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Abstract

Background: According to the social ecological model of health-related behaviors, it is now well accepted that
environmental factors influence habitual physical activity. Most previous studies on physical activity determinants
have assumed spatial homogeneity across the study area, i.e. that the association between the environment and
physical activity is the same whatever the location. The main novelty of our study was to explore geographical
variation in the relationships between active commuting (walking and cycling to/from work) and residential
environmental characteristics.

Methods: 4,164 adults from the ongoing Nutrinet-Santé web-cohort, residing in and around Paris, France, were
studied using a geographically weighted Poisson regression (GWPR) model. Objective environmental variables,
including both the built and the socio-economic characteristics around the place of residence of individuals, were
assessed by GIS-based measures. Perceived environmental factors (index including safety, aesthetics, and pollution)
were reported by questionnaires.

Results: Our results show that the influence of the overall neighborhood environment appeared to be more
pronounced in the suburban southern part of the study area (Val-de-Marne) compared to Paris inner city, whereas
more complex patterns were found elsewhere. Active commuting was positively associated with the built
environment only in the southern and northeastern parts of the study area, whereas positive associations with
the socio-economic environment were found only in some specific locations in the southern and northern
parts of the study area. Similar local variations were observed for the perceived environmental variables.

Conclusions: These results suggest that: (i) when applied to active commuting, the social ecological
conceptual framework should be locally nuanced, and (ii) local rather than global targeting of public health
policies might be more efficient in promoting active commuting.
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Background
Promoting active transportation (walking and cycling) has
become a priority in public health policies. The practice of
daily active transportation has been shown to provide
significant economic and health benefits. It contributes
substantially to improving household budgets (reducing
car-related expenditure [1]), limiting gas emissions, and
decreasing other negative externalities, e.g. congestion,
noise and pollution [2]. In addition, active transportation
contributes to overall physical activity, which has been
shown to have a protective effect against major chronic
diseases (cardiovascular disease, type 2 diabetes, and cer-
tain cancers, according to the Physical Activity Guidelines
for Americans [3]). However, active transportation repre-
sents only a small proportion of daily commuting. In
France in 2008, 23% of commuting was by walking and
2.7% by cycling [4]. In the US, the corresponding figures
were 10.5% and 1% in 2009, according to the National
Household Travel Survey [5].
One major concern in developing relevant policies is

the need for a better understanding of walking and cyc-
ling, which are complex behaviors, and their multiple
determinants. Based on the socio-ecological conceptual
framework, interacting factors include those related to
the individual-level sphere and those associated with the
social and physical environment [6,7]. In turn, social and
physical environmental factors comprise both perceived
and objective dimensions [8]. In this paper, a geographical
approach was used to identify spatial variations in the asso-
ciations between environmental characteristics and active
transportation. Thus, the study could aid the development
of more focused or locally adapted public policies and
planning choices. For the purpose of this research, data on
active commuting and explanatory factors were collected
from a large sample of French adults and an innovative
local-targeted regression technique was applied.
Associations between active commuting behaviors and

social support (e.g. [9,10]), different physical environment
dimensions, e.g. walkability and bikeability, land use,
public transportation availability, safety, aesthetics, etc., in
residential and/or work neighborhoods are documented
in the literature (e.g. [11-24]). However, previous studies
have largely been based on the implied and strong
assumption that the relationship between individual/
environmental factors and active commuting is spatially
homogeneous, i.e. that pertinent factors operate in a simi-
lar manner everywhere. This is a necessary condition for
the use of global regression models. Yet, non-stationarity,
referring to the variation in relationships across space
[25,26], is a very common phenomenon in any geograph-
ical dataset like place-level factors. For instance, a global
positive association can be found between walking to work
and overall walkability, but is this really the case every-
where throughout a city or a neighborhood?
In recent years, an innovative local-based regression
technique has been gaining popularity for exploring spatial
non-stationarity among data: the Geographically Weighted
Regression model (GWR, [25]). GWR allows the par-
ameter estimates to vary locally, unlike in global models
where they remain constant. GWR fits local regression at
each location by applying a weighting scheme (based on a
kernel function) which gives more weight to neighboring
locations [27,28]. The results emphasize the spatial pat-
terning of relationships. The GWR technique has been
successfully applied in a few health-related studies [29-37].
For instance, Chen and Truong [34] used GWR to high-
light that township disadvantages increased obesity preva-
lence only in certain areas in Taiwan. Similarly, Chalkias
et al. [37] showed that only certain zones in Athens (Greece)
constituted an obesogenic environment.
To our knowledge, GWR has not yet been applied to

explore the potential non-stationarity of environmental
correlates of active commuting. The main objective of
our study was thus to investigate whether several object-
ive and perceived environmental determinants of active
commuting behaviors varied across space, ceteris paribus
(i.e. after adjusting for individual characteristics), in Paris
and its immediate suburbs. The underlying idea was to
question the relevance of using a general conceptual frame-
work, such as the socio-ecological model, when analyzing
spatial data including potential non-stationary processes.
The study was thus positioned to raise questions about the
potential gain of a more geographically nuanced theoretical
model, taking into account area-specific attitudes and be-
haviors. To explore this issue, a multivariate geographic-
ally weighted Poisson regression (GWPR) model was used,
based on data from French adults.

Methods
Study area and population
Information about active commuting behaviors and some
of the explanatory factors was derived from the Nutrinet-
Santé study, an ongoing web-based cohort launched in
France in May 2009, which focuses on relationships be-
tween nutrition and health [38]. Briefly, participants aged
18 y. or older completed a set of questionnaires assessing
demographic and socio-economic characteristics, as well
as physical activity and perceived residential environment
(response rate of 48.5%). Residential addresses were
obtained from all participants, geocoded to the parcel or
street levels and implemented as a shapefile in a geograph-
ical information system (GIS). This study was conducted
according to the guidelines laid down in the Declaration
of Helsinki, and all procedures were approved by the
Institutional Review Board of the French Institute for Health
and Medical Research (IRB Inserm n° 0000388FWA00005831)
and the Commission Nationale Informatique et Libertés
(CNIL n° 908450 and n° 909216). All participants gave
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their written electronic informed consent to take part in
the study.
The area covering Paris and its three surrounding

départements called the “Petite Couronne” (Figure 1),
was targeted because it is the most populated region in
France, giving access to a large sample of participants.
Indeed, this urban area sprawls over 762 km2 and has
more than 6.6 million inhabitants (2010 French Census)
with a population density of approximately 8,700 hab./
km2. More than 2.2 million individuals live in the city of
Paris alone, leading to a population density of 21,347
hab./km2.

Outcome variable: active commuting (walking and cycling
to and from work)
Participants reported their time spent on active commut-
ing. For each subject, the variable used was the mean of
the hours spent walking and biking to/from work per
week during the past 4 weeks.

Explanatory variables
Environmental variables
A set of environmental variables was assessed to characterize
the residential neighborhood of each individual. Variables
were categorized as objective (i.e. GIS-based) or perceived
(i.e. reported via a questionnaire).

Objective variables obtained from GIS (built and social)
Overall, fifteen GIS-based variables were obtained from
different sources. They were related to either the built
Figure 1 Location map of the study area showing Paris and its
three immediate suburbs.
(7 variables) or the social (8 variables) environment
(Figure 2). The GIS procedure used for calculating each
variable is illustrated in Figure 2. All the geoprocessing
steps were performed with ArcGIS 10.1 (ESRI Inc.,
Redlands, CA, USA).
The built environment set encompassed 7 variables,

representing 3 distinct groups (land use and facilities,
level of bikeability, and availability of public transporta-
tion). These were chosen because they have been shown
to be associated with transportation-related physical activ-
ity [39-41]. According to this literature, expected relation-
ships between walking for transportation and proximity
facilities and land use mix are positive, even if the specifics
of these associations are less clear.

(i) Land use and facilities

Land use included the percentage of area covered by in-
dividual housing, collective housing and vegetation, re-
spectively, as well as proximity facilities. Data on housing
and vegetation were provided as shapefiles (polygons) by
the Paris Region Urban Planning & Development Agency
(IAU Île-de-France, 2008, scale: 1:5000). Data on proxim-
ity facilities were given as the number of 26 different types
of facilities, e.g. banks, bakeries, drugstores, restaurants,
etc., by the IRIS Census unit. IRIS areas (acronym for
“Aggregated Units for Statistical Information”), provided
by the French National Institute of Statistics and Economic
Studies (INSEE, www.insee.fr), represent the smallest unit
for dissemination of French infra-municipal data. They
include an average of 2000 residents per unit and are
homogeneous in terms of housing and socio-economic
conditions. Data on land use and facilities were then dis-
aggregated into a grid of 200 × 200 m cells, in order to ob-
tain a spatially homogeneous data net. Finally, these data
were linked to each individual within a Euclidian buffer of
500 m around the residential address (mean values of the
cells included in the buffer), as this distance is commonly
used in accessibility studies [42,43].

(ii) Level of bikeability

Bikeability (positive expected association with active
commuting), including bike-sharing facilities and bike
path densities, was assessed by fixed kernel density estima-
tion (KDE) with a bandwidth of 500 m, which is equivalent
to a Euclidian buffer for polygon-shaped variables. KDE is
a smoothing geostatistical technique to transform a point
or a line pattern into a continuous surface map of density
(raster), with an estimated value for each cell. This method
has been extensively used in other accessibility studies
(e.g. [31,44-46]). Bike-sharing accessibility was assessed
by calculating kernel density estimation on the 1,230 bi-
cycle stations of the Parisian bicycle-sharing system, called

http://www.insee.fr


Figure 2 GIS-based schematic procedure for the calculation of objective (both built and social) environmental variables.
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“Vélib”. Next, the value of the overlapping density raster
cell (for bike-sharing and bike path densities) was assigned
to each individual residential address.

(iii) Public transportation availability

Public transportation availability (positive expected as-
sociation with active commuting) was assessed by calcu-
lating the distance to the nearest subway, bus or train
station (provided by IAU) from each individual home.

(iv) Socioeconomic environment

The socioeconomic level of the residential environ-
ment has been considered since it is expected to be posi-
tively associated with overall physical activity, including
active commuting [47]. Eight neighborhood-level socio-
economic variables, from the Census database (www.
insee.fr), were included and disaggregated into the 200-m
square grid (following the same procedure as used for
land use and facilities) (see Figure 2): percentage of
foreign residents, unemployed, part-time workers, uni-
versity graduates, homes occupied by their owners, car
owners, households with a parking space, and median
income.

Statistical analyses of objective environmental variables
The 7 physical and 8 socio-environmental variables were
substantially multicollinear. As a valid regression analysis
requires the explanatory variables to be independent, a
suitable solution to this statistical issue is to transform
the set of correlated variables into synthetic uncorrelated
variables, named principal components (PC). In PC ana-
lysis (PCA), the principal components retained are those
that explain the maximum amount of variance of the
original data. This method was used in our study to avoid
dropping any explanatory variable and to keep as much
information as possible. PC were retained as new explana-
tory variables when eigenvalues were greater than one. PC
coordinates were assigned to individuals and then mapped
to facilitate the interpretation. The PCA was carried out
with varimax rotation to represent the linear proximity
among variables. It was conducted only with objective var-
iables since we were interested in investigating separately
the spatial variation in the influence of objective and per-
ceived variables on active commuting.
The PCA results revealed that the first five principal

components accounted for 84% of the total inertia of the
original variables. The first two PC explained 64% of the
variance, whereas the following three PC had an eigen-
value below 1. For this reason, only the two first PC
were kept as independent variables in the main analysis.
The highest eigenvectors for the first component (PC1)
were associated with low rates of car ownership, indi-
vidual housing, and households with a parking space,
but with high rates of home ownership, collective hous-
ing, and high facility and bike-sharing densities (Table 1).
This first synthetic variable was thus related to the
built environment density. The highest eigenvectors for
PC2 were associated with high median income, a high

http://www.insee.fr
http://www.insee.fr


Table 1 Results of the principal component analysis conducted with the fifteen objective environmental variables

Variable Principal component 1 Densely
built-up areas & facility availability

Principal component 2 Socio-economics:
well-off neighborhoods

Median income −0.01 0.51

% households with a parking spot −0.36 0.04

% home owners 0.32 0.08

% car owners −0.38 0.04

% individual housing −0.33 −0.06

% collective housing 0.34 0.13

% part-time workers 0.17 −0.21

% unemployed 0.11 −0.49

% foreign residents 0.17 −0.42

% university graduates 0.20 0.44

% vegetation cover −0.20 0.17

Facility density 0.30 0.05

Distance to public transportation −0.15 −0.03

Bike-sharing density 0.34 0.10

Bike path density 0.10 0.05

Overall KMO score = 0.78; Bartlett’s test p < 0.001

Values in bold font are greater than |0.3|.
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proportion of university graduates, and low proportions of
foreign residents and unemployed. This second synthetic
variable was related to the socio-economic environment
(high values indicate well-to-do areas).

Perceived environment variables
Three perceived residential neighborhood variables were
defined by specific questions in a self-administered ques-
tionnaire. These three questions were derived from the
ALPHA questionnaire designed to measure the relation-
ship between physical activity and the environment in a
European context [48]. Briefly, the three questions were
related to (i) bike safety in road traffic (‘cycling is unsafe
because of the traffic’), (ii) pollution (‘there is too much
pollution in my neighborhood’), and (iii) aesthetics (‘my
neighborhood is not clean and not well-maintained’). Re-
sponses included five modalities based on a Likert-type
scale (strongly agree, somewhat agree, neither agree nor
disagree, somewhat disagree, strongly disagree). To ac-
count for substantial multicollinearity among these three
variables, an index was built using principal component
analysis. This index accounted for 48% of the total vari-
ance. The factor loadings were 0.72 for bike safety, 0.69
for pollution and −0.68 for aesthetics. Therefore, a high
value in this synthetic index indicates individuals who
reported a low level of pollution, a feeling of safety for
cycling and a low level of aesthetics. A positive relation-
ship between this synthetic variable and active commut-
ing is expected [49].
Individual variables
Individual data included age, gender and education (di-
vided into two categories, < high school, ≥ high school),
number of motor vehicles per household, number of
bikes per household, and an indicator related to the posses-
sion of a transit pass (yes or no). Finally, two work-related
variables were added: self-reported commuting time (di-
vided into tertiles) and availability of a parking space at
the workplace (yes or no).

Statistical modeling
Given the non-Gaussian, zero-inflated distribution of the
outcome variables (walking and cycling to and from work),
each value was rounded to the nearest half-unit (0.5). This
procedure of discretization enabled the variable to be
modeled with a Poisson regression. First, a global Poisson
model (GPR) was carried out, i.e. parameter estimates
were kept constant to explore global relationships be-
tween environmental variables and active commuting,
while adjusting for individual variables. Secondly, a geo-
graphically weighted Poisson regression [28,30] was con-
ducted to account for the possible spatial non-stationarity
of these relationships. The statistical specifications of GPR
are described in Appendix A.

Local model (GWPR)
Geographically weighted regression aims to capture spatial
non-stationarity, i.e. spatially varying relationships, in a
regression model by allowing regression parameters
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β0,…, βk to vary with location. To do this, GWPR in-
corporates spatial coordinates in the model. Since this
study assumes that only environmental factors have
spatial effects and not individual ones, we performed
a semiparametric GWPR, i.e. we kept fixed the coefficients
of the individual factors [30]. The resulting equation
of the semiparametric GWPR we used is expressed as
follows:

log λi ¼
X

k
βk ui; við Þxik þ

X
m
γmxim ð1Þ

where βk(ui, vi) are local model parameters associated
with environmental factors and specific to residential lo-
cation of subject i, (ui, vi) denoting the coordinates of
residential location of subject i, xik is the value of the kth

environmental variable at residential location of subject
i, and γm are model parameters associated with the indi-
vidual variables xim, not assumed to depend on geo-
graphical location.
A key step in the development of GWPR consists of

calibrating the model by a kernel regression method in
order to estimate smoothed geographical variations in
the parameters with a distance-based weighting scheme
[30]. GWPR uses a spatial kernel since it is assumed that
observations near point i have more influence on the es-
timation of parameter βk(ui, vi) than do observations lo-
cated farther from i. In other words, GWPR integrates
multiple local regressions within an overall framework,
as illustrated in Figure 3. The estimation of the parame-
ters is described in Appendix B. Next, parameters at lo-
cation i are estimated by maximizing the geographically
weighted log-likelihood [30]. Thereby, the geographical
weight structure can be based on one of two types of
kernel function, Gaussian or bi-square [25,28]. The kernel’s
bandwidth can be set as fixed (based on metric distance)
or adaptive (based on a constant number of neighbors
considered in each regression calculation). Adaptive ker-
nels are suitable when the units of analysis are irregularly
Figure 3 Schematic representation of the geographically weighted
regression and its spatial parameters.
distributed across space, which is the case here: respon-
dents are sparse near the study area boundaries and ab-
sent from the two large green spaces of Paris (Bois de
Boulogne and Bois de Vincennes, see Figure 1). For this
reason, the adaptive kernel method was used, making sure
that each local regression encompassed enough regression
points irrespective of the location, coupled with a bi-
square weighting scheme, which gave better results than
the Gaussian one alone (see details in Appendix C).
The maximum number of neighbors in each regres-

sion model was determined by minimizing, in an itera-
tive way, the corrected Akaike’s Information Criterion
(AICc), which is a statistic based on the log-likelihood of
the model, weighted by the actual number of parameters
[50]. In this study, the number of neighbors minimizing
the AICc was 800 (after testing down from 4,000 to 50,
every 50). This amounted to an adaptive bandwidth size
varying from 3,150 m to 19,250 m and a mean distance
of 5,650 m, knowing that the study area spreads over ap-
proximately 30,000 m.
AICc was also used to compare the performance of

both global and local models. The model with the smal-
lest AICc should be selected as an optimal model called
MAICE (minimum AIC estimator, see [30]. A difference
in AICc values of more than 2 is considered substantial.
Global models were performed with SAS 9.3 software

(SAS Institute Inc., Cary, NC, USA) and the academic piece
of software GWR 4.0 was used to calibrate and run geo-
graphically weighted models. This software is a tool for
modelling varying relationships among variables by cali-
brating GWR and Geographically Weighted Generalized
Linear Models (GWGLM) with their semi-parametric vari-
ants (https://geodacenter.asu.edu/gwr_software, see Nakaya
et al. [51] and Nakaya [52] for additional details). Maps with
continuous values were based on an interpolation pro-
cedure (inverse distance weighting) and were processed
with ArcGIS 10.1 (ESRI Inc., Redlands, CA, USA). Finally,
a measure of statistical significance (pseudo t-value) of
GWPR estimates was added visually as isolines for each
local term map. A value greater than |1.96| indicates a
p-value < 0.05. Mapped GWPR estimates are log-odds,
with negative and positive values meaning negative and
positive relationships, respectively.

Results
Descriptive statistics
Characteristics of the study population
The participation rate for the questionnaire was 48.5%.
61.7% of the valid questionnaires were kept, resulting in
a sample of 4,164 respondents. Table 2 shows that they
are 43.6 years-old on average, 78% of them are women,
83% have an educational level above high school and ap-
proximately 46% have a transit pass. 41% of respondents
do not practice active commuting, while approximately

https://geodacenter.asu.edu/gwr_software


Table 2 Descriptive statistics of the variables used in the analysis

Variable (N = 4164) Mean (or %) Min Max STD

Active commuting (outcome)

% No 41 / / /

% Yes 59 / / /

If yes (h/week) 2.34 0.1 10.8 1.8

Individual variables

Age 43.6 19 87 13.3

Gender

% Men 22.0 / / /

% Women 78.0 / / /

Education

%< high school 16.8 / / /

%≥ high school 83.1 / / /

Parking at work

% Yes 36.7 / / /

% No 63.3 / / /

Transit pass

% Yes 45.8 / / /

% No 54.3 / / /

Commuting time

% 1st tertile 36.2 / / /

% 2nd tertile 30.6 / / /

% 3rd tertile 33.1 / / /

Number of motor vehicles owned 1.03 0 8 0.95

Number of bikes owned 1.30 0 4 1.38

GIS-based environmental variables

PC1 (densely built-up areas) 0 −8.6 5.3 2.5

PC2 (well-to-do areas) 0 −8.5 4.0 1.8

Perceived environmental variables % agree % neither agree nor disagree % disagree

Too much pollution 47.3 24.6 28.1

Neighborhood is not clean 15.8 14.3 69.9

Biking is unsafe 34.4 25.7 39.9
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95% walk or cycle less than 5 h/week. The mean time
for active commuting among participants reporting any
such activity (59%) is 2.3 h/week. Regarding the percep-
tion variables, around 47% of the respondents report too
much pollution, approximately 40% report that biking is
unsafe in their neighborhood, and 16% find that their
neighborhood is not clean (Table 2).

Characteristics of the environment
For the first principal component (PC1) related to the built
environment density, the highest values are located within
Paris and its immediate suburbs, as expected, whereas
values tend to decrease further outwards (Figure 4A). For
the second principal component (PC2) related to the
socio-economic environment, the highest values are found
in neighborhoods mostly encompassing the southern and
western parts of Paris and the surrounding suburbs, as
well as areas surrounding the Bois de Vincennes in the
eastern part of the city (Figure 4B). The lowest values of
PC2 are located in the northern part of the area, especially
the western part of the Seine-Saint-Denis département.

Global relationships between active commuting and
environmental variables
Total deviance explained by the global regression model
is 24% with an AICc of 6,733 (Table 3). Results of the
parameter estimations via the global Poisson regression
are summarized in Table 4. Nagelkerke’s R2 for the full



Figure 4 Map view of the first two components derived from the principal component analysis and kept as explanatory variables.
A. The first component (PC1) refers to the built environment (densely built-up areas and facility density) and is characterized by high values in Paris.
B. The second component (PC2) is related to the socio-economic environment (high values indicate well-to-do areas).
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model is 0.317 (meaning that approximately 32% of the
total variance is explained by the model), with a value of
0.297 for the model including only individual-level vari-
ables, i.e. the individual level accounts for around 94% of
the full model pseudo R2.
Regarding the environmental variables, after control-

ling for individual ones, the results show that active
commuting is positively associated with the first princi-
pal component (OR = 1.05, 95% CI 1.03-1.07, implying
that an increase of one unit of the densely-built level of
the neighborhood is associated with an increase in active
commuting), but no global relationship was detected with
the second principal component (socio-economic level of
the neighborhood). Finally, the perception of the neigh-
borhood environment is significantly associated with ac-
tive commuting (OR = 1.04, 95% CI 1.02-1.06).

Spatial variations in the relationships
Total deviance explained by the GWPR model is 30% with
an AICc of 6,556 (Table 3), which is a better goodness-of-
fit diagnostic than the global regression model. Although
the mean ORs are relatively close to those of the global re-
gression (Table 5), the range of GWPR OR estimations
shows the non-stationarity of the relationships between
the environmental variables and active commuting in the
study area.
For the three environmental variables, and while con-

trolling for individual-level covariates, ORs are spread
Table 3 Overall performances of both global and local (bi-squ
between active commuting behaviors and individual and env

Model (N = 4164) Deviance (D) Effective number o

GPR 6733 12

GWPR (800 neighbors) 6207 167
on both sides of 1, meaning that the relationships are
sometimes negative, sometimes positive, and sometimes
non-significant according to the location in the study
area (Figure 5). Relationships between active commuting
and the built environment vary substantially, with ORs
ranging from 0.84 to 1.25 (Table 5). The relationships
are significant and positive in the southern part (dépar-
tement of Val-de-Marne) and the northeastern part of
the study area (Figure 5A). Elsewhere, the relationships are
mostly non-significant, except at specific locations, such as
in a small area in Paris where the relationships are nega-
tive. While the global model shows no significant associa-
tions between active commuting and the socio-economic
environment, GWPR indicates some local nuances, as
small parts of the area (extreme north and south) exhibit
significantly positive ORs (>1.10, Table 5 and Figure 5B).
Perceived environmental variables also show some

non-stationarity (Figure 5C). In northern and southern
central parts of the area, associations are significantly
positive, whereas they are non-significant elsewhere, or
even negative in some parts of the Hauts-de-Seine and
Val-de-Marne départements.

Discussion
Using a GWPR, we have clearly demonstrated some
spatial heterogeneity within the relationships across our
study area. This represents the main novel result of our
study. To the best of our knowledge, there is currently
are kernel) regressions used for modeling associations
ironmental factors

f parameters (k) AICc (D + 2*k) Deviance explained

6757 0.24

6556 0.30



Table 4 Parameter estimations from the global Poisson regression model

Variable Log-odds OR Wald 95% CI p-value

Intercept −0.10 0.91 0.68 1.21 0.498

Individual level Age 0.00 1.00 1.00 1.01 0.085

Gender (ref = male) 0.04 1.04 0.96 1.12 0.393

Education (ref = < high school) −0.12*** 0.89 0.82 0.96 <.0001

Parking at work (ref = yes) −0.29*** 0.75 0.69 0.80 <.0001

Transit pass (ref = yes) −0.05 0.95 0.88 1.03 0.148

Commuting time (ref = 1st tertile) 0.67*** 1.96 1.87 2.05 <.0001

Number of vehicles owned −0.19*** 0.83 0.79 0.87 <.0001

Number of bikes owned 0.09*** 1.10 1.07 1.13 <.0001

Environmental level PC1 (densely built-up areas) 0.05*** 1.05 1.03 1.07 <.0001

PC2 (well-to-do areas) 0.01 1.01 0.99 1.03 0.496

Neighborhood perception (too much pollution and
not clean) (0 = strongly agree; 5 = strongly disagree)

0.04** 1.04 1.02 1.06 0.001

***p < 0.001, **p < 0.01.
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no other study on spatially varying relationships between
the environment and walking or cycling for commuting
purposes. We have shown that the associations of envir-
onmental factors with active commuting are area-specific.
In other words, the relative influence of the specific envir-
onmental characteristics of the neighborhood (built, social
and perceived) differs by location. For instance, the south-
ern part of the study area (département of Val-de-Marne)
is generally characterized by significant positive associa-
tions between environmental characteristics and active
commuting. In contrast, in the major part of Paris or in
the northern part of the Hauts-de-Seine département, en-
vironmental characteristics and perception of the neigh-
borhood are not associated with walking and cycling for
commuting purposes. Our results also show the complex-
ity of the relationship between the environment and active
commuting. At the same location, certain environmen-
tal variables may be associated with the outcome, while
others may not.
Regarding the global relationships, we have highlighted

that both perceived and objective environmental factors
are significantly associated with active commuting, as
expected. The importance of both the individual and the
environmental level for active transportation is in line
Table 5 Parameter estimations from the semiparametric geog
(after adjusting for individual variables)

Variable Mean
log-odds

Intercept 0.01

PC1 (densely built-up areas) 0.03

PC2 (well-to-do areas) −0.00

Neighborhood perception (too much pollution and not clean)
(0 = strongly agree; 5 = strongly disagree)

0.03
with existing evidence (e.g. [14,17,24,49,53-57]) based on
the social ecological framework [8,58]. Although some
environmental characteristics have significant relation-
ships with active commuting, they only weakly contrib-
ute to explaining its total variance (as shown by the
respective Nagelkerke’s pseudo R2 of the nested models
(R2 = 0.30 without the environment level, and 0.32 with it)).
This corroborates findings by Giles-Corti and Donovan
[59] in Australia, and Ogilvie et al. in the UK [55]. For in-
stance, Ogilvie et al. [55] highlighted that in urban neigh-
borhoods of Glasgow, 18.7% of the total variance in
active travel was explained by personal correlates, and
20.1% when environmental-level variables were added.
These authors concluded that including environmen-
tal characteristics did not substantially modify the in-
fluence of the personal characteristics on the associations
studied.

Interpretation of the observed spatial non-stationarity
The interpretation of the spatial patterning of the rela-
tionships needs further and deeper investigation. Three
potential causes of parametric instability of the regres-
sion parameters have been identified by Fotheringham
et al. [28]:
raphically weighted Poisson regression model

Mean ORs STD
log-odds

Min ORs Max ORs Range ORs

1.01 0.12 0.75 1.43 0.68

1.03 0.06 0.84 1.25 0.41

0.99 0.03 0.89 1.13 0.24

1.03 0.06 0.85 1.27 0.42



Figure 5 Map results of the geographically weighted Poisson regression parameters (log odds) for the built (A), the social (B) and the
perceived (C) environment. Positive values of the log-odds (in red) indicate positive relationships between the respective explanatory variable
and active commuting, and negative values of the log-odds (in yellow) indicate negative relationships. A pseudo t-value > |1.96| shows significant
associations (p < 0.05).
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(i) The non-stationarity could be due to random
sampling variations and hence not related to any
underlying spatial process.

(ii) The relationships might be intrinsically different
across space, in other words “there are spatial
variations in people’s attitudes or preferences or
there are different administrative, political or other
contextual issues that produce different responses
to the same stimuli over space”.

(iii)The non-stationarity could also indicate that the
model suffers from major misspecification or
omission of key variables (or representation by
an incorrect functional form).

The demarcation between the second and third poten-
tial causes of parametric instability may seem blurred in
some cases. Can relationships really be intrinsically dif-
ferent across space? As discussed by Blainey [60], space
may represent “merely a proxy for societal factors which
are not captured by the model”. The crucial issue here is
that such space-related societal factors are sometimes
very difficult to define, and hence hard to quantify in a
model.
However, in some instances, varying relationships seem

to be driven both by the level of and the variance in the
explanatory variable involved. For example, regarding the
variable related to densely-built areas, the absence of a re-
lationship in the major part of Paris could be explained by
the fact that facility and building density is already ex-
tremely high in the city, so that one additional unit (of
density or facility availability) would have a limited mar-
ginal effect on active commuting behavior. In contrast, in
the less densely-built areas surrounding Paris (south and
east), an increase of one unit regarding this variable would
have a more noticeable impact. In that case, the instability
of the parameters associated with the facility availability
would only be due to a threshold effect of the variable it-
self and not directly linked to another contextual effect.
The same rationale was used by Lu et al. [61] to explain
the heterogeneity of relationships between the number
of buildings and non-motorized traffic in Burlington,
Vermont, USA. The number of buildings was associated
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with non-motorized traffic in the suburbs (with low build-
ing density), but not in the city center (with high building
density).
Local associations with the perceived environment also

show interesting spatial patterns. Unlike the objective
environmental variables, the perceived ones do not fol-
low any obvious spatial distribution (meaning that they
are not correlated with objective measures). This means
that spatial non-stationarity associated with these variables
could be due to the omission of variables in each local
context drawn through the GWPR estimates (Figure 5C).
For instance, a local confounding factor may have been
omitted from the model, leading to a spurious association.
In some locations, reporting a low level of pollution and a
strong feeling of safety for cycling is associated with a de-
crease in active commuting, which is counter-intuitive.
We can hypothesize that in such places, these perceived
neighborhood characteristics may be correlated with ex-
posure to a limited traffic volume, while such little traffic
may indicate a less walkable/bikeable environment in
terms of infrastructure density [62].
Small single patterns of non-stationarity often remain

difficult to interpret in detail, partly because the possibly
omitted local variables are often not easily quantifiable,
being the results of complex local interactions. In par-
ticular, the strength of social interactions within a place
may lead to a homogenization of the relationships [63].
However, exploring these interactions, opening “the black
boxes of places” [64], needs further and deeper quantita-
tive and qualitative investigations. It is still advisable to
keep an overview of the overall spatial patterning of non-
stationarity, since this enables some boundaries between
different local contexts to be drawn, wherein, for complex
reasons, relationships converge.

Implications of the findings
The non-stationarity of spatial datasets has been demon-
strated in other studies dealing with health-related out-
comes, such as obesity [37], cardiovascular mortality
[34], and health care system organization [35]. Such ob-
servations lead to questions about the relevance of using
global models, which tend to smooth the effects of one
or another variable across the entire area, whereas these
effects are in fact area-specific. Considering local models
over global ones has potential implications for public
health policies. As emphasized by Yang and Matthews
[35], GWR-based analyses in health-related research
could be used as a tool for place-specific targeting and/
or tailoring of public health interventions. For example,
potential interventions by local authorities regarding
bike safety in traffic, e.g. installing separate bike paths
away from roads, might have a stronger impact on cyc-
ling behaviors in the southern and northern parts of our
study area than in the eastern part (Figure 5C). In
addition, increasing bike-sharing stations and facility
density (i.e. contributing to increasing PC1) would be
more useful in the Val-de-Marne département than in
the Hauts-de-Seine département, or in Paris (Figure 5A),
in terms of active commuting. Such place-level prioritiz-
ing could be not only more efficient than whole-area in-
terventions for promoting active transportation, but
could also ensure substantial cost-efficiency in planning
policies.

Theoretical considerations: toward a locally varying social
ecological model
According to Sallis et al. [58], the first principle of eco-
logical models is that multiple levels of factors, including
individual and environmental ones, influence health be-
haviors. Our results on active commuting behaviors,
namely the spatial variability of the relative influence of
individual and environmental factors, suggest the im-
portance of considering the local context. In other words,
the social ecological framework needs to be locally adapted,
according to the spatial patterning of the relationships. In
certain areas, policy-makers might achieve better results
by acting on one particular level rather than on multiple
ones. This also suggests expanding the fourth principle
proposed by Sallis et al. [58]: ecological models are most
efficient when they are not only behavior-specific, but also
area-specific.
Beyond the physical activity domain, the idea of spatially

varying relationships also fits the theoretical framework
developed by Lytle [65] for eating behaviors. This author
hypothesized that the relative influence of individual, en-
vironmental and social factors on the proportion of vari-
ance explained in eating behaviors varied as a function
of the level of restriction of the environment, specifically:
“the more restricted an environment is with regard to
availability and accessibility of healthy, inexpensive op-
tions, the more influence the physical environment may
have with regard to food choices that are made” [65]. Our
GWPR analyses provide empirical evidence for the applica-
tion of Lytle’s assumption to active commuting behaviors.

Strengths and limitations
One major advantage of GWR modeling, which is based
on individual locations, is its ability to reveal spatial varia-
tions beyond the actual administrative units, and therefore
to highlight spatial patterning. Regression parameters can
then be seen as new continuous variables, which can lead
to a data-based spatial clustering of the relationships for
each explanatory variable. As previously shown, GWR also
identifies significant associations at the local level that do
not appear when fitting the usual global models. Finally,
the mapped results are easily readable and can be consid-
ered turnkey products for policy-makers. Despite these
advantages, GWR has some limitations. First, there are
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border effects inherent in the concept of spatial kernels.
Local regressions for individuals located near the bound-
ary of the study area do not follow exactly the same
weighting scheme as those for individuals located in the
center, since the former do not have neighbors all around
them. This leads to a larger adaptive spatial kernel for
these individuals. Second, GWR can lead to local multicol-
linearity among the explanatory variables, even if the vari-
ables are not collinear at a global scale. These facts can
affect the validity of the model and the results and there-
fore require careful consideration.
From a statistical point of view, we performed GWPR

models by rounding the outcome variