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Abstract

Background: Traditional approaches to statistical disease cluster detection focus on the identification of
geographic areas with high numbers of incident or prevalent cases of disease. Events related to disease may be
more appropriate for analysis than disease cases in some contexts. Multiple events related to disease may be
possible for each disease case and the repeated nature of events needs to be incorporated in cluster detection
tests.

Results: We provide a new approach for the detection of aggregations of events by testing individual
administrative areas that may be combined with their nearest neighbours. This approach is based on the exact
probabilities for the numbers of events in a tested geographic area. The test is analogous to the cluster detection
test given by Besag and Newell and does not require the distributional assumptions of a similar test proposed by
Rosychuk et al. Our method incorporates diverse population sizes and population distributions that can differ by
important strata. Monte Carlo simulations help assess the overall number of clusters identified. The population and
events for each area as well as a nearest neighbour spatial relationship are required. We also provide an alternative
test applicable to situations when only the aggregate number of events, and not the number of events per
individual, are known. The methodology is illustrated on administrative data of presentations to emergency
departments.

Conclusions: We provide a new method for the detection of aggregations of events that does not rely on
distributional assumptions and performs well.

Background
In disease surveillance, statistical methods can be used
to identify geographical areas that have statistically
higher numbers of cases of disease than expected by
chance. These geographical areas with aggregations of
disease are called clusters. In some situations, the dis-
ease incidence or prevalence may not be the most or
only relevant feature for analysis, and the analysis of
events related to diseased individuals may be more
appropriate. For the delivery of health services through
emergency departments (EDs), the number of presenta-
tions to EDs can be more relevant than the number of
distinct individuals seen in the ED. If there are many
individuals that have multiple presentations, analysis
based solely on the number of individuals, and not the
number of presentations, will only be able to identify

clusters with excess numbers of individuals and not
clusters with excess presentations. Ignoring presenta-
tions prevents identification of clusters where more pre-
sentations, but not necessarily more individuals, are
occurring than expected by chance. Surveillance of pre-
sentations to EDs can identify geographic areas with
high presentations where access to other health care
providers is limited and statistical detection of these
areas necessitates incorporating repeated presentations
by individuals.
There are several different tests for the identification

of clusters of diseased individuals (cases) in geographic
areas (see [1,2] for overviews). The geographic areas are
generally administrative regions for which case and
population counts are available. Besag and Newell [3]
used the terms general and focused to distinguish
between tests that identify clusters in a geographic
region and those that identify clusters around specific
geographic locations, such as hazardous waste sites. For
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both types of tests, the methods generally either exam-
ine areas with similar population size and compare the
number of cases or examine areas with similar numbers
of cases and compare the population sizes. Some meth-
ods can detect the location of clusters while others can
identify areas with the tendency to cluster.
We focus on methods that can accommodate geo-

graphic areas with different population sizes. One explora-
tory method has been proposed by Openshaw et al. [4]
and requires the user to specify a threshold. Their geo-
graphic analysis machine constructs overlapping circles
and displays the circles with proportions of cases exceed-
ing the threshold. The Turnbull et al. [5] method also uses
overlapping circles but these circles require a user-speci-
fied population size. The maximum number of cases in
each of the circles is determined and a Monte Carlo test
assesses if the observed proportion is higher than
expected. Kulldorff and Nagarwalla [6] generalize this
approach and seek to identify a clustered circle, where the
individuals inside the circle have greater risk than the indi-
viduals outside the circle, using a likelihood ratio test.
Duczmal and Assunção [7] propose a similar approach
that uses connected subgraphs to identify the cluster.
Tango [8] takes a different strategy by using area propor-
tions of cases and a measure of closeness. A chi-square
test compares observed and expected proportions to
detect clusters. Besag and Newell [3] look at similar num-
bers of cases and combine nearby areas to observe a user-
specified number of cases. The population sizes of these
areas with similar cases are then compared. More recently,
Rosychuk et al. [9] have provided a similar method for
events rather than cases by using a compound Poisson dis-
tribution and compared the two approaches [10].
Herein, we provide an approach to identify geographic

areas with aggregations of events. These aggregations
are called event clusters, or simply clusters when the
distinction between aggregations of events and cases is
clear. Our approach is analogous to the cluster detection
test proposed by Besag and Newell [3] and does not
require distributional assumptions, like the Rosychuk
et al. [9] test. The approach is instead based on exact
probabilities for the numbers of events in a tested geo-
graphic area. The method incorporates diverse popula-
tion sizes and population distributions that can differ by
important strata. This method requires the number of
events per case is known. In addition, we provide an
approach that can be used when the total number of
events are known for the cases in a geographical area,
but not the number of events per case. We describe the
methodology and compare the methods using adminis-
trative data on emergency department (ED) presenta-
tions for self-inflicted injuries. We provide a simulation
study that examines the false detection of clusters and
conclude our discussion.

Results
We consider a geographic region divided into I cells
where the population in cell i is denoted by ni, i = 1,..., I.

