayesian smoothing using the BYM model[13]. Excludes 1.4% of prostate cancer cases with missing or invalid residential 
postal code at diagnosis.
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sus, suppression of data at the DA level occurs if the DA
has less than 250 persons and/or 40 households, depend-
ing on the census data topic. Conceptually, uniform grid
squares may be the statistical ideal, but in practice it is
often very difficult to accurately match source data with
these units [77,78]. Most typically, in Canada, the 6-digit
alphanumeric postal code is now available in disease reg-
istries and health encounter files. Exact physical locations
(e.g. civic addresses) of principal residence and worksite
are usually not captured in these databases, although they
may be captured in other administrative files, such as
municipal property files and national tax files. The ready

availability of conversion software does facilitate the link-
age of postal codes to physical coordinates, albeit not
without some error, particularly in rural areas [26].

A concern often raised about the SIR is that two or
more small areas may not be directly comparable since
they are not based on the same standard population [79].
In practice, these comparisons will only be misleading if
the age structure of these populations are extremely dis-
parate [80]. Jarup and Best conclude that the imprecision
of the directly standardized ratio is a far more serious
problem [77].

Figure 7 Prostate cancer incidence 1999-2003 (723 observed cases), WDG, full Bayesian smoothing and adjusted for average household 
income quintiles, by 2001 DA. Total: 331 DAs; Overall SIR: 0.90 (95% CI: 0.82-0.98); WinBUGS fracspatial: 0.92 (95% CI: 0.51-1.00). Indirectly standard-
ized incidence ratios calculated for all ages, using Ontario age-specific rates, 1999-2003, adjusted for average household income quintiles (2001 Cen-
sus DAs). Full Bayesian smoothing using the BYM model[13]. Excludes 1.4% of prostate cancer cases with missing or invalid residential postal code at 
diagnosis and 1.6% of cases due to suppressed income data for the 2001 Census.

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
Erin

Mono

Acton

Minto

Fergus

Guelph

Elmira

Durham
Hanover

Dundalk

Waterloo

Listowel

Markdale

Cambridge

Kitchener

Huron East

Orangeville

New Hamburg

Mount Forest

Saugeen Shores

SIR* by 2001 DA (# DAs)

0 - 0.50 (0)
0.51 - 0.80 (65)
0.81 - 0.95 (130)
0.96 - 1.04 (32)

1.05 - 1.19 (28)
1.20 - 1.49 (38)
1.50 + (13)

Insuff. data (25)

Municipal Boundary

Posterior Probability

0.80 - 0.89
0.90 - 0.94

0.95 - 1.00

²
0 10 km

UV7

UV6Guelph Inset

UV9

UV10
Orangeville Inset



Holowaty et al. International Journal of Health Geographics 2010, 9:21
http://www.ij-healthgeographics.com/content/9/1/21

Page 11 of 14
Caution must be exercised with regards to the potential
for and impact of over-stratification in disease mapping
studies. For disease mapping models it is key to have reli-
able age- sex- and covariate-specific rates for the refer-
ence region, since these are in turn projected onto the
area-specific populations also stratified by age, sex and
covariates(s) and used to calculate expected values and
SIRs. Adding relevant stratification variables further
reduces the reference population in each cell. If the stra-
tum-specific reference disease rates are unstable due to
low counts this will generate unreliable expected values
and standardized incidence ratios. To avoid problems of
over stratification we recommend: 1) using a suitable
time period for the analysis such that the size of the pop-
ulation in both the numerator and denominator are suffi-
cient; 2) using a considerably large enough geographic
area as a reference population for the same reasons as in
point 1; and 3) using a small number of covariates that are
known to have a significant impact on the disease in
question. Users should still be aware that under certain
conditions, such as with very rare diseases, instability
may still arise due to over-stratification. It is evident that
further research is needed to assess the minimum stra-
tum-size to guarantee the reliability of these estimates.

Concern has also been raised that hierarchical Bayesian
random effects models, particularly the commonly used
BYM model, may over-smooth the variation in disease
risk, particularly if the data are sparse [81,82]. That is,
true clusters may have been smoothed away. Jarup urges
caution in over-interpreting small area maps, whether
smoothed or not, and whether the pattern shows a lack of
spatial variation, or the opposite [77].

More recent work with simulation modelling has con-
firmed that the BYM model is conservative, with lower
sensitivity at detecting areas with truly raised relative
risks in the moderate range (i.e., 1.5-2.0). However, speci-
ficity is very high, even where data are sparse, reducing
the risk of false alarms [23,46]. Richardson concludes that
reasonable sensitivity (e.g., BYM model posterior proba-
bilities of at least 70-80%) can be achieved for a range of
cluster scenarios having SIRs in the moderate range (1.5-
2.0) and moderate expected counts (~20). For areas with
larger SIRs (~3.0), the likelihood of detection is high,
even with small expected counts (~5), although the mean
SIR is typically smoothed to half of the true value [23].
Thus, in our study, while it seems there was low sensitiv-
ity for detecting individual DAs of truly excess risk, the
large size of the clusters of lung and prostate cancers we
did detect, with 60 and 140 expected cases, respectively,
suggests we had considerable study power to detect clus-
ters of this size.

We believe that Moran's I and the spatial scan statistic
(SaTScan), if used in conjunction with Bayesian smooth-
ing, can strengthen spatial analysis. Moran's I provides a

useful screen of the entire study area for spatial aggrega-
tion, and the spatial scan statistic is useful for identifying
contiguous areas of statistically elevated risk, with sup-
porting evidence from the Bayesian posterior distribution
to help identify those individual areal units that contrib-
ute most strongly to the observed cluster [72]. Addition-
ally, the Bayesian model is useful for providing more
accurate, area-specific estimates of risk, for visualizing
spatial patterns across the entire study area to create
informative maps, and for estimating the effect of possi-
ble confounders on the spatial patterns [1-3,83,84].

In terms of the three goals for disease mapping using
choropleth maps stated previously, our approach demon-
strates the difficulty in finding a single optimal solution
[83,84]. Clearly, we have been successful at producing
more stable, accurate estimates of the underlying risk at
the DA level, employing the BYM model. We have also
been successful in detecting relatively large aggregations
representing contiguous DAs where the risk of prostate
cancer and male lung cancer are moderately high, in spite
of the larger areal (WDG) risk estimates being lower than
expected.

We acknowledge the sensitivity is quite low for detect-
ing individual DAs with significantly higher, or lower,
risks. Clearly, if the aim of our study was to estimate risk
about a local point source of concern, then this disease-
mapping approach is not optimal, and focused models
that make use of additional information about proximity
and/or exposure levels are required.

Finally, we recognize that our approach to assessing the
shared spatial component of tobacco-associated cancers
was not optimal. In the future, we will have to develop
useful joint spatial and spatio-temporal Bayesian models
to evaluate the similarity of spatial patterns, and better
understand the long latencies and lags in relation to the
etiology of most tumours [60,64,65].

Traditionally, maps of disease risk mostly show point
estimates, without confidence intervals, displayed in the
form of quantiles on choropleth maps [53]. Statements
about uncertainty in these maps may be buried in foot-
notes or in the methods section. A possible solution, as
we have provided here, is to map the posterior probabili-
ties that an area exceeds a pre-specified threshold [41].
This may be presented on a separate map, or overlaid on
the original choropleth map. It is quite apparent that sen-
sitivity in detecting areas of higher, or lower, risk is sub-
stantially improved by exploiting the whole posterior
distribution, rather than just mapping the mean values of
the posterior distribution [23].

Conclusions
This paper demonstrates the feasibility and utility of a
standardized approach to identifying spatial clusters of
neighbourhoods that have significantly higher risks of
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cancer while reducing noise in the small area estimates.
This exploratory, ecologic study offers several hypotheses
for the spatial patterns we identified within the area
served by a Canadian public health unit. To the best of
our knowledge, this is the first Canadian study published
in the peer-reviewed literature estimating the risk of rela-
tively rare public health outcomes at such a small areal
level, namely the dissemination area.

While we restricted the use of the BYM Bayesian model
to those cancers most likely to display evidence of spatial
clustering (according to Moran's I statistic), we recognize
that this mapping method is valuable for reducing noise
in small area analysis, even in the absence of spatial auto-
correlation. It provides useful smoothing or stabilizing of
risk estimates, particularly where risks are extreme but
highly uncertain, because of small observed and expected
counts.

We believe the methods and tools needed to support
small area analysis of public health outcomes and inter-
ventions are now readily available. However, data access
and skillful spatial analysis may be important limitations
for many public health units. Thus, a central public health
infra-structure should be considered for necessary train-
ing and support, and for the construction and mainte-
nance of a readily accessible integrated geodatabase,
housing: relevant health outcomes; risk factors, interven-
tions and other determinants of health; environmental
hazards and exposures; and the requisite population and
demographic data.

Approvals
Research Ethics
The research presented here was approved by Ontario
Cancer Research Ethics Board on June 7, 2007 (OCREB
#07-012).

Privacy
This manuscript was reviewed by the Privacy Office at
Cancer Care Ontario on February 25, 2010. In accordance
with Personal Health Information Protection Act (PHIPA)
legislation, to which Cancer Care Ontario is subject, the
manuscript is in keeping with respect for personal pri-
vacy, safeguarding of confidential information, and the
security of personal health information and thus does not
possess any issues relating to privacy.

Additional material

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
EH, TN and SW contributed to the conception and design of the study, TN and
SW performed the mapping and statistical analysis, JA and LB provided techni-
cal advice about mapping and spatial analysis, EH prepared the first draft and
all authors contributed to the writing of the manuscript.

Acknowledgements
The authors gratefully acknowledge the help of Lars Jarup, Mattias Andersson, 
and Virgilio Gomez-Rubio, all formerly at the Small Area Health Statistics Unit, 
at Imperial College London and Patrick Brown, a biostatistician at Cancer Care 
Ontario as well as Patrick Seliske, Nicola Mercer and Fatih Sekercioglu at Wel-
lington-Dufferin-Guelph Public Health. The authors also acknowledge support 
from Cancer Care Ontario, The U.S. Centers for Disease Control and Prevention, 
Environmental Public Health Tracking Branch and the Ontario Agency for 
Health Protection and Promotion.
The authors acknowledge financial support from GeoConnections, a national 
program initiative led by Natural Resources Canada. GeoConnections is work-
ing to enhance the Canadian Geospatial Data Infrastructure, an on-line 
resource that enables decision-makers to access, combine, and apply geo-
graphic information to gain new insights into social, environmental, and eco-
nomic issues

Author Details
1Population Studies and Surveillance, Cancer Care Ontario, 620 University 
Avenue, Toronto, Ontario, Canada, 2Dalla Lana School of Public Health, 
University of Toronto, 155 College St., Toronto, Ontario, Canada, 3CIBER 
Epidemiología y Salud Pública (CIBERESP) and Centre for Public Health 
Research (CSISP), Valencia, Spain and 4Small Area Health Statistics Unit, MRC-
HPA Centre for Environment and Health, Imperial College London, UK

References
1. Lawson AB: Statistical Methods in Spatial Epidemiology 2nd edition. 

Chichester, England: John Wiley and Sons; 2006. 
2. Waller LA, Gotway CA: Applied Spatial Statistics for Public Health Data New 

Jersey: John Wiley and Sons; 2004. 
3. Elliott P, Wakefield J, Best N, Briggs D: Spatial Epidemiology: Methods and 

Applications Oxford, England: Oxford University Press; 2006. 
4. Cromley EK, McLafferty SL: GIS and Public Health New York: The Guilford 

Press; 2002. 
5. Maheswaran R, Craglia M: GIS in Public Health Practice Boca Raton, Florida: 

CRC Press; 2004. 
6. Ontario Public Health Standards and Protocols: Documents   [http://

www.health.gov.on.ca/english/providers/program/pubhealth/
oph_standards/ophs/ophsprotocols.html]

7. Odoi A, Wray R, Emo M, Birch S, Hutchison B, Eyles J, Abernathy T: 
Inequalities in neighborhood socioeconomic characteristics: potential 
evidence-base for neighborhood health planning.  Int J Health Geogr 
2005, 4:20.

8. Kistemann T, Dangendorf F, Schweikart J: New perspectives on the use 
of Geographical Information Systems (GIS) in environmental health 
sciences.  Int J Hyg Environ Health 2002, 205(3):169-181.

9. Beyer KM, Rushton G: Mapping cancer for community engagement.  
Prev Chronic Dis 2009, 6(1):A03.

10. Caley LM: Using geographic information systems to design population-
based interventions.  Public Health Nurs 2004, 21(6):547-554.

