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Abstract

Background: This paper addresses the statistical use of accessibility and availability indices and the effect of study
boundaries on these measures. The measures are evaluated via an extensive simulation based on cluster models
for local outlet density. We define outlet to mean either food retail store (convenience store, supermarket, gas
station) or restaurant (limited service or full service restaurants). We designed a simulation whereby a cluster outlet
model is assumed in a large study window and an internal subset of that window is constructed. We performed
simulations on various criteria including one scenario representing an urban area with 2000 outlets as well as a
non-urban area simulated with only 300 outlets. A comparison is made between estimates obtained with the full
study area and estimates using only the subset area. This allows the study of the effect of edge censoring on
accessibility measures.

Results: The results suggest that considerable bias is found at the edges of study regions in particular for
accessibility measures. Edge effects are smaller for availability measures (when not smoothed) and also for short
range accessibility

Conclusions: It is recommended that any study utilizing these measures should correct for edge effects. The use
of edge correction via guard areas is recommended and the avoidance of large range distance-based accessibility
measures is also proposed.

Introduction
With an increasing interest in the influence of environ-
mental contexts on health behaviors and outcomes, spatial
accessibility and availability indices are increasingly
applied in epidemiologic studies including those focusing
on the built food environment [1-6]. Commonly used
availability measures include number or density of outlets,
stores, or restaurants in a given location or within a fixed
distance of a location. For accessibility, commonly used
measures are distance-based; assuming that increased dis-
tance acts as a deterrent and reduces the frequency of use
of the resource. Frequently, arbitrary administrative
boundaries such as Census tracts or block groups are used
in lieu of neighborhoods without consideration that

resources beyond a given boundary are likely to affect
behavior within a spatial unit. Specifically, the effect of
edge censoring on such indices has never been fully evalu-
ated. Edge effects occur when the study boundary affects
the estimation of a measure and can induce biases which
will affect inferences made on the measures [7]. Consider
the use of a distance-based measure such as distance to
the nearest supermarket. The nearest supermarket may lie
outside the study area for locations near the study bound-
ary and thus introducing bias into the spatial measure of
distance to the nearest supermarket.
When many observations are close to external bound-

aries, this effect can be significant. It has been demon-
strated that such edge effects can affect the analysis of
small area health data [8-10]. This is a form of spatial
censoring, where data points outside the study area are
not observed. This study evaluates edge effect bias via
simulation in applications where accessibility and
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availability measures are used and recommends
approaches to correct or allow for edge effects. This
paper is structured as follows. We first outline the mea-
sures of interest followed by the simulation design and
finally provide results both in terms of contoured maps
of error as well as distance profiles of bias.

Background to Availability and Accessibility
Measures
This study evaluated several accessibility and availability
measures. Our choice of measures includes those com-
monly found in the literature of the built food environ-
ment [11-18]. Each measure is available at a spatial
location within a study area. We define that location as s,
which represents the Cartesian coordinates of the location.

1. Availability Measures (CI and CI )
The simplest availability measure we examined is the
cumulative index (CI), the count of outlets at a location
(or within a pre-defined distance of a location such as a
distance buffer, a Census tract, or block group). Hence
for a spatial location (s), this is defined as CI(s) = n(s). If
we index the location as the ith site then CIi = ni. This
measure of availability is frequently used [11-18]. Simple
derivatives of this index include density measures, either
relative to population [16,19-22] or to area [20,23]. The
variance stabilized form of this count is CIi is often
made regularize the variability, and is helpful when
there is a need to perform a linear regression model on
the square root of the count data [24]. An underlying
limitation of the CI is that the spatial unit defines the
perimeter of a “neighborhood”, i.e. constrains the avail-
ability measure to have a “local” nature.
These measures can be computed for a variety of spa-

tial unit sizes. Ultimately the spatial distribution of out-
lets (or stores or restaurants) is a point process over the
study area that may be described by density estimation
[25] to provide smoothed local estimates of the density
of points. Hence CI is a crude form of a local estimator
of density when divided by area. Counts thus are aggre-
gations of outlet locations and maps of counts are
smoothed maps of density.
Edge effect censoring can arise with availability mea-

sures when counts of outlets are smoothed. For exam-
ple, averaging of counts within an area will depend on
the neighborhood used for the averaging. If part of a
neighborhood lies outside the area then some bias will
occur in the calculation of the average count near the
edge. This is true also for density estimation of point
location events [25].

2. Accessibility indices (Cp, distance to the nearest outlet)
Often distance based measures are used to express the
idea that potential access to resources diminishes with

distance. The distance measured could be road network
distance or based on some other relevant distance metric
(i.e. Euclidian). The Cumulative Opportunity index (Cp)

is defined in general as C sp
A
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defined area within which the distances are measured
and s are the location points considered. The distance is
measured to all outlets within the area A.
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. This mea-
sure provides cumulative evidence for accessibility at a
spatial location, and can be calculated for special cases
such as CP to the nearest outlet, CP for a specified dis-
tance buffer, and CP total (calculated over the entire
study region). A related measure is the distance to the
nearest outlet: Di = di itself. Both Cp(nearest) and
distance to nearest outlet (Di) can be extended to
include a variety of closeness (‘distance to’) metrics:
nearest, second nearest, third nearest, and the ‘sum of
distances to’ these. For example we could specify a
cumulative distance to the 3 nearest outlets, or we
could also calculate the cumulative opportunity index
for the 2 closest outlets to a location.
Clearly with Cp measures the smaller the area (A) the

more local the measure. One unfortunate feature of the
Cp is that for larger buffers accessibility is being aver-
aged over areas that are distant from the location lead-
ing to over smoothing the measure. Hence it is likely to
be more informative to use smaller distance buffers in
studies of food access.
Edge effect censoring arises with accessibility measures

as measures of distance are only available within the
study area. This not only potentially skews the distance
distribution but also assumes a travel route to food out-
lets that may not be relevant for any given individual.
When a fixed distance buffer is employed and distances
are cumulated within the buffer, then the degree of cen-
soring will increase with buffer size. For availability mea-
sures these considerations seem less relevant as distance
is not usually included in these measures.

Simulation Study Design
We wish to quantify edge effect bias for these accessibil-
ity and availability measures calculated in two spatial
environments. We therefore conducted a simulation
study to address the nature of the spatial variation of
these measures. This study was motivated by and is part
of a larger effort on characterizing the built food environ-
ment in an eight county region in South Carolina [26].
As is common in evaluation of distance-dependent

spatial processes [25] we first defined a unit square
study area. This choice allows the evaluation to be car-
ried out without distance scaling and is non-
dimensional. The effects of scaling of distance are
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addressed later. A mesh grid placed over the unit square
defines grid cells. Uniformly distributed points placed
within these grid cells represent s location points. To
assess the effects of edges, we partitioned the study area
in two: an internal area and an external guard area. The
complement of these areas forms the complete study
area (figure 1), where the external guard area is bounded
by the dashed and solid black line.
Outlets are then simulated based on model assump-

tions below. The accessibility measures are then com-
puted for the complete study area. A second set of
measures are then computed using only the internal
area. Hence for all s location points within the internal
area there will be two sets of measures: one computed
over the entire study area and the other using only the
internal area. Hence the effect of censoring at the edges
is captured by this design. Comparison of the two sets
of measures allows us to evaluate the degree of bias
attributable to edge censoring.

Model Assumptions
The simulation design is partially based on characteris-
tics of the local food environment and also more general
considerations of applicability to a variety of food envir-
onment scenarios. To this end we examined outlet den-
sities in an eight county urban and rural area of South
Carolina [26]. Large cities are absent, and the average
characteristics of outlet density and its variation between
rural and urban areas are highlighted. Here we define
‘outlet’ to mean either food retail store (convenience
store, supermarket, gas station) or restaurant (limited
service or full service restaurants). Initial simulations
considered total stores and restaurants and assumed an
outlet density with mean 14.8 and standard deviation of
13.5 per census tract. These summary values correspond

to the South Carolina study which identified 2219 food
outlets covering 150 census tracts.
We assumed that the study area was divided into a

fine tract grid and then we uniformly distributed 400
location points across the unit square grid. Accessibility
and availability measures were calculated from the uni-
formly distributed s location points to outlets in tracts.
The outlet densities in our study area [26] suggest over-
dispersion relative to a Poisson distribution, and initially
we examined simulations where outlets were assumed
to have a negative binomial distribution in small areas.
This however proved to be too simplistic and did not
reflect the clustered nature of the outlet distribution. It
is often the case that outlets are found in different clus-
tered arrangements in the food environment and so our
simulation would be more appropriate if spatial cluster-
ing was included in the design.
To accomplish this we designed cluster simulations

where a fixed number of cluster centers are assumed
and then clustering of outlets around these centers is
specified by the parameter j. The locations of the clus-
ter centers were randomly simulated using a uniform
distribution. To then simulate outlets using this cluster-
ing process, we simulated potential outlet locations s*
also from a uniform distribution. Then we calculated

s h s x j
j

* * ,( ) = −( )∑ where h is a clustering

function that has a Gaussian-like form

h s x j
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−
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2exp . The term |s - xj| is

the Euclidean distance between location point s and
cluster center xj. We accepted point s* as a location for

an outlet when R s Uniform= >( *) ( , )
max

0 1 . l(s) is

Figure 1 Simulation Study Design. Left: Unit square with 15 × 15 grid cells (225 total) and 20 × 20 (400 total) uniformly distributed s location
points. Right: Same grid setup with an edge effects boundary represented by the dashed line. Only 256 s location points located inside the
edge effects boundary were included.
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calculated in the same manner as l(s*) for all predefined
s location points on the grid and lmax = maximum of
l(s).
Note that these forms are closely related to spatial

cluster processes [27]. The cluster centers are fixed in
the simulation and outlets are simulated around the
centers to mimic aggregation of outlets. While it is clear
that in some real cases clusters of outlets occur as linear
features related to road systems, it is considerably more
difficult to simulate generalizable simulation results
from linear features. We believe that clustering modeled
around centers can act as an adequate approximation to
the real aggregation found, but this assumption has yet
to be formally evaluated.
We then used different parameters in the clustering

process to distinguish between urban and non-urban
areas. We assume there are generally more outlets in
urban areas as compared to non-urban areas, and we
expect there to be more cluster centers in the urban
areas but that the outlets are not as tightly aggregated
around each cluster center. The cluster centers could
represent a large urban development or shopping area,
but we would also expect some locations of outlets to
be in the general urban area and not just around the big
developments. In contrast, we expect fewer cluster cen-
ters in the non-urban areas and that these centers
would represent “small” or “large” towns within the
non-urban areas. We also expect that the outlets will be
more tightly clustered around these cluster centers, and
that very few outlets will be in the areas outside the

cluster centers. Therefore, we specify a smaller j =
0.005 to represent tighter clustering and fewer total out-
lets in the non-urban areas as compared to j = 0.01
and more outlets in the urban simulations.
Figure 2 displays examples of both urban and non-

urban simulations of outlets using clustering along with
the edge effects boundary. This figure illustrates there
will be outlets excluded by edge effects, which will cre-
ate bias in accessibility and availability measures. We
expect differences in bias between urban and non-urban
areas, as more outlets are excluded in the urban simula-
tion scenario due to the clustering simulation and total
number of outlets in the study area.

Simulation-based results
Bias and variability
To assess edge effect bias and variability, we calculated
the percentage error and absolute bias for each accessi-
bility and availability measure considered. The percen-
tage error and absolute bias for each s location point
within the internal boundary area was derived using the
calculated spatial measure for the entire grid (internal
area + external guard area) versus the calculated spatial
measure using only those outlets inside the edge effect
boundary (internal area) by the following formula:

Percentage error for s =

measure(s)total area measure(s)interna− ll
measure(s)total area

*100

Figure 2 Examples of simulated outlets using clustering with edge effect boundaries. The solid black line is the total study area and the
dashed line is the internal area, so any outlets outside of the dashed line will not be included in the edge effects analysis. From left to right, the
first figure represents a non-urban area with 300 outlets, 5 cluster centers, and clustering parameter j = 0.005. The second figure represents an
urban area with 2000 outlets, 15 cluster centers, and clustering parameter j = 0.01. Solid black dots represent cluster centers and open dots
represent outlet locations.
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and

Absolute Bias for s =

measure(s) measure(s)total area internal−

Tables 1 and 2 display the minimum, median, and
maximum values for the median absolute bias among
locations that are a specified distance from the edge
effects boundary. Table 1 is for an urban simulation
with 2000 total outlets and table 2 is for a non-urban
simulation with only 300 outlets. Regardless of simula-
tion scenario, as the distance to the edge effects bound-
ary increases, all median absolute bias equal zero except
for CP total. Even at small distances, all indices except
for CP total have little to no median absolute bias. The
absolute bias is much larger in the urban simulation as
compared to the non-urban simulation for CP total, and
this is intuitive due to the large numbers of outlets
located in the external guard area for the urban
scenario.
Figure 3 displays the median percentage error for var-

ious accessibility and availability measures depending on
how far the location is from the edge guard boundary
for an urban simulation with 2000 outlets. Indices that

involve only the first two outlets, such as CP for the
3 nearest outlets and distance to the nearest outlet had
median percentage errors equal to zero at even small
distances from the edge. CI only saw edge effects at the
locations closest to the guard area, but this is expected
since the total number of outlets for a location depend
on the number of outlets in that particular grid cell.
Therefore only grid cells divided by the edge boundary
would be affected for this count measure. The poorest
performing accessibility statistic in term of median per-
centage error was CP total. The percentage error is
higher at locations closest to the edge boundary; how-
ever, we still find median errors of 30% at distances
farthest from the boundary. Since CP total is a cumula-
tive measure over the entire study area, the percentage
errors are expected and alarming high in this urban
simulation.
Figure 4 displays median percentage errors for CI, CP

total, CP for the nearest 3 outlets, and distance to the
nearest outlet for a non-urban simulation with only 300
outlets. Median percentage errors for CI range from 0%
to over 60% for locations closest to the edge boundary,
but there are fewer overall median percentage errors dif-
ferent from 0% in the non-urban simulation versus the

Table 1 Minimum, median, and maximum absolute bias for various distances from the boundary in an urban
simulation with 2000 outlets

Median Absolute Bias for Various Spatial Measures

Distance to Boundary CI CI CP Total CP Nearest 1 CP Nearest 2 CP Nearest 3 Distance to Nearest Outlet