The total population is labeled n nii

I= =∑ 1
. The dis-

tances between cell centroids are calculated for each pair
of cells. For each cell, the remaining cells are ordered
based on increasing pairwise distances to determine the
nearest neighbours. Specifically, we let i1 be the cell that
is closest to cell i, i2 be the cell that is next closest to cell
i, and so on. For convenience, we have i0 = i.
We first describe the Besag and Newell [3] approach

for cases using a hypergeometric distribution. We pro-
vide our new exact method for events and review the
compound Poisson approach developed by Rosychuk
et al. [9]. We also describe the inclusion of strata vari-
ables and the choice of event cluster size.

Hypergeometric approach for cases
The Besag and Newell [3] method requires the number
of cases and population in each cell. For each cell i, let
Ci be the random variable denoting the number of cases
in the cell and let ci be the observed value. Further, let

C Cii

I= =∑ 1
and c cii

I= =∑ 1
be the random variable

and the observed value of the total number of cases in
the entire region, respectively. In practical applications
for a rare disease, ci ≪ ni and generally c ≪ ni, for i =
1,..., I.
Each cell i is tested separately and the test is based on

combining nearest neighbours to obtain a minimum
pre-specified number of cases, called the cluster size.
For cell i, suppose that the cluster size is k. The test sta-
tistic, Li, is the smallest number of nearest neighbours
that must be combined with i to have at least k cases,

L q k Ci i
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Smaller observed values of Li are indicative of higher
numbers of cases in the vicinity of the tested cell.
Under a null hypotheses that all individuals are

equally likely to be a case independent of other cases
and geographic location, Besag and Newell [3] use a
Poisson distribution as an approximation to the hyper-
geometric probability. Using the exact hypergeometric
formulation, the probability that there are exactly
x cases in a sample of m population is
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If we denote the population of the combined cells as

n ni ia a:
= =∑ 0

, then the significance level for the

tested cell becomes

pr( ) ( , ).:L H x ni i

x

k

≤ = −
=

−

∑ 1
0

1

(2)

We will refer to this testing approach as the hyper-
geometric case (HC) analysis in further discussions.
As each cell is tested separately and multiple testing is

an issue, Besag and Newell [3] suggest Monte Carlo
simulations to help assess the significance of overall
clustering. Let Ra denote the number of cells that are
significant at significance level a. For each simulation,
the c cases are randomly distributed to the I cells
according to the proportion of population in each cell
(i.e., cases are distributed to cell i based on probability
ni/n). The testing is conducted and the number of sig-
nificant cells for each simulation is recorded. The overall
assessment of statistical significance is obtained as the
proportion of simulations that are at least as extreme as
the observed Ra from the actual data set. We refer to
this overall assessment as a p-value for overall
clustering.

The proposed approaches for events
Our proposed method builds on the principles of the
HC method and the approach of Rosychuk et al. [9]
that concentrates on the number of disease-related
events rather than the number of diseased individuals.
As before, Ci denotes the random variable correspond-
ing to the number of cases in cell i. Let Vi and vi be
the random variable and observed value of the number
of events in cell i, respectively. The total number
of cases (i.e., individuals with at least one event)
and events for the region are denoted by C Cii

I= =∑ 1

and V Vii

I= =∑ 1
with observed values c cii

I= =∑ 1
and

v vii

I= =∑ 1
, respectively. In most applications, ci <vi≪

ni and c <v ≪ ni for i = 1, ..., I, but such restrictions

are not required.
Each cell is tested separately as for the cases approach

described above. The cluster size, now termed event
cluster size, is the number of events rather than the
number of cases used in the test. Let k* be the event
cluster size for cell i. The test statistic is the smallest
number of nearest neighbours that must be combined
with cell i to have at least k* events,

L q k Vi i
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Smaller observed values of Li
* are indicative of higher

numbers of events in the vicinity of the tested cell.
The use of events requires changes to the null hypoth-

esis and the exact probability. The null hypothesis is
that every individual is equally likely to have events,
independent of other individuals and geographic loca-
tion. The hypergeometric probability is no longer appro-
priate if there is more than one event per case. If the
number of events per case is known, then a multiple
hypergeometric approach can be used as described
below. If the number of events per case is unknown but
the total number of cases and events are known, then a
counting approach which employs occupancy numbers
can be used.

Known number of events per case
Let Ciy be the random variable denoting the number of
cases in cell i that have exactly y events and let ciy
denote its observed value. Suppose that the maximum
number of events any subject has is Y, 1 ≤ Y. The total

number of cases in cell i is C Ci iyy

Y= =∑ 1
and the total

number of cases in the entire study region with exactly

y events is C Cy iyi

I
• == ∑ 1

. Further, the total number of

cases is C C Cii

I
yy

Y= == •=∑ ∑1 1
For each cell i,

V yCi iyy

Y= =∑ 1
is the number of events in the cell.

The probability of the number of events observed in a
geographic area is based on a multiple hypergeometric
distribution, since individuals with the same number of
events can be thought of as classes and the subjects are
sampled without replacement from these classes. The
probability of observing x events among a sample of
m individuals is
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where {ry } are non-negative integers from the set  ,

 = {(r1, ..., rY) such that x yryy

Y= =∑ 1
and ry ≤ C•y,

y = 1, ..., Y} Note that if the maximum number of events
per subject is one (Y = 1), then (4) simplifies to the
hypergeometric distribution in (1). The significance level
for the tested cell i becomes
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:

*
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(5)

and we refer to this approach as the exact event (EE)
analysis.
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In practical application, the random variables repre-
senting events are replaced by the corresponding
observed values and the expected number of events,
ni:ℓ v/n, is helpful in describing the results. Simulated
data sets are created analogously as described for the
Besag and Newell approach for cases and a p-value for
overall clustering is determined. We used a C++ pro-
gram for numerical results and M (x, ni:ℓ) is quite
easily obtained by convoluting binomial coefficients
and storing the intermediate quantities. The terms

n C

m r r rY
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− − −
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1 2
and

n

m

⎛

⎝
⎜

⎞

⎠
⎟ are common to each

combination of (r1, ..., rY), and thus can be pre-
computed and simplified for better numerical stability
by using logarithms.
Our new approach is similar to the test provided by

Rosychuk et al. [9]. The difference in approaches is the
way in which the key probabilities are calculated. In
that work [9], instead of the probability in (4), prob-
abilities from a compound Poisson distribution are
used. Specifically, P (x, ni:ℓ) replaces M (x, ni:ℓ) in (5)
and is defined by

P n ei
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where Q(y) is the probability that a case has exactly
y events. Those authors take Q(y) to be the observed
frequency c•y/c and with this choice, the expected num-
ber of events becomes ni:ℓ (c/n) (v/c) = ni:ℓ v/n. This
approach, referred to as the compound Poisson event
(CPE), assumes that a compound Poisson distribution is
appropriate and relies on estimates of the Q(y) that may
not be very precise. Both methods have the same
expected number of events but these events come from
distinct distributions. As in the HC approach for cases,
Monte Carlo simulations can be used to help assess
overall clustering.

Aggregate number of events known only
In some situations, the total number of events, vi and
v, and cases may be known but the exact number of
events per case (e.g., ciy, c•y) may not be known. Here,
the relevant probability can be determined using a
counting approach employing occupancy numbers (see
[11] p. 38).
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is the number of ways

to distribute the remaining V - x events among the
remaining n - m individuals. Putting these counts
together, the probability of observing x events among a
sample of m individuals is
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The significance level for the tested cell becomes
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and we refer to this approach as the aggregate event
(AE) analysis. As in the EE approach, random variables
are replaced by the corresponding observed values and
simulation is used to assess overall significance.
A key difference with this new aggregate event

method and the EE and CPE methods is that the latter
two methods link the events to cases. The AE approach
uses only aggregate events, assumes that events are
indistinguishable, and does not include information on
the number of cases or the chance that a particular
number of events are observed from one subject. Hence
a loss of information occurs with the use of the AE
approach, however if the information available does not
include the number of events per case then the EE and
CPE methods are not applicable and the AE method
permits analysis.

Stratification
Cells can have population distributions that differ on
key characteristics such as gender and age. These strata
can be added to the test to adjust for differing popula-
tion distributions. Suppose there are S strata. The popu-
lation in cell i and stratum s is nis, s = 1,..., S, and

relevant aggregate populations become n ns isi

I
• == ∑ 1
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and n niss

S

i

I= == ∑∑ 11
. For stratum s, let Ciys be the

random variable denoting the number of cases in cell i
that have exactly y events. The total number of cases in
the entire study region in stratum s with exactly y events

is C Cys iysi

I
• == ∑ 1

. Similarly, Vis is the number of

events in cell i and stratum s and the number of events

in cell i is V V yCi iss

S
iysy

Y

s

S= == ==∑ ∑∑1 11
.

The test statistic in (3) also applies when strata are
added. The relevant probability is based on (4), but has
to be modified to include the different strata and the
multiple ways that the events may be distributed
amongst the strata. The probability of observing
x events among a sample of m = m1 + ���+ mS indivi-
duals is
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where  = {(r11,..., rY1,..., r1S,..., rYS), such that

x yrysy

Y

s

S= == ∑∑ 11
and rys = C•ys, y = 1,..., Y, s =

1,..., S}. The significance level for the tested cell i
becomes
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Where n nis i sa a:
= =∑ 0

is the population in cell i
and its ℓ nearest neighbours that belong to stratum s,
s = 1,..., S.
The incorporation of strata tends to reduce the com-

putational load as compared to the calculations without
strata. The number of cases with events in a particular
stratum is smaller than the total number of cases with
events and thus, fewer combinations of (r1s, ..., rYs) will
be required. These combinations can then be calculated
through a convolution.
The AE approach can be similarly extended for strata.

The total number of events in stratum s is

V Vs isi

I
• == ∑ 1

. The probability of observing x events

among a sample of m = m1 + ���+ mS individuals is
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where  = {(x1, ..., xS) such that x x ss

S= =∑ 1
and

xs ≤ V•s for s =1, ..., S}. The significance level for the
tested cell becomes
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Choosing k*
The actual size of a real cluster will not be known. The
tests are based on identifying a cluster of a particular
size, k*. With the dependence on k*, its choice is key
and will depend on the specific data context. If the
population sizes are similar among cells, a pre-specified,
meaningful k* may be chosen and used for testing each
cell. If population sizes are quite different, then cells
may be better tested at individually-chosen, pre-specified
k*. Le et al. [12] proposed a testing algorithm for the
Poisson version of the HC method and a similar scheme
is used for CPE approach [9]. We follow the latter
approach.
In our prescription, event cluster sizes k k ki i i0 1 2

* * *, , , are
determined for cell i, i = 1, ..., I. Cell i is tested at ki0

*

and if it is significant at a level a, testing is concluded
for this cell. If it is not significant the cell is tested again
at ki1

* . The testing algorithm proceeds in this matter
until the tested cell is significant at an event cluster size
or the set of event cluster sizes has been exhausted.
This approach is similar to sequential analysis and the
event cluster sizes are defined as

k q M x niw i w
a

q
*

:max ( , ) .= + ≤ −
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪=
∑1 1

0
 such that  (14)

for tests of size a, w = 0, 1, 2. The event cluster sizes
are based on the 100 × (1 - a) percentile of the distribu-
tion of events with populations from the cell and up to
three of its nearest neighbours. ¿From this definition,
cells with significant tests will have the test statistic
equal to w whereas cells without sufficient events will
have to combine more than w neighbours (i.e., Li

* > w).
With potentially multiple event cluster sizes tested per
cell, the Monte Carlo simulations are an important
aspect to address the potentially increased testing. This
approach to choosing the event cluster size can be easily
extended to depend on strata and/or determined simi-
larly for the AE approach.
We have chosen w to be at most 2 for our application

because some of our geographic areas are quite large,
either in population or geography, and w beyond 2
would potentially mean that large geographic areas and/
or large population areas would be tested together. It is
unlikely that such a situation would yield a statistically
significant cluster, since the population sizes become
quite large. Other choices for w are possible and would
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depend on the particular geography involved and the
user’s preference. In particular, one could potentially
have different numbers of tests per cell (i.e., wi).

Self-inflicted injury data
We use data from an administrative database that
includes all presentations to emergency departments
(EDs) in the province of Alberta, Canada. We focus on
presentations to EDs for self-inflicted injuries by ado-
lescents (≥ 13 and < 18 years of age) during April 1,
1998, to March 31, 1999. Individuals with at least one
ED presentation during the study period are the cases
and the ED presentations are the events. Data are stra-
tified by sex (male, female) and age group (13-14, 15-
17 years).
The province of Alberta (Figure 1) is divided into I =

68 sub-Regional Health Authorities (HAs) with very
diverse population sizes (median 2975, range 599 to
10298). During the study period, adolescents numbered
n = 223999 in the population and c = 764 individuals
presented v = 852 times to the ED with self-inflicted
injuries. Although most individuals presented once, the
range of presentations was one to 18. For the HAs,
the median number of cases was 7.5 (range 0 to 43) and
the median number of events was 8 (range 1 to 51).
Alberta Health and Wellness provided the administra-
tive data and the distances between population-based
centroids. For each HA, Alberta Health and Wellness
has determined a population-based centroid that is the
latitude and longitude of the centre of the geographic
area weighted by population. The distances between
centroids are calculated and the ordering is provided for
each cell.
Key to this illustrative example is that individuals can

make multiple ED presentations during the study per-
iod. If analysis is based on the cases alone and not the
presentations, then a case with only one presentation
and a case with 10 presentations are treated exactly the
same. The information on the “extra presentations” is
ignored and only areas with excess number of cases can
be identified as a cluster. Areas that have excess num-
bers of presentations, but not necessarily excess num-
bers of cases, cannot be identified unless the analysis
includes the presentation information. From the health
services perspective, the presentations are the most
appropriate unit of analysis and while identifying areas
with excess cases is important, the identification of
excess areas of presentations may suggest areas where
disease severity may be greater or alternative health care
options are not as available.
We compare the HC, CPE, and EE methods on the

Alberta data set stratified by sex and age group
(Table 1). The table lists the size of the cluster tested (k
or k*), observed test statistic (ℓ), and the observed (O)

and expected (E) cases or events. Tests that were signifi-
cant at a = 0.05 are indicated with an asterisk (*). HAs
that are not significant were tested at all cluster sizes,
from w = 0 to 2, with the results for the last test
reported. For the significant HAs, the w is the same as
the value of ℓ. For non-significant HAs, the number of
cells (ℓ) that need to be combined to have at least the
size of the cluster tested is larger than w. The HAs are
grouped according to the Regional Health Authority
that provides services to the HAs (e.g., HAs 1 to 5 are
part of the same Regional Health Authority). Figures 2,
3, and 4 display the HAs that are significant, either
alone or in combination with other HAs. For each
method, the simulation-based overall tests suggest that
the results are not likely to have occurred by chance. In
the 1000 simulations for the HC case analysis, 3 had at
least 15 clusters observed (overall p-value = 0.003). For
the event analyses, the CPE approach had 5 simulations
with at least 13 clusters (overall p-value = 0.005) and
the EE approach had 0 simulations with at least 15 clus-
ters (overall p-value = 0.000).
The HC and EE methods both identify 15 significant