11. Rushton G: Public health, GIS, and spatial analytic tools.  Annu Rev Public 
Health 2003, 24:43-56.

Additional file 1 Table 1 Cancer Sites. 'Additional file 1 - Table 1: Descrip-
tive Statistics and Moran's I for Cancer Sites Examined in Wellington-Duf-
ferin-Guelph'.
Additional file 2 Appendix A - BYM model. 'Additional file 1 - Appendix 
A: BYM Model in WinBUGS as employed by the RIF'. Annotated WinBUGS 
code for BYM model.

Additional file 3 Appendix B - Moran's I. 'Additional file 1 - Appendix B: 
Parametric Bootstrap Derivation of Moran's I statistic'. R code for derivation 
of parametric bootstrap for Moran's I statistic.
Additional file 4 Table 2: WDG Characteristics. 'Additional file 4 - Table 2: 
Characteristics of Wellington-Dufferin-Guelph'.

Received: 12 March 2010 Accepted: 10 May 2010 
Published: 10 May 2010
This article is available from: http://www.ij-healthgeographics.com/content/9/1/21© 2010 Holowaty et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.International Journal of Health Geographics 2010, 9:21

http://www.biomedcentral.com/content/supplementary/1476-072X-9-21-S1.PDF
http://www.biomedcentral.com/content/supplementary/1476-072X-9-21-S2.PDF
http://www.biomedcentral.com/content/supplementary/1476-072X-9-21-S3.PDF
http://www.biomedcentral.com/content/supplementary/1476-072X-9-21-S4.PDF
http://www.ij-healthgeographics.com/content/9/1/21
http://creativecommons.org/licenses/by/2.0
http://www.health.gov.on.ca/english/providers/program/pubhealth/oph_standards/ophs/ophsprotocols.html
http://www.health.gov.on.ca/english/providers/program/pubhealth/oph_standards/ophs/ophsprotocols.html
http://www.health.gov.on.ca/english/providers/program/pubhealth/oph_standards/ophs/ophsprotocols.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16092969
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12040915
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19080009
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15566560
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12471269


Holowaty et al. International Journal of Health Geographics 2010, 9:21
http://www.ij-healthgeographics.com/content/9/1/21

Page 13 of 14
12. Beale L, Abellan JJ, Hodgson S, Jarup L: Methodologic issues and 
approaches to spatial epidemiology.  Environ Health Perspect 2008, 
116(8):1105-1110.

13. Besag J, York J, Mollie A: Bayesian image restoration, with two 
applications in spatial statistics.  Ann Inst Statist Math 1991, 43:1-59.

14. Martinez-Piedra R, Loyola-Elizondo E, Vidaurre-Arenas M, Aguilar PN: 
Software programs for mapping and spatial analysis in epidemiology 
and public health.  Epidemiol Bull 2004, 25(4):1-9.

15. Wakefield J, Best N, Waller LA: Bayesian approaches to disease mapping.  
In Spatial Epidemiology: Methods and Applications Edited by: Elliott P, 
Wakefield J, Best N, Briggs D. Oxford: Oxford University Press; 2000:104. 

16. Scotch M, Parmanto B, Gadd CS, Sharma RK: Exploring the role of GIS 
during community health assessment problem solving; experiences of 
public health professionals.  Int J Health Geogr 2006, 5:39.

17. Bell BS, Hoskins RE, Pickle LW, Wartenberg D: Current practices in spatial 
analysis of cancer data: mapping health statistics to inform policy 
makers and the public.  Int J Health Geogr 2006, 5:49.

18. Ruiz MO, Remmert D: A local department of public health and the 
geospatial data infrastructure.  J Med Syst 2004, 28(4):385-395.

19. Ghetian CB, Parrott R, Volkman JE, Lengerich EJ: Cancer registry policies 
in the United States and geographic information systems applications 
in comprehensive cancer control.  Health Policy 2008, 87(2):185-193.

20. Pickle LW, Mungiole M, Jones GK, White AA: Exploring spatial patterns of 
mortality: the new atlas of United States mortality.  Stat Med 1999, 
18(23):3211-3220.

21. Shen W, Louis TA: Triple-goal estimates for disease mapping.  Stat Med 
2000, 19(17-18):2295-2308.

22. Paddock SM, Ridgeway G, Lin R, Louis TA: Flexible distributions for triple-
goal estimates in two-stage hierarchical models.  Comput Stat Data An 
2006, 50(11):3243-3262.

23. Richardson S, Thomson A, Best N, Elliott P: Interpreting posterior relative 
risk estimates in disease-mapping studies.  Environ Health Perspect 2004, 
112(9):1016-1025.

24. Holowaty EJ: Ontario case ascertainment study. Presented at the 
International Association of Central Cancer Registries Scientific Conference. 
Havana, Cuba 2001.

25. Holowaty EJ, Chong N: The Ontario Cancer Registry: a registry with 
almost completely automated data collection.  In Automated Data 
Collection in Cancer Registration, IARC Technical Report Volume 32. Edited 
by: Black RJ. Lyon, France: IARC Press; 1998:18. 

26. Wilkins R: PCCF+ Version 4J User's Guide. Automated Geographic 
Coding Based on the Statistics Canada Postal Code Conversion Files, 
Including Postal Codes through September 2006.  Ottawa Health 
Analysis and Measurement Group, Statistics Canada 2007.

27. Census Geography - Illustrated Glossary   [http://
geodepot.statcan.ca.myaccess.library.utoronto.ca/Diss/Reference/COGG/
short_RSE_e.cfm?REFCODE=1&FILENAME=StandardGeographicalClassific
ation&TUTORIAL=0&ABBRV=SGC]

28. Census Geography - Illustrated Glossary   [http://
geodepot.statcan.ca.myaccess.library.utoronto.ca/Diss/Reference/COGG/
Long_Sublevel_e.cfm?REFCODE=1&SUBLEVEL=14&GEO_LEVEL=10&LAN
G=E]

29. Census Geography - Illustrated Glossary   [http://
geodepot.statcan.ca.myaccess.library.utoronto.ca/Diss/Reference/COGG/
ShortDescription_e.cfm?GEO_LEVEL=35&TUTORIAL=1&ABBRV=DA]

30. Borugian MJ, Spinelli JJ, Mezei G, Wilkins R, Abanto Z, McBride ML: 
Childhood leukemia and socioeconomic status in Canada.  
Epidemiology 2005, 16(4):526-531.

31. Marrett LD, Nishri ED, Swift MB, Walter SD, Holowaty EJ: Geographic 
Distribution in Ontario. Vol II: Atlas of Cancer Incidence 1980-1991.  
Ontario Cancer Treatment and Research Foundation, Toronto 1995.

32. Le ND, Marrett LD, Robson DL, Semenciw RM, Turner D, Walter SD: 
Working Group on Geographic Surveillance, Volume 1: Canadian 
Cancer Incidence Atlas.  Health Canada, Ottawa, Ontario 1996.

33. Breslow NE, Day NE: Statistical Methods in Cancer Research: Volume II: The 
Design and Analysis of Cohort Studies Lyon: International Agency for 
Research on Cancer; 1987. 

34. Kulldorff M, Song C, Gregorio D, Samociuk H, DeChello L: Cancer map 
patterns: are they random or not?  Am J Prev Med 2006, 30(2 
Suppl):S37-49.

35. Huang L, Pickle LW, Das B: Evaluating spatial methods for investigating 
global clustering and cluster detection of cancer cases.  Stat Med 2008, 
27(25):5111-5142.

36. Gómez-Rubio V, Ferrándiz-Ferragud J, López-Quílez A: Detecting clusters 
of disease with R.  J Geograph Syst 2005, 7(2):189-206.

37. Jackson MC, Huang L, Luo J, Hachey M, Feuer E: Comparison of tests for 
spatial heterogeneity on data with global clustering patterns and 
outliers.  Int J Health Geogr 2009, 8:55.

38. Public Health Agency of Canada - Public Health Portal   [https://php-
psp.phac-aspc.gc.ca/]

39. Spiegelhalter D, Thomas A, Best N, Lunn D: WinBUGs User Manual 
Version 1.4, January 2003.  .

40. Lawson AB: Bayesian Disease Mapping: Hierarchical Modeling in Spatial 
Epidemiology Boca Raton, Florida: Taylor & Francis; 2008. 

41. Jarup L: Health and environment information systems for exposure and 
disease mapping, and risk assessment.  Environ Health Perspect 2004, 
112(9):995-997.

42. Kulldorff M, Huang L, Pickle LW, Duczmal L: An elliptic spatial scan 
statistic.  Stat Med 2006, 25:3929-3943.

43. ESRI: ArcGIS Desktop.  2009. 9.3.1
44. Bailey TC, Getrell AC: Interactive Spatial Data Analysis New York: Longman; 

1995. 
45. Tiefelsdorf M, Boots B: The Exact Distribution of Moran's I.  Environ 

Planning A 1995, 27(6):985-989.
46. Best N, Richardson S, Thomson A: A comparison of Bayesian spatial 

models for disease mapping.  Stat Methods Med Res 2005, 14(1):35-59.
47. Bithell JF: A classification of disease mapping methods.  Stat Med 2000, 

19(17-18):2203-2215.
48. Lawson AB, Biggeri AB, Boehning D, Lesaffre E, Viel JF, Clark A, 

Schlattmann P, Divino F: Disease mapping models: an empirical 
evaluation. Disease Mapping Collaborative Group.  Stat Med 2000, 
19(17-18):2217-2241.

49. Gelman A, Rubin DB: Inference from Iterative Simulation Using Multiple 
Sequences.  Statistical Science 1992, 7(4):457-472.

50. Brooks SP, Gelman A: General methods for monitoring convergence of 
iterative simulations. Journal of Computational and Graphical 
Statistics.  J Comput Graph Stat 1997, 7(4):434-455.

51. Brewer CA, MacEachren AM, Pickle LW, Herrmann D: Mapping mortality: 
evaluating colour schemes for choropleth maps.  A Assoc Am Geog 1997, 
87(3):411-438.

52. Brewer CA: Basic mapping principles for visualizing cancer data using 
Geographic Information Systems (GIS).  Am J Prev Med 2006, 30(2 
Suppl):S25-36.

53. Brewer CA, Pickle L: Evaluation of Methods for Classifying 
Epidemiological Data on Choropleth Maps in Series.  Ann Assoc Am 
Geogr 2002, 92(4):662-681.

54. Matier K: Delineation of 2006 Urban Areas: Challenges and 
Achievements.  Geography Working Paper Series, Statistics Canada 2008. 
Cat No. 92FOI38MIE

55. Schaap MM, Kunst AE: Monitoring of socio-economic inequalities in 
smoking: learning from the experiences of recent scientific studies.  
Public Health 2009, 123(2):103-109.

56. Laaksonen M, Rahkonen O, Karvonen S, Lahelma E: Socioeconomic 
status and smoking: analysing inequalities with multiple indicators.  
Eur J Public Health 2005, 15(3):262-269.

57. Kleinschmidt I, Hills M, Elliott P: Smoking behaviour can be predicted by 
neighbourhood deprivation measures.  Journal of Epidemiology and 
Community Health 1995, 49(Suppl 2):S72-S77.

58. Desmeules M: Appendix A Overview of National Population Health and 
Canadian Community Health Surveys.  BMC Womens Health 2004, 
4(Suppl 1):S35.

59. International Agency for Research on Cancer: IARC Working Group on 
the Evaluation of Carcinogenic Risks to Humans.  Volume 83. 
Anonymous Lyon, France: World Health Organization - International 
Agency for Research on Cancer; 2004:1473. 

60. Richardson S, Abellan JJ, Best N: Bayesian spatio-temporal analysis of 
joint patterns of male and female lung cancer risks in Yorkshire (UK).  
Stat Methods Med Res 2006, 15(4):385-407.

61. The Canadian Encyclopedia-Guelph   [http://
www.thecanadianencyclopedia.com/
index.cfm?PgNm=TCE&Params=A1ARTA0003482]

