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Abstract

Background: Models for the spatial distribution of vector species are important tools in the assessment of the risk
of establishment and subsequent spread of vector-borne diseases. The aims of this study are to define the
environmental conditions suitable for several mosquito species through species distribution modelling techniques,
and to compare the results produced with the different techniques.

Methods: Three different modelling techniques, i.e., non-linear discriminant analysis, random forest and generalised
linear model, were used to investigate the environmental suitability in the Netherlands for three indigenous
mosquito species (Culiseta annulata, Anopheles claviger and Ochlerotatus punctor). Results obtained with the
three statistical models were compared with regard to: (i) environmental suitability maps, (ii) environmental
variables associated with occurrence, (iii) model evaluation.

Results: The models indicated that precipitation, temperature and population density were associated with
the occurrence of Cs. annulata and An. claviger, whereas land surface temperature and vegetation indices
were associated with the presence of Oc. punctor. The maps produced with the three different modelling
techniques showed consistent spatial patterns for each species, but differences in the ranges of the predictions.
Non-linear discriminant analysis had lower predictions than other methods. The model with the best classification skills
for all the species was the random forest model, with specificity values ranging from 0.89 to 0.91, and sensitivity values
ranging from 0.64 to 0.95.

Conclusions: We mapped the environmental suitability for three mosquito species with three different modelling
techniques. For each species, the maps showed consistent spatial patterns, but the level of predicted environmental
suitability differed; NLDA gave lower predicted probabilities of presence than the other two methods. The variables
selected as important in the models were in agreement with the existing knowledge about these species. All model
predictions had a satisfactory to excellent accuracy; best accuracy was obtained with random forest. The insights
obtained can be used to gain more knowledge on vector and non-vector mosquito species. The output of
this type of distribution modelling methods can, for example, be used as input for epidemiological models of
vector-borne diseases.
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Background
Mosquitoes (Diptera:Culicidae) are known to be vectors
of a large number of pathogens around the globe. Blood-
feeding females of several mosquito species are involved
in transmission of protozoa (e.g. Plasmodium), nematodes
and viruses. Mosquitoes are considered as prime candi-
dates for transmitting (re-)emerging vector-borne diseases
in Europe [1].
Accurate information on the spatial distribution of mos-

quito species is essential for our understanding of the
current risk of diseases transmitted by mosquitoes and for
preparing for future threats [2]. For the modelling of the
spatial distribution of species, several techniques exist
[3,4], differing in assumptions and predictive performance.
The general idea behind species distribution modelling
is to identify relationships between known occurrence
of a species (presence/absence) and environmental data
(e.g. meteorological data, land use covers, remote sensing
data) and to use these relationships to make predictions
for all unsampled areas in the study region.
Here, we compare non-linear discriminant analysis (NLDA),

random forest (RF) and generalised linear models (GLM),
three techniques that have not been compared before,
by applying them to a new dataset consisting of system-
atically collected data on three indigenous mosquito spe-
cies in the Netherlands. The three mosquito species are
Culiseta annulata (Schrank, 1776), Anopheles claviger
(Meigen, 1804) and Ochlerotatus punctor (Kirby, 1837).
For each of these species, the resulting environmental
suitability maps and the most important environmental
variables selected by the models are discussed and the
techniques are compared in terms of model performance.

Results
The environmental suitability for Culiseta annulata,
Anopheles claviger and Ochlerotatus punctor was investi-
gated in the Netherlands using three statistical models,
i.e., NLDA, RF and GLM. Through these modelling tech-
niques, occurrence data collected in 766 locations were
linked to environmental factors.
The maps in Figure 1 show the observed occurrence

data (i.e., the model input) and the predicted environmen-
tal suitability (i.e., the model outcomes). The ten most im-
portant variables for each model and each species are
reported in Table 1. Accuracy measures are given in
Table 2. For each species, the environmental suitability
maps, the most important environmental variables and
the model performances are reported below.