HAs as part of clusters, although the significant HAs are
not the same in each analysis. The CPE method identifies
13 significant HAs, all of which are identified by the EE
method. Generally, the HAs that were significant with all
three methods had higher numbers of cases and events
than expected by chance. Similarly, the HAs that were
not found to be significant by any of the methods had
fewer cases and events than expected by chance. The
event cluster sizes are generally very close for the EE and
CPE analyses, with the EE analyses having slightly lower
sizes for some HAs. One thousand Monte Carlo simula-
tions were done for each method and less than six simu-
lated data sets in each approach were at least as extreme
as the actual number of clusters observed. Hence, not all
clusters are likely to be spurious.
We focus our discussion on the HAs where the

methods have incongruous results. HAs 1, 5, 7, and 29
are significant as parts of clusters for the HC analysis,
but not significant for the CPE and EE analyses. For
these HAs, generally the number of cases is high and
the number of events are just a bit lower than the CPE
and EE cluster sizes. To be significant as a cluster
alone in the CPE or EE analyses, HA 29 needed to
have at least 30 events whereas it only had 28 events.
HAs 3 and 4 were identified as clusters in the EE ana-
lysis, but not in the CPE analysis. In particular, the
event cluster size required for the EE analysis was 43
based on the combination of HAs 3, 4, and 2. There
were exactly 43 events in these combined cells and the
EE test was significant. For the CPE analysis, the corre-
sponding event cluster size was 44 and the combined
HAs had too few events.
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Figure 1 Alberta sub-Regional Health Authorities (HAs).
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Table 1 Clustering results for the Alberta adolescent self-inflicted injury data from each of the three approaches