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18709139
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16127821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16981996
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17092353
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15366243
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18243396
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10602146
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10960854
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15198922
http://geodepot.statcan.ca.myaccess.library.utoronto.ca/Diss/Reference/COGG/short_RSE_e.cfm?REFCODE=1&FILENAME=StandardGeographicalClassification&TUTORIAL=0&ABBRV=SGC
http://geodepot.statcan.ca.myaccess.library.utoronto.ca/Diss/Reference/COGG/short_RSE_e.cfm?REFCODE=1&FILENAME=StandardGeographicalClassification&TUTORIAL=0&ABBRV=SGC
http://geodepot.statcan.ca.myaccess.library.utoronto.ca/Diss/Reference/COGG/short_RSE_e.cfm?REFCODE=1&FILENAME=StandardGeographicalClassification&TUTORIAL=0&ABBRV=SGC
http://geodepot.statcan.ca.myaccess.library.utoronto.ca/Diss/Reference/COGG/Long_Sublevel_e.cfm?REFCODE=1&SUBLEVEL=14&GEO_LEVEL=10&LANG=E
http://geodepot.statcan.ca.myaccess.library.utoronto.ca/Diss/Reference/COGG/Long_Sublevel_e.cfm?REFCODE=1&SUBLEVEL=14&GEO_LEVEL=10&LANG=E
http://geodepot.statcan.ca.myaccess.library.utoronto.ca/Diss/Reference/COGG/Long_Sublevel_e.cfm?REFCODE=1&SUBLEVEL=14&GEO_LEVEL=10&LANG=E
http://geodepot.statcan.ca.myaccess.library.utoronto.ca/Diss/Reference/COGG/ShortDescription_e.cfm?GEO_LEVEL=35&TUTORIAL=1&ABBRV=DA
http://geodepot.statcan.ca.myaccess.library.utoronto.ca/Diss/Reference/COGG/ShortDescription_e.cfm?GEO_LEVEL=35&TUTORIAL=1&ABBRV=DA
http://geodepot.statcan.ca.myaccess.library.utoronto.ca/Diss/Reference/COGG/ShortDescription_e.cfm?GEO_LEVEL=35&TUTORIAL=1&ABBRV=DA
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15951671
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16458789
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18712778
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19822013
https://php-psp.phac-aspc.gc.ca/
https://php-psp.phac-aspc.gc.ca/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15198919
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16435334
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15690999
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10960848
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10960849
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16458787
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19147163
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15755781
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8594138
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16886738
http://www.thecanadianencyclopedia.com/index.cfm?PgNm=TCE&Params=A1ARTA0003482
http://www.thecanadianencyclopedia.com/index.cfm?PgNm=TCE&Params=A1ARTA0003482
http://www.thecanadianencyclopedia.com/index.cfm?PgNm=TCE&Params=A1ARTA0003482


Holowaty et al. International Journal of Health Geographics 2010, 9:21
http://www.ij-healthgeographics.com/content/9/1/21

Page 14 of 14
62. IMICO History   [http://www.library.guelph.on.ca/localhistory/Gallery/
IndustrialSouvenir/Imico/Imico1.htm]

63. City reacts to Imperial Tobacco closure announcement   [http://
guelph.ca/newsroom_display.cfm?itemID=68752]

64. Knorr-Held L, Best NG: A shared component model for detecting joint 
and selective clustering of two diseases.  J Roy Stat Soc A Sta 2001, 
64(Part 1):73-85.

65. Downing A, Forman D, Gilthorpe MS, Edwards KL, Manda SO: Joint 
disease mapping using six cancers in the Yorkshire region of England.  
Int J Health Geogr 2008, 7:41.

66. Wellington-Dufferin-Guelph Public Health - Smoking Cessation 
Workshops   [http://www.wdghu.org/page.cfm?id=1553]

67. Centre for Addition & Mental Health - Addiction Toolkit   [http://
knowledgex.camh.net/primary_care/toolkits/addiction_toolkit/smoking/
Pages/default.aspx]

68. Liu L, Cozen W, Bernstein L, Ross RK, Deapen D: Changing relationship 
between socioeconomic status and prostate cancer incidence.  J Natl 
Cancer Inst 2001, 93(9):705-709.

69. Sanderson M, Coker AL, Perez A, Du XL, Peltz G, Fadden MK: A multilevel 
analysis of socioeconomic status and prostate cancer risk.  Ann 
Epidemiol 2006, 16(12):901-907.

70. Mackillop WJ, Zhang-Salomons J, Boyd CJ, Groome PA: Associations 
between community income and cancer incidence in Canada and the 
United States.  Cancer 2000, 89(4):901-912.

71. Cheng I, Witte JS, McClure JA, Shema SJ, Cockburn MG, John EM, Clarke 
CA: Socioeconomic status and prostate cancer incidence and mortality 
rates among the diverse population of California.  Cancer Cause Control 
2009, 20(8):1431-1440.

72. Johnson GD: Small area mapping of prostate cancer incidence in New 
York State (USA) using fully Bayesian hierarchical modelling.  Int J 
Health Geogr 2004, 3(1):29.

73. Mather FJ, Chen VW, Morgan LH, Correa CN, Shaffer JG, Srivastav SK, Rice 
JC, Blount G, Swalm CM, Wu X, Scribner RA: Hierarchical modeling and 
other spatial analyses in prostate cancer incidence data.  Am J Prev Med 
2006, 30(2 Suppl):S88-100.

74. Klassen AC, Platz EA: What can geography tell us about prostate 
cancer?[see comment].  Am J Prev Med 2006, 30(2 Suppl):S7-15.

75. Bunting PS, Miyazaki JH, Goel V: Laboratory survey of prostate specific 
antigen testing in Ontario.  Clin Biochem 1998, 31(1):47-49.

76. Ontario improving access to prostate cancer testing   [http://
www.health.gov.on.ca/en/news/release/2008/dec/nr_20081216.aspx]

77. Jarup L, Best N: Editorial comment on Geographical differences in 
cancer incidence in the Belgian Province of Limburg by Bruntinx and 
colleagues.  Eur J Cancer 2003, 39(14):1973-1975.

78. Verkasalo PK, Kokki E, Pukkala E, Vartiainen T, Kiviranta H, Penttinen A, 
Pekkanen J: Cancer risk near a polluted river in Finland.  Environ Health 
Perspect 2004, 112(9):1026-1031.

79. Julious SA, Nicholl J, George S: Why do we continue to use standardized 
mortality ratios for small area comparisons?[erratum appears in J 
Public Health Med. 2006 Dec;28(4):399].  J Public Health Med 2001, 
23(1):40-46.

80. Goldman DA, Brender JD: Are standardized mortality ratios valid for 
public health data analysis?  Stat Med 2000, 19(8):1081-1088.

81. Green PJ, Richardson S: Hidden Markov models and disease mapping.  J 
Am Stat Assoc 2002, 97:1055-1070.

82. Jarup L, Best N, Toledano MB, Wakefield J, Elliott P: Geographical 
epidemiology of prostate cancer in Great Britain.  Int J Cancer 2002, 
97(5):695-699.

83. Shen W, Louis TA: Triple-goal estimates in two-stage, hierarchical 
models.  J Roy Stat Soc B 1998, 60:455-471.

84. Conlon EM, Louis TA: Addressing multiple goals in evaluating region-
specific risk using Bayesian methods.  In Disease Mapping and Risk 
Assessment for Public Health Edited by: Lawson AB, Biggeri AB, Bohning D, 
Lesaffre E, Viel J, Bertollini R. England: John Wiley & Sons; 1999:31. 

doi: 10.1186/1476-072X-9-21
Cite this article as: Holowaty et al., Feasibility and utility of mapping disease 
risk at the neighbourhood level within a Canadian public health unit: an eco-
logical study International Journal of Health Geographics 2010, 9:21

http://www.library.guelph.on.ca/localhistory/Gallery/IndustrialSouvenir/Imico/Imico1.htm
http://www.library.guelph.on.ca/localhistory/Gallery/IndustrialSouvenir/Imico/Imico1.htm
http://guelph.ca/newsroom_display.cfm?itemID=68752
http://guelph.ca/newsroom_display.cfm?itemID=68752
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18662387
http://www.wdghu.org/page.cfm?id=1553
http://knowledgex.camh.net/primary_care/toolkits/addiction_toolkit/smoking/Pages/default.aspx
http://knowledgex.camh.net/primary_care/toolkits/addiction_toolkit/smoking/Pages/default.aspx
http://knowledgex.camh.net/primary_care/toolkits/addiction_toolkit/smoking/Pages/default.aspx
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11333293
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16843007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10951356
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15588279
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16458795
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16458793
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9559224
http://www.health.gov.on.ca/en/news/release/2008/dec/nr_20081216.aspx
http://www.health.gov.on.ca/en/news/release/2008/dec/nr_20081216.aspx
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12957450
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15198923
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11315692
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10790681
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11807800

	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	Data Sources
	Incident cancers

	Geographic Boundary Files
	Populations
	Data Processing
	Estimation of Small Area Relative Risk
	Presentation of Results

	Results
	Discussion
	Conclusions
	Approvals
	Research Ethics
	Privacy

	Additional material
	Competing interests
	Authors' contributions
	Acknowledgements
	Author Details
	References