Culiseta annulata
Cs. annulata has the highest number of observed presences
(438, Table 3) in the study. The presence points -indicated
by black dots in Figure 1- show that this species was found
almost all over the country. The environmental suitability
maps show greater suitability in the western part of the
Netherlands and lower suitability more inland. Although
the areas identified as suitable (and unsuitable) are similar
in all maps (Figure 1), the environmental suitability indica-
tor for NLDA has a wider range of values (0.07-0.91) than
RF (0.12-0.79) and GLM (0.10-0.86). This is visible in the
different intensities of blue and red in the maps. RF and
GLM identify also the northern and central part of the
country as suitable environment. In all three models,
precipitation and land surface temperature are important
variables (Table 1). Population density comes up as an
important variable in both the NLDA model and the
RF model (first and second-most important variable,
respectively). Highly forested areas (e.g., National Park
Hoge Veluwe situated in the centre of the country)
are not identified as suitable for this species in any of
the three models. RF is the most specific method (speci-
ficity = 0.89, Table 2), while GLM is the most sensitive
(sensitivity = 0.75, Table 2).

Anopheles claviger
The number of presence locations for An. claviger was
127 (Table 3). This species does not show a particular
pattern in the distribution over the country (black dots
in Figure 1). All maps (Figure 1) show lower environ-
mental suitability for this species in the northern and
central part of the country whereas the environment is
identified as more suitable in the eastern part and in the
coastal area (especially for RF and GLM). NLDA predicts
much lower suitability values than the other techniques
(minimum values: NLDA = 0.07, RF = 0.22, GLM= 0.17),
only a few values are larger than 0.5 and as a consequence
the average value is very low (average values: NLDA = 0.
27, RF and GLM ≈ 0.50). The GLM map indicates wet-
lands and floodplains as suitable environments. The
most important variables are precipitation, land surface
temperature, vegetation indices and middle infra-red,
which is a vegetation related index (Table 1). Highly for-
ested areas are not identified as suitable for this species.
RF has excellent classification capabilities, the highest
when compared to the other techniques (specificity = 0.91,
sensitivity = 0.89, Table 2).

Ochlerotatus punctor
Among the three species presented here, Oc. punctor is
the least present (73 presence locations, Table 3) and it
is the only species showing a clear pattern in the obser-
vations (Figure 1); there are more presence points in the
east of the country (inland). All three models indicated
higher environmental suitability in this part of the coun-
try (Figure 1). Comparing the suitability values obtained
with the different techniques, the values are higher for
RF and GLM and lower for NLDA (maximum values:
NLDA = 0.81, RF = 0.94, GLM = 0.92). In the top 10



Figure 1 (See legend on next page.)
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Figure 1 Environmental suitability maps. Environmental suitability maps for Cs. annulata, An. claviger and Oc. punctor, produced using non-linear
discriminant analysis (NLDA), random forest (RF) and generalised linear model (GLM). Black dots indicate that the species was captured on the sampled
locations and white dots indicate that the species was not captured. Environmental suitability is depicted using a gradient fill: blue indicates
low environmental suitability, red indicates high suitability. NLDA and GLM bootstrapping was based on 150 presence points and 150
absence points for Cs. annulata and 100 presence points and 100 absence points for An. claviger and Oc. punctor.
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variables, middle-infra red, vegetation indices, precipita-
tion and day land surface temperature are reported
(Table 1). Population density is recorded as the most influ-
ential variable in NLDA and RF models. Highly forested
areas are identified as suitable for this species in all three
models. RF showed excellent classification capabilities
Table 1 Most important variables per species and per model

SPECIES NLDA RF

Cs. annulata • Population density • N

• WORLDCLIM precipitation P2 • Po

• WORLDCLIM precipitation A0 MIR

• WORLDCLIM precipitation D1 • D

• WORLDCLIM precipitation DA • M

• CMORPH precipitation A1 • N

• DLST DA • M

• DLST P1 • EV

• DLST A0 • C

• DLST P2 • W

• D

An. claviger • WORLDCLIM precipitation P2 • N

• WORLDCLIM precipitation A0 • M

• Population density • N

• MIR A3 • W

• WORLDCLIM precipitation DA • N

• EVI D2 • D

• NLST P3 • D

• EVI P2 • D

• NLST A3 • N

• DLST A0 • N

Oc. punctor • Population density • Po

• MIR P1 • M

• EVI P3 • EV

• NDVI P3 • N

• NDVI P2 • N

• DLST MN • D

• DEM • D

• CMORPH precipitation A2 • C

• CMORPH precipitation A1 • C

• WORLDCLIM precipitation P3 • W

For non-linear discriminant analysis (NLDA) and generalised linear model (GLM) the
important variables are expressed by the mean decrease in Gini index.
(specificity = 0.91, sensitivity = 0.95, Table 2), and it is the
modelling technique with the best accuracy.

Discussion
The environmental suitability for Cs. annulata, An. clavi-
ger and Oc. punctor has been investigated using field and
GLM

LST P2 • EVI VR

pulation density • DEM

A2 • DLST A2

LST A2 • NLST P3

IR MX • CMORPH precipitation VR

DVI A2 • CMORPH precipitation A3

IR P1 • DLST D1

I MN • DLST D3

MORPH precipitation P1 • MIR A2

ORLDCLIM precipitation P1 • MIR 03

LST A3

LST MX • EVI P2

IR MN • DEM

LST A0 • NLST MN

ORLDCLIM precipitation P3 • NLST A2

LST MN • CMORPH precipitation A 1

LST A0 • MIR D3

LST A1 • WORLDCLIM precipitation D3

LST MX • CMORPH precipitation A2

DVI A2 • NLST A0

DVI VR • Population density

pulation density • NDVI D1

IR P1 • MIR P1

I P3 • DLST P2

DVI P3 • EVI P2

DVI P2 • MIR A3

LST MN • WORLDCLIM precipitation A3

EM • NDVI A3

MORPH precipitation A2 • WORLDCLIM P3

MORPH precipitation A1 • EVI MN

ORLDCLIM precipitation P3 • CMORPH precipitation A2

top 10 variables average ranks are reported, for random forest (RF) the most



Table 2 Accuracy measures for the environmental suitability per species and per model

SPECIES NLDA RF GLM

Cs. annulata Specificity (CI) 0.805 (0.596-0.884) 0.892 (0.808-0.936) 0.576 (0.442-0.811)

Sensitivity (CI) 0.639 (0.541-0.829) 0.637 (0.696-0.779) 0.753 (0.498-0.868)

An. claviger Specificity (CI) 0.670 (0.559-0.850) 0.908 (0.875-0.944) 0.652 (0.452-0.820)

Sensitivity (CI) 0.772 (0.567-0.866) 0.890 (0.827- 0.945) 0.709 (0.512-0.890)

Oc. punctor Specificity (CI) 0.828 (0.735-0.954) 0.910 (0.825-0.944) 0.765 (0.574-0.828)

Sensitivity (CI) 0.932 (0.795-1.00) 0.945 (0.890-1.00) 0.808 (0.685-0.945)

The confidence intervals (CI) are based on 2000 stratified bootstrap replicates.
The best values for sensitivity and specificity for each species are printed in bold.
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environmental data and applying three different modelling
approaches, i.e., NLDA, RF and GLM. When comparing
the maps for each species produced with the three different
modelling techniques, we see consistent spatial patterns,
but different levels of predicted environmental suitability.
The average predicted environmental suitability was lower
for NLDA than for the other methods. This is visible in
the predominance of blue colours in the NLDA maps.
Most of the variables highlighted by the models as im-