Case Analysis Event Analysis

HC CPE EE

i k ℓ O E O/E p k* ℓ O E O/E p k* ℓ O E O/E p

1 43 2 45 32.3 1.4 0.038* 51 3 51 42.6 1.2 0.154 51 3 51 42.6 1.2 0.150

2 24 0 31 16.2 1.9 0.039* 28 0 33 18.1 1.8 0.049* 28 0 33 18.1 1.8 0.048*

3 31 1 34 22.1 1.5 0.040* 44 3 50 40.9 1.2 0.332 43 2 43 30.0 1.4 0.049*

4 37 2 39 26.9 1.4 0.035* 44 3 50 40.9 1.2 0.332 43 2 43 30.0 1.4 0.049*

5 35 1 37 25.9 1.4 0.048* 50 3 50 40.9 1.2 0.134 50 3 50 40.9 1.2 0.130

6 20 0 21 12.9 1.6 0.038* 23 0 24 14.4 1.7 0.049* 23 0 24 14.4 1.7 0.048*

7 27 1 28 18.8 1.5 0.041* 41 3 41 33.3 1.2 0.143 41 3 41 33.3 1.2 0.140

8 26 5 43 42.8 1.0 0.998 31 5 48 47.7 1.0 0.989 31 5 48 47.7 1.0 0.991

9 55 5 66 82.9 0.8 1.000 65 5 77 92.4 0.8 0.996 64 5 77 92.4 0.8 0.998

10 35 4 71 77.4 0.9 1.000 41 4 80 86.3 0.9 1.000 41 4 80 86.3 0.9 1.000

11 72 3 78 76.0 1.0 0.705 85 3 91 84.8 1.1 0.479 84 3 91 84.8 1.1 0.518

12 47 3 69 70.6 1.0 0.999 36 1 42 24.0 1.8 0.046* 36 1 42 24.0 1.8 0.044*

13 90 4 97 94.9 1.0 0.722 106 4 126 105.8 1.2 0.483 105 4 126 105.8 1.2 0.519

14 69 6 111 123.6 0.9 1.000 81 6 130 137.8 0.9 1.000 81 6 130 137.8 0.9 1.000

15 84 3 92 95.1 1.0 0.901 98 3 108 106.1 1.0 0.737 97 3 108 106.1 1.0 0.780

16 73 3 78 76.8 1.0 0.695 72 1 89 54.6 1.6 0.050* 72 1 89 54.6 1.6 0.047*

17 60 4 63 83.8 0.8 0.998 71 4 73 93.4 0.8 0.981 70 4 73 93.4 0.8 0.990

18 46 3 49 61.2 0.8 0.985 55 3 59 68.2 0.9 0.921 54 3 59 68.2 0.9 0.945

19 38 3 46 54.5 0.8 0.994 46 3 52 60.8 0.9 0.957 45 3 52 60.8 0.9 0.972

20 40 3 53 56.2 0.9 0.992 48 2 49 33.6 1.5 0.044* 48 2 49 33.6 1.5 0.043*

21 73 3 91 85.5 1.1 0.935 26 0 38 16.1 2.4 0.042* 26 0 38 16.1 2.4 0.041*

22 80 3 80 76.4 1.0 0.351 94 4 125 101.3 1.2 0.720 93 4 125 101.3 1.2 0.763

23 80 3 80 76.4 1.0 0.351 94 4 125 101.3 1.2 0.720 93 4 125 101.3 1.2 0.763

24 11 0 13 5.8 2.2 0.035* 13 0 16 6.5 2.5 0.035* 13 0 16 6.5 2.5 0.034*

25 44 5 71 61.3 1.2 0.993 53 5 80 68.4 1.2 0.952 52 5 80 68.4 1.2 0.968

26 17 0 28 10.5 2.7 0.040* 20 0 31 11.8 2.6 0.043* 20 0 31 11.8 2.6 0.042*

27 32 2 36 23.2 1.5 0.046* 38 2 39 25.9 1.5 0.049* 38 2 39 25.9 1.5 0.048*

28 40 3 43 39.6 1.1 0.499 48 4 74 56.0 1.3 0.819 48 4 74 56.0 1.3 0.828

29 26 0 28 17.5 1.6 0.032* 54 5 61 55.2 1.1 0.542 54 5 61 55.2 1.1 0.545

30 41 3 42 38.7 1.1 0.378 49 5 51 65.0 0.8 0.964 49 5 51 65.0 0.8 0.969

31 38 3 43 45.6 0.9 0.896 45 4 49 58.4 0.8 0.943 45 4 49 58.4 0.8 0.949

32 37 6 38 54.7 0.7 0.996 44 7 66 80.5 0.8 1.000 44 7 66 80.5 0.8 1.000

33 27 4 29 29.7 1.0 0.722 32 5 35 41.8 0.8 0.915 32 5 35 41.8 0.8 0.921

34 27 3 29 35.6 0.8 0.946 32 4 34 44.3 0.8 0.956 32 4 34 44.3 0.8 0.961

35 25 4 34 40.3 0.8 0.997 30 4 36 44.9 0.8 0.982 30 4 36 44.9 0.8 0.984

36 26 5 26 35.5 0.7 0.962 31 6 45 58.6 0.8 1.000 30 6 45 58.6 0.8 1.000

37 27 6 54 46.0 1.2 0.999 32 6 59 51.3 1.1 0.995 32 6 59 51.3 1.1 0.996

38 25 1 32 17.5 1.8 0.049* 30 1 36 19.5 1.9 0.047* 30 1 36 19.5 1.9 0.046*

39 53 3 55 51.7 1.1 0.443 63 4 74 75.6 1.0 0.895 63 4 74 75.6 1.0 0.906

40 53 3 55 51.7 1.1 0.443 63 4 76 69.6 1.1 0.743 63 4 76 69.6 1.1 0.753

41 16 0 21 9.9 2.1 0.045* 19 0 22 11.1 2.0 0.043* 19 0 22 11.1 2.0 0.042*

42 17 0 19 10.8 1.8 0.046* 20 0 20 12.0 1.7 0.047* 20 0 20 12.0 1.7 0.046*

43 56 3 61 54.8 1.1 0.453 66 4 85 72.2 1.2 0.723 66 4 85 72.2 1.2 0.734

44 66 3 73 63.9 1.1 0.409 78 4 79 82.2 1.0 0.639 77 4 79 82.2 1.0 0.685

45 50 2 58 39.2 1.5 0.049* 60 2 62 43.7 1.4 0.045* 60 2 62 43.7 1.4 0.043*

46 51 3 54 50.4 1.1 0.484 60 3 60 56.2 1.1 0.327 60 3 60 56.2 1.1 0.324

47 45 3 54 50.4 1.1 0.803 53 3 60 56.2 1.1 0.628 53 3 60 56.2 1.1 0.634

48 44 3 59 61.6 1.0 0.994 53 3 68 68.7 1.0 0.955 52 3 68 68.7 1.0 0.971
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The fact that all of the significant HAs in the CPE
analysis were all identified by the EE approach is not
a feature that is likely to occur in all data sets. In par-
ticular, our event cluster sizes are relatively large and
the relevant probabilities of the CPE and EE may be
closer than in other situations. In addition, the com-
pound Poisson distribution may not be an appropriate
distribution for other data. Furthermore, our example
had key HAs that were significant alone and when
these HAs were combined with some other HAs, they
too became significant. Typically, there would be
some cells where the cells individually are not signifi-
cant but when combined together do become
significant.
In practice, a researcher would probably conduct both

analyses based on cases and analyses based on events.
Each analysis tests different aspects of data based on
multiple disease-related events. If the median number of
events is larger than one, then the analysis based on
events is likely more informative. We would expect that
users would prefer the EE approach over the CPE
approach because it does not require distributional
(parametric) assumptions, even if there is some power
loss over parametric procedures. In addition, this
approach can be very efficiently programmed even when
there are strata variables. If there are no strata variables,
then the CPE approach may be more timely.

Simulation
We examine the Type I Error of the EE and CPE
approaches through simulation studies. In these studies,
the Alberta cells and geographic relationship are used.
The cell populations are set to be the Alberta popula-
tion or the same population in each cell (1000, 5000, or
8000). Five settings for the probability of multiple events
per case are considered (Table 2) with varying means
and skewness chosen for convenience. Setting S5 is
based on the self-inflicted injury data in Alberta. The
event rate is set to be 2 events per 1000 population.
That is, the total number of events in each simulated
data set was 136, 680, and 1088 for the settings with
1000, 5000, and 8000 population per cell, respectively.
When the actual Alberta population is used, the total
number of events is 447. With multiple event probabil-
ities and crude event rates, the simulated data sets are
created by randomly assigning the c•1, c•2, ... cases to
the cells based on each cell’s proportion of the total
population (as in the Monte Carlo simulations for asses-
sing overall clustering). These settings allow us to
demonstrate that the detection of events is different
than the detection of cases. In particular, clusters of
events may be identified that are not also clusters of
cases.
For each simulation setting, we generated 1000 data

sets and applied the CPE and EE approaches to each

Table 1: Clustering results for the Alberta adolescent self-inflicted injury data from each of the three approaches
(Continued)

49 42 3 59 59.2 1.0 0.994 50 3 66 66.0 1.0 0.962 49 3 66 66.0 1.0 0.976

50 61 4 78 72.3 1.1 0.932 72 4 88 80.7 1.1 0.789 71 4 88 80.7 1.1 0.830

51 61 4 61 67.1 0.9 0.800 72 5 82 86.8 0.9 0.916 71 5 82 86.8 0.9 0.941

52 62 4 68 73.3 0.9 0.929 73 4 77 81.7 0.9 0.788 72 4 77 81.7 0.9 0.829

53 57 4 74 74.3 1.0 0.988 68 4 80 82.9 1.0 0.923 68 4 80 82.9 1.0 0.933

54 46 4 67 69.3 1.0 0.999 55 4 69 77.3 0.9 0.990 55 4 69 77.3 0.9 0.993

55 54 3 54 52.4 1.0 0.427 64 4 68 74.6 0.9 0.853 64 4 68 74.6 0.9 0.864

56 31 3 37 28.2 1.3 0.324 37 3 43 31.5 1.4 0.207 37 3 43 31.5 1.4 0.204

57 52 4 54 67.8 0.8 0.984 62 5 71 91.7 0.8 0.998 61 5 71 91.7 0.8 0.999

58 43 4 50 54.0 0.9 0.952 51 4 54 60.2 0.9 0.847 51 4 54 60.2 0.9 0.857

59 44 4 54 58.6 0.9 0.983 53 4 56 65.3 0.9 0.910 53 4 56 65.3 0.9 0.919

60 33 6 33 42.7 0.8 0.950 40 8 51 64.2 0.8 0.998 40 8 51 64.2 0.8 0.999

61 27 3 29 30.6 0.9 0.770 32 4 34 42.4 0.8 0.927 32 4 34 42.4 0.8 0.932

62 32 4 32 38.0 0.8 0.862 38 5 48 55.5 0.9 0.986 38 5 48 55.5 0.9 0.988

63 36 5 44 49.8 0.9 0.986 43 5 48 55.5 0.9 0.935 43 5 48 55.5 0.9 0.941

64 35 5 44 49.8 0.9 0.991 41 5 48 55.5 0.9 0.963 41 5 48 55.5 0.9 0.967

65 14 4 15 20.4 0.7 0.947 16 5 25 29.7 0.8 0.994 16 5 25 29.7 0.8 0.995

66 14 4 15 20.4 0.7 0.947 16 5 25 29.7 0.8 0.994 16 5 25 29.7 0.8 0.995

67 14 4 15 20.4 0.7 0.947 16 5 34 36.1 0.9 1.000 16 5 34 36.1 0.9 1.000

68 52 4 57 55.3 1.0 0.696 61 4 62 61.6 1.0 0.513 61 4 62 61.6 1.0 0.515

The number of each HA (i) is provided along with the size of the cluster tested (k or k*), observed test statistic (3), the observed (O) and expected (E) cases or
events, and the unadjusted p-value (p). An asterisk (*) denotes test significant at a = 0.05, unadjusted for multiple testing.
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Figure 2 Shaded HAs are significant as clusters or parts of clusters for the HC analysis.
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Figure 3 Shaded HAs are significant as clusters or parts of clusters for the CPE analysis.
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Figure 4 Shaded HAs are significant as clusters or parts of clusters for the EE analysis.
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data set. To make comparisons easier, we obtained the
cluster sizes { }*ki0 for each approach and tested each
cell only once. The results of the simulations are shown
in Table 3. With the discreteness of the distributions,
the cluster size may coincide with a smaller significance
level than the significance level setting of a = 0.05. We
provide the effective significance level, a*, for each sce-
nario based on the cluster size and provide the number
of simulations that had at least one cluster detected. For
the scenarios with constant cell populations the a* is
the same for each simulation whereas for the data sets
based on the Alberta population, the mean and standard
deviation (SD) for a* are provided. As each simulated

data set has different testing results, the mean and SD
for the number of significant clusters are also given.
In general, the EE and CPE approaches have similar

results and the results of each approach are close to the
(effective) significance level. The CPE results tend to
identify slightly fewer clusters than expected. With lar-
ger population sizes, the effective significance level is
closer to 0.05. When the diverse population sizes of
Alberta are used, the number of clusters detected is
more variable. Both methods provide detection rates of
false clusters that are close to what is expected by the
(effective) significance level.

Conclusions
We have provided a new method for the detection of
aggregations of events related to diseased individuals,
called event clusters. This method builds on the
approaches of Besag and Newell [3] for cases and of
Rosychuk et al. [9] for events. Our approach uses the
exact probability of observing events from a sample of
the population. It is applicable to situations where cases
may have multiple events and the number of events are
of interest. The population sizes can differ from cell to
cell and can be adjusted by strata. The method is easy
to implement in computer code and requires a minimal
amount of data from the administrative region. We used
a testing algorithm similar to sequential testing to deter-
mine the size of clusters specific to each cell and com-
pared the new method with two other approaches using
data on presentations to emergency departments for
self-inflicted injuries. In some contexts, like our emer-
gency department presentations, the number of events
can be more relevant than the number of cases and new
method provides an exact approach for determining
aggregations of these events. The use of cases only does
not necessarily capture the relevant type of clustering
and analyses based on events can also complement ana-
lyses based on cases.
Our approach is based on exact probabilities and does

not require distribution assumptions as in the com-
pound Poisson approach by Rosychuk et al. [9]. Those
authors had to specify a probability distribution for the

Table 2 Event probabilities for the simulation scenarios

Scenario Non-zero Event Probabilities Q(y)

S1 Q(1) = 0.6, Q(2) = 0.3, Q(3) = 0.1

S2 Q(1) = 0.94, Q(2) = 0.05, Q(3) = 0.01

S3 Q(1) = 0.8, Q(2) = 0.1, Q(3) = 0.05, Q(4) = 0.03, Q(5) = 0.01,

Q(6) = 0.01

S4 Q(1) = 0.8, Q(2) = 0.15, Q(3) = 0.05

S5 Q(1) = 0.929, Q(2) = 0.058, Q(3) = 0.008, Q(4) = 0.001, Q(5) = 0.001,

Q(9) = 0.001, Q(18) = 0.001

Table 3 Simulation results for each cell size and scenario

EE CPE

ni Scenario a* (SD) Sim(SD) a* (SD) Sim(SD)

Alberta S1 3.9(0.6) 4.0 (0.9) 3.9(0.6) 3.9 (0.9)

S2 3.7(0.7) 3.7 (1.0) 3.7(0.7) 3.6 (1.0)

S3 4.0(0.6) 4.0 (0.8) 4.0(0.6) 3.9 (0.8)

S4 3.7(0.7) 3.6 (0.9) 3.7(0.6) 3.5 (0.8)

S5 4.2(0.6) 4.1 (0.8) 4.2(0.6) 4.1 (0.8)

1000 S1 2.5 2.6 (0.5) 2.6 2.6 (0.5)

S2 2.3 2.4 (0.5) 2.4 2.4 (0.5)

S3 3.7 3.7 (0.6) 3.8 3.7 (0.6)

S4 3.9 3.9 (0.6) 4.0 3.9 (0.6)

S5 2.4 2.3 (0.5) 2.5 2.3 (0.5)

5000 S1 4.9 5.0 (0.7) 3.4 3.3 (0.5)

S2 3.5 3.6 (0.6) 3.7 3.6 (0.6)

S3 4.3 4.3 (0.6) 4.4 4.3 (0.6)

S4 3.5 3.5 (0.5) 3.7 3.5 (0.5)

S5 4.0 3.9 (0.5) 4.1 3.9 (0.5)

8000 S1 4.7 4.6 (0.7) 4.8 4.6 (0.7)

S2 4.6 4.6 (0.6) 4.8 4.6 (0.6)

S3 4.3 4.4 (0.7) 4.4 4.4 (0.7)

S4 4.8 4.9 (0.7) 5.0 4.9 (0.7)

S5 4.7 4.7 (0.7) 4.7 4.7 (0.7)

The effective significance level, a*, is provided for each scenario and each
approach (and standard deviations [SDs] for the Alberta scenarios). The mean
number of significant cells (Sim) are provide along with SDs. Numbers are
given as percentages (%).
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situation when a case has exactly y events and use esti-
mates in their application. The distribution could be
misspecified, estimates may not be very precise, and the
p-value does not capture the additional uncertainty of
these estimates. Our method uses the multiple hyper-
geometric distribution that does require a distribution,
or estimates, for the event probabilities. Our new
approach is particularly appealing when analyses are
conducted by strata variables. With more strata vari-
ables, there are fewer possible combinations to calculate
and the use of convolutions makes the computational
time less than that required by the compound Poisson
approach.
One drawback of the testing algorithm is that the user

must choose the number of cluster sizes to be tested.
This choice is perhaps easier than choosing a particular
cluster size to test, especially if areas have diverse popu-
lation sizes. Furthermore, the structure of the algorithm
dictates that statistically significant cells will have the
unappealing feature that p-values will be close to the
significance level. Additionally, overall clustering can be
assessed through Monte Carlo simulations and the same
approach could be used to examine individual cell tests
(i.e., calculate the proportion of simulations for which a
particular cell was statistically significant as described in
Rosychuk et al. [9]).
Both our new method and the compound Poisson

method require that the number of events per cases is
known. We also introduced an approach for the situa-
tion when the number of cases and events are known,
but not the number of events for each case. Administra-
tive data sources may not record the number of events
per case and we provided an analysis approach for this
context. This approach considers events to be indistin-
guishable and does not specifically use the number of
cases. While not preferable to the analysis with informa-
tion on the events per case, this approach is applicable
for less detailed administrative data.
Further work is necessary to compare the power of

the different approaches to detect different sized clusters
and to consider different data generating mechanisms.
Most cases in our data example only had one event.
Our event results were different than the case analysis
but further examination should include larger numbers
of events per case. Such investigations will give users a
greater ability to decide which method is most appropri-
ate for the surveillance of disease-related events in their
jurisdiction.
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