Min 0 0 1505.89 0 0 0 0

0.025 Med 6 1.096 2187.42 0 0 0 0

Max 15 2.161 3158.75 0 2.45 4.61 0

Min 0 0 1615.79 0 0 0 0

0.075 Med 0 0 1946.53 0 0 0 0

Max 0 0 2648.79 0 0 0 0

Min 0 0 1687.62 0 0 0 0

0.125 Med 0 0 1822.69 0 0 0 0

Max 0 0 2332.78 0 0 0 0

Min 0 0 1712.66 0 0 0 0

0.175 Med 0 0 1761.12 0 0 0 0

Max 0 0 2109.84 0 0 0 0

Min 0 0 1689.10 0 0 0 0

0.225 Med 0 0 1722.31 0 0 0 0

Max 0 0 1950.82 0 0 0 0

Min 0 0 1668.79 0 0 0 0

0.275 Med 0 0 1701.53 0 0 0 0

Max 0 0 1828.89 0 0 0 0

Min 0 0 1660.19 0 0 0 0

0.325 Med 0 0 1684.29 0 0 0 0

Max 0 0 1745.45 0 0 0 0

Min 0 0 1665.01 0 0 0 0

0.375 Med 0 0 1676.79 0 0 0 0

Max 0 0 1693.05 0 0 0 0
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urban scenario. This is attributed to fewer outlets
located in the external guard area for the non-urban
simulation. Errors for CP to the nearest 3 outlets as well
as distance to the nearest outlet are slightly higher in
the non-urban scenario. Since there are only 300 total
outlets in this simulation, if one of the outlets is located
in the external guard area, the next closest outlet may
be farther away than one in an urban environment. We
find a similar trend regarding the percentage errors for
CP total in the rural scenario; however, the errors are
generally smaller than what was seen in the urban envir-
onment. Since there are fewer outlets in the overall rural
simulation as well as in the external guard area, this
cumulative CP total is not as affected from edge effects
as it is in an urban area.

Mapped Results and Error Profiles
We can also present these edge effect percentage errors
in contour plots as shown in figure 5 for an urban
environment. Once again, we see higher edge effects in
areas closer to the edge boundary, and errors for CP
total are the highest as compared to other indices. Simi-
larly, figure 6 displays contour plots for the median per-
centage error over 500 simulations for the non-urban

scenario with only 300 outlets. We see increased errors
in locations closest to the boundary edge, but this time
we see increased errors around the cluster center loca-
tions. These cluster centers could represent small or
large town environments, and there are few if any out-
lets located in areas outside of these small town
developments.

Discussion and Conclusions
This paper highlights the importance of edge effects in
the analysis of nutritional environment measures. These
effects have been of some concern for spatial analysts
[7,9,10]. Our simulations demonstrated two sources of
bias on analysis results due to edge effects. First, areas
close to external boundaries will have additional bias
and variance attributable to censoring at the edge. Sec-
ond, the edge effect can have an overall effect on mea-
sure estimation in the map. This means that
accessibility measures will be most affected as they use
distances as a surrogate for access. Availability measures
are less likely to be affected as they are simply local
counts of outlets (unless smoothing has taken placed).
The median percentage error showed very small or no

edge effect percentage errors for spatial accessibility

Table 2 Minimum, median, and maximum absolute bias for various distances from the boundary in a non-urban
simulation with 300 outlets

Median Absolute Bias for Various Spatial Measures

Distance to Boundary CI CI CP Total CP Nearest 1 CP Nearest 2 CP Nearest 3 Distance to Nearest Outlet

Min 0 0 101.50 0 0 0 0

0.025 Med 0 0 175.69 0 0 0 0

Max 4 0.91 452.43 0.85 4.47 7.59 0.01

Min 0 0 110.35 0 0 0 0

0.075 Med 0 0 176.52 0 0 0 0

Max 0 0 316.41 0 0.17 1.29 0

Min 0 0 117.62 0 0 0 0

0.125 Med 0 0 170.96 0 0 0 0

Max 0 0 264.39 0 0 0 0

Min 0 0 124.30 0 0 0 0

0.175 Med 0 0 166.45 0 0 0 0

Max 0 0 237.70 0 0 0 0

Min 0 0 131.19 0 0 0 0

0.225 Med 0 0 164.44 0 0 0 0

Max 0 0 216.28 0 0 0 0

Min 0 0 138.00 0 0 0 0

0.275 Med 0 0 162.69 0 0 0 0

Max 0 0 196.41 0 0 0 0

Min 0 0 145.58 0 0 0 0

0.325 Med 0 0 161.12 0 0 0 0

Max 0 0 179.89 0 0 0 0

Min 0 0 154.39 0 0 0 0

0.375 Med 0 0 160.13 0 0 0 0

Max 0 0 166.04 0 0 0 0
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measures CP to the nearest 1, 2, and 3 outlets as well
and the distance to the nearest outlet in both urban and
non-urban simulations. However, CP total is greatly
affected by edge boundaries regardless of whether the
location is close to the boundary edge or not, with over
25% error observed close to the edges and only a

marginal decrease to just under 20% at the center of the
region. This error is much larger for urban areas than
rural areas (see Figure 3 and 4). This suggests that CP
total is to be avoided as a measure of choice due to this
edge distortion. For availability measures the CI index is
greatly affected only at locations next to the edge

0.38

Figure 3 Plots of the median percentage error for an urban simulation. Plots of the median percentage error for CI, CP total, CP for the
nearest 3 outlets, and distance to the nearest outlet for each s location point over 500 simulations versus the distance from the s location point
to edge effect boundary in an urban simulation with 2000 outlets.
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boundary and is generally robust. If smoothing of CI
were performed (e. g, by density estimation or non-para-
metric regression) then the smoothed estimates will
have edge effects.
Remedies for edge effects are available and usually

involve some form of weighting system for edge areas.

Guard areas either external or internal are useful. Exter-
nal areas would be ideal if that extra information is
available as they allow the full estimation of internal
measures. Internal guard area is always available in any
study but this can limit the usefulness of edge areas as
they will be used for estimation of non-edge areas only.

Figure 4 Plots of the median percentage error for a non-urban simulation. Plots of the median percentage error for CI and CP total for
each s location point over 500 simulations versus the distance from the s location point to edge effect boundary in a non-urban simulation
with 300 outlets.
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Weighting based on proximity to the boundary is also
possible, as a compromise between internal guard areas
and no compensation. From this study it appears that
considerable bias appears in the estimates at or close to
boundaries. Clearly the use of guard areas would be
recommended in any study. The size of such areas
would be important to choose carefully.

The implication of this edge effect is clear. When CP
measures are used then it is more robust to use short to
medium range measures (1st to 3rd nearest) than to use
CP total. In fact CP total is by far the worst measure for
edge bias. The CP total measure has large edge effects
while the CI and short range CP measures have relatively
minor effects. Confining the study to reporting of

Figure 5 Contour plots for median percentage errors in an urban simulation. Contour Plots for Median Percentage Errors at each s
location point over 500 simulations for the availability measure CI and accessibility measure CP total for an urban simulation with 2000 outlets.
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internal areas is important, and so we would recommend
that short range measures be used with a guard area of
around 10% of the study window, this being the approxi-
mate cut off for the effects for short range measures.
A further set of measures that combine accessibility

with availability are gravity measures. These composite

measures use distance friction modified by a measure of
attraction (such as sales volume, floor space of outlet).
Usually they are defined as a ratio of the form g/d
where g is the measure of attraction of the outlet and d
is the distance to the outlet. It is beyond the scope of
this study to evaluate these measures. However it is

Figure 6 Contour plots for median percentage errors in a non-urban simulation. Contour Plots for Median Percentage Errors at each s
location pint over 500 simulations for the availability measure CI and accessibility measure CP total for a non-urban simulation with 300 outlets.
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clear that the general behavior of distance-based mea-
sures and their behavior at or near boundaries is likely
to be found for gravity measures as well in that large
distance-based gravity measures will have greater edge
biases.
Some limitations and caveats should be mentioned

also. First, in our simulation study we only considered a
variety of clustered outlet distributions. However, outlets
may congregate is more arbitrary clusters or associations
(e.g. in linear strip malls or in isolated locations). In
addition, the assumption of a Euclidean distance mea-
sure may be criticized. This is reasonable in a simulation
as we cannot hope to represent the arbitrary network
distances of real outlet attraction paths. The statistics
we have examined are invariant to these transformations
of metrics.
In general our test statistics, and our Monte Carlo

limits are robust to scale change and ranges of config-
urations which at least mimic the marginal properties of
real outlet configurations. Thus we believe that the
results are generalizable to both different spatial scales
and distributions. A limitation that we also admit is that
we limited our study to spatial summary measures and
didn’t pursue the application of geostatistical methods
to the fields of measures. The decision to do this was
made for two pragmatic reasons: summary measures are
commonly used and so are more likely to benefit from
edge effect evaluation; geostatistical methods are more
difficult to apply and it is more difficult to make com-
parisons of fields between spatial sites.
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