portant are in agreement with field experience, existing
biological knowledge, and known habitat preference of
these species in Belgium (MODIRISK) [1]. Precipitation
and temperature for Cs. annulata and An. claviger are
important in both our study and MODIRISK. For An.
claviger the population density is also reported as im-
portant, both in MODIRISK and in our study (for NLDA
and GLM). Both studies show a preference of the latter
species for the coastal area. The GLM map for An. clavi-
ger shows wetland and the floodplains of the big rivers
as suitable environments, in accordance with field know-
ledge. Oc. punctor occurrence is related to land surface
temperature and particularly with vegetation indices, in
the Netherlands as well as in Belgium. This species is
generally found in forests and natural areas. Population
density is recorded in our study as one of the most influ-
ential variables in NLDA and RF models for Oc. punctor
and Cs. annulata. Cs. annulata is known to breed in a
wide variety of habitats and to be associated with areas
with human activity [5], whereas Oc. punctor prefers
swampy forest with boggy waters and seldom flies out of
the forest [5], characteristics that suggest a negative rela-
tionship with human presence.
In terms of model performance, RF shows the best dis-

crimination skills. Also in other studies, this technique
was consistently reported to outperform other traditional
Table 3 Number of presence and absence points per
species

SPECIES Presence Absence

Cs. annulata 438 344

An. claviger 127 655

Oc. punctor 73 709
modelling techniques [6,7]. Only the GLM for Cs. annu-
lata has a higher sensitivity than RF. Random forest sensi-
tivity and specificity are excellent, often equal to or larger
than 0.9. However, if we want to interpret these values, we
have to consider that the training data are also used to
evaluate the model, meaning that the accuracy measures
will be overestimated [8,9]. Although most modellers con-
sider that external validation is preferable to internal, there
are cases where internal validation (i.e., the model ability
to fit the training data) is sufficient. If the goal is to de-
scribe a pattern, overestimating the accuracy is not a prob-
lem. This is the case for models seeking to convert the
observed records of a species into a suitability score [10],
as in our study. Overall, when making predictions based
on occurrence data, presence data are more reliable than
absence data [11]. Absence points may represent areas
where the trap failed to catch a mosquito despite these
mosquitoes being present in the area, or areas that are in
principle suitable, but which have not yet been invaded.
Therefore, in these cases, it is recommended to prioritize
the sensitivity over the specificity [12].
Sensitivity and specificity measures were used to com-

pare techniques for the same species and in the same
geographical area. It was not possible to compare model
performance between species because the traditional
methods are highly influenced by the relative areas of
occurrence of different species and by the geographical
extent: increasing the geographical extent outside the
presence environmental domain leads to a larger score for
the area under the curve [13]. In fact, it has been shown
that the relative occurrence area of the species influences
the results of the evaluation scores, implying that models
of rare species with high environmental specificity will
yield to higher discrimination values [14,15] and that spe-
cies with restricted environmental tolerance and/or distri-
butions are usually reported to be well predicted [16].
This is indeed what we would observe if we compared
sensitivity and specificity between species: Oc. punctor is
mainly observed in the east of the country and the ran-
dom forest has the highest discrimination skills, compared
to other species.
To create a reliable model, it is generally considered

necessary to have the same number of presence and
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absence points as input. This is because having a differ-
ent number will create a bias in the model prediction to-
wards the more prevalent category (presence or absence)
[17]. For NLDA and GLM, this balancing, i.e., consider-
ing the same number of presences and absences, is ac-
complished at the bootstrapping stage. However, for
techniques such as random forest it is necessary to select
a ‘balanced’ subset of the data.
Some areas were excluded from the sampling scheme,

because they were deemed unsuitable for mosquitoes. At
the modelling stage, this had to be corrected by adding
absence points in these unsampled regions (for details,
see methods section). In our study, this adjustment was
possible because it was known that the unsampled re-
gions would be negative for presence of mosquitoes.
Generally speaking, avoiding bias in sampling strategies
is more advisable than correcting for lack of data at the
modelling stage.
The aim of the study was to investigate the spatial dis-

tribution of mosquito species and to compare the per-
formance of three statistical models. In recent years,
predictive modelling of species distribution has become
an increasingly important tool to address various issues
in ecology, biogeography, evolution, conservation biol-
ogy and climate change research [18]. Beyond describing
species distributions, these models have become an im-
portant and widely used decision making tool for a var-
iety of biogeographical applications, such as mapping
risk of vector-borne disease spread, and determining lo-
cations that are potentially susceptible to invasion [19].
Species distribution modelling using flexible machine
learning approaches has been successfully applied to
quantify and to map the global distribution of hosts [20],
disease vectors [21], pathogens [22], and infection and
outbreak risk [23].

Conclusions
In this study we mapped the environmental suitability
for three mosquito species with three different modelling
techniques. For each species, the models produced con-
sistent spatial patterns, but different levels of prediction
ranges. The average predicted environmental suitability
was lower for NLDA than for the other methods. The
variables selected as important in the models were con-
sistent with field experience and the existing knowledge
about these species. All the modelling techniques showed
a satisfactory to excellent accuracy; the best accuracy was
obtained with the random forest model.
The insights obtained in this study can be used to im-

prove future predictions for vector and non-vector spe-
cies. The output of this type of distribution modelling
methods can be used as input for epidemiological models
and can be helpful to identify suitable areas for a given
species, at risk of successful invasion if the species is still
absent. Such areas may therefore need particular attention
in terms of measures of prevention.

Methods
The input for spatial distribution modelling consists of
mosquito field data and environmental, often satellite,
data. Here we describe the mosquito data collection, the
environmental data used and the statistical methods
applied.

Mosquito data
Data were collected by the Dutch Centre for Monitoring
of Vectors during the National Mosquito Survey pro-
gram, from April to October 2010–2013 [24]. These
consisted of mosquito abundance data, sampled at 778
locations. Each of the locations was sampled only once
and each trap was active for one week. At the sampled
locations, mosquitoes were captured by means of CO2-
baited Mosquito Magnet Liberty Plus MM3100 traps
(Woodstream® Co., Lititz, USA). These traps have been
evaluated successfully for trapping and surveillance
against a variety of mosquito genus and species [25,26],
and have been used successfully in the national inventory
of mosquitoes in Belgium, MODIRISK [2], also to capture
Culiseta annulata, Anopheles claviger and Ochlerotatus
punctor. For our survey, the traps were randomly located
in the Netherlands, following the study design described
in Ibañez-Justicia et al. [24]. Of the traps, 40% were placed
in urban areas, 40% in agricultural areas and 20% in nat-
ural areas. Natural areas were sampled to a lesser extent
because of their presumed lower involvement in human
and veterinary health risks.
As described in Ibáñez-Justicia et al. [24], high prod-

uctivity agricultural areas, such as arable land or per-
manent crops, were not sampled as they are considered to
be unsuitable due to a lack of mosquito breeding sites.
Therefore, areas with beet, grain, maize, potatoes and
other agricultural crops, bulb flowers, productivity or-
chards and greenhouses were excluded from the sampling.
When the goal is to estimate the potential distribution of
a species, it is important that absence data come from en-
vironmental conditions that are known to be unsuitable
for the species [27]. If information on absence is not avail-
able, absences can be generated outside the environmental
domain where the species is present [14]. This has been
done, for example, in Jiménez-Valverde and Lobo [28],
where probable absences were randomly selected in the
areas having environmental values outside the range of
observed presences. In a similar way, forty-three absence
points in our study were generated in the land cover types
that are deemed unsuitable for mosquitoes. Omitting this
information, would have led to unrealistic predictions, as
is for example shown in Figure 2. In Figure 2A, the pres-
ence and absence points for An. claviger are shown as



Figure 2 Probable absences added in unsuitable unsampled areas. A – Absence points added to the An. claviger data in part of Flevoland
province. The grey area was sampled and the white area was excluded from the sampling because it was considered unsuitable for mosquitoes.
White and black circles indicate negative and positive traps, respectively. White squares indicate the probable absences added in unsuitable
unsampled areas. B – Random forest predictions for An. claviger without pseudo-absences. Environmental suitability is depicted using a
gradient fill: blue indicates low environmental suitability, red indicates high suitability. C – Random forest predictions for An. claviger
with pseudo-absences.
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black and white circles in an area of Flevoland province
(north-west). The grey area was sampled and the white
area was excluded from the sampling because it was con-
sidered unsuitable for mosquitoes. Only two traps were lo-
cated in this part of the region, in two fragments that were
part of the sampled area, and they were both positive for
the presence of mosquitoes. Both positive traps were lo-
cated in small areas enclaved in pixels that were mainly
considered to be unsuitable (intensively used agricultural
fields). However, these possibly unsuitable areas were not
sampled and therefore there are no data informing the
model of their unsuitability. In a model without probable
absence added, the two pixels are identified as suitable
and consequently the whole area will be predicted as be-
ing suitable (Figure 2B), potentially incorrectly. If we
introduce also absence points, the model is provided with
more complete information and gives more realistic pre-
dictions (Figure 2C).
The abundance data were reclassified into data of pres-
ence (when at least one mosquito was found in the trap)
and absence (when no mosquitoes were found in the trap),
because the number of mosquitoes in each location was
measured in different weeks and the mosquito abundance
is expected to vary seasonally. The resolution used for the
maps is 1 km2. When a presence and an absence point
were in the same square kilometre only the presence point
was selected because presences inform about the places
that are environmentally suitable for a species, but ab-
sences do not necessarily indicate the opposite [29]. This
reduced the number of locations used in the analysis from
778 to 766.

Environmental variables
The environmental data included in the analysis as pre-
dictor variables are 1 km2 resolution satellite images and
meteorological data in raster file format, commonly used



Table 5 Environmental predictor variables

Source Variable

MODIS Middle infra-red (MIR)

MODIS Day-time land surface temperature (DLST)

MODIS Night-time land surface temperature (NLST)

MODIS Enhanced vegetation index (EVI)

MODIS Normalised difference vegetation index (NDVI)

CMORPH Precipitation

WorldClim Precipitation

MODIS Digital elevation model (DEM)

Gridded population
of the world

Human population density

European Environment
Agency

Corine land cover
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for mosquito distribution modelling [30]. The images
were obtained from the MODIS sensor on NASA’s Terra
and Aqua satellites [31,32] for 2000–2012 and subjected
to temporal Fourier transformation [33,34] to summarise
the images and to produce sets of data that capture char-
acteristics of the annual seasonality: the mean, the annual
bi-annual and tri-annual amplitudes and phases, the max-
ima, minima and variances of variances of the middle
infra-red (MIR), the daytime Land Surface Temperature
(dLST), the night-time Land Surface Temperature (nLST),
the Enhanced Vegetation Index (EVI) and the Normalized
Difference Vegetation Index (NDVI) signals [35]. Other
environmental data used in this study are precipitation
(WorldClim [36] and CMORPH [37] 1950–2000), popula-
tion density (compiled from the Gridded Population of
the World Dataset 2000 [38]), the digital elevation model
(MODIS [32] 2012) and land cover (Corine land cover
map of 2006) [39]. A list of the Fourier components is
provided in Table 4 and the environmental data are listed
in Table 5. Predictor variables were organized as raster
type files and for each trap location the pixel values of the
environmental variables were extracted.

Statistical analysis
Species distribution models quantitatively describe areas
that support the presence of a given species, based on
known occurrence data and the associated environmental
conditions [40]. Here, three methods suitable for occur-
rence data have been applied, i.e., non-linear discriminant
analysis, random forest analysis and a generalised linear
model, aimed at describing the relationship between re-
sponse and predictor variables. For all three modelling
techniques, the output was an environmental suitability
Table 4 Fourier components from temporal Fourier
analysis of an imagery time series

Component Description

A0 Fourier mean for entire time series

MN Minimum value

MX Maximum value

A1 Amplitude of annual cycle

A2 Amplitude of bi-annual cycle

A3 Amplitude of tri-annual cycle

VR Total variance

P1 Phase of annual cycle

P2 Phase of bi-annual cycle

P3 Phase of tri-annual cycle

D1 Proportion of total variance due to annual cycle

D2 Proportion of total variance due to bi-annual cycle

D3 Proportion of total variance due to tri-annual and cycle

DA Proportion of total variance due to all three cycles

Component is the name used in the software Vecmap.
indicator for each species, expressed as a value between 0
(low suitability) and 1 (high suitability). The predicted en-
vironmental suitability is visualised in maps.

Non-linear discriminant analysis
Models created using NLDA [34] require presence and
absence data to be grouped into clusters based on attribute
data. In this way, a discriminant function can be created
and predictive maps based on these clusters can be made.
The main advantage of the clustering is that it handles
spatial heterogeneity of habitat niches and zones. The data
were clustered using the k-means clustering algorithm.
Since the important variables for the species were un-
known, generic variables were used for clustering. These
variables were DEM and the means, amplitudes, maxima,
minima, variances (of the entire signal) and phases of MIR,
LST and NDVI. NLDA models were bootstrapped [41],
meaning that 100 models were run and that for each
model a sample of an equal number of presence and ab-
sence points was taken from the training set with replace-
ment. The final predictions are based on the average of
the 100 models.

Random forest
A random forest [42] method consists of an ensemble of
classification and regression trees (CART; [43]) con-
structed using a random subset of both the available
samples and the attributes recorded for each data point.
A CART tree is a hierarchical structure that allows a
data point to be assigned to a particular class based on
its attribute values. For the random forest method it is
necessary to have the same number of presence and ab-
sence points as input, in order to obtain unbiased model
predictions [44]. For techniques such as NLDA and
GLM, this balancing is guaranteed at the bootstrapping
stage, but this is not the case for RF. Therefore, before the
model was run, five ‘balanced’ subsets of the complete
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dataset were randomly created. For each species, if there
were more absence than presence points, all the presence
points were used and a random subset of the absences
was selected. If the presence points outnumbered the ab-
sence points, the procedure was inversed. The RF models
were not bootstrapped because inherently RF uses a ra-
tionale similar to the bootstrapping approach, being based
on several CART trees. The final predictions are the aver-
age of the five submodels.

Logistic regression
For the GLM analysis, a logistic regression model was
used because the response is a binary variable (presence/
absence). GLM models can account for spatial autocorrel-
ation by using an autoregressive term or mixture model.
The effect of spatial autocorrelation on the training set
was checked in the correlograms, i.e., plots of distance
between points and the Moran’s I index of their cor-
relation. Since the correlation effect was not strong (with
the exception at extreme distances where it is known
that values for Moran’s I may be erratic due to fewer
points that can be compared [45]) there was no need
to account for spatial autocorrelation. As for NLDA,
the GLM models were bootstrapped 100 times with a
sample of an equal number of presence and absence
points after which the 100 models were averaged to
produce the final predictions.

Model evaluation
The choice of evaluation strategy needs to be explicitly
related to the subject and goals of modelling. Here, the
aim is to describe a given pattern and get a suitability
score. In this context, simple forms of verifications, e.g.
the number of false negatives, is appropriate to check
whether models are performing as intended [10]. For
each model, sensitivity and specificity were calculated,
where sensitivity is the ability of a model to correctly
identify known positive sites and specificity is the ability
of a model to correctly identify known negative sites.
Sensitivity and specificity were reported together with
the values of their confidence intervals. The confidence
intervals are calculated based on 2000 stratified boot-
strap replicates at 95% level. Sensitivity and specificity
were used to compare the results produced with NLDA,
RF and GLM for the same species. A list of the most
important variables used in the models is provided. For
NLDA and GLM the top 10 ranked variables are listed
and for RF variable importance is given as mean decrease
in Gini index [42,43].
The analysis has been performed with the software

Vecmap demo version [46]. The accuracy measures have
been calculated with R 3.0.2 statistical language environ-
ment [47] (R Development Core Team 2013), using of
the R-packages pROC, ROCR, OptimalCutpoints.
Abbreviation
NLDA: Non-linear discriminant analysis; RF: Random forest; GLM: Generalised
linear model; Cs.: Culiseta; An.: Anopheles; Oc.: Ochlerotatus; MIR: Middle infra-red;
dLST: Daytime Land Surface Temperature; nLST: Night-time Land Surface
Temperature; EVI: Enhanced Vegetation Index; NDVI: Normalized Difference
Vegetation Index; DEM: Digital Elevation Model.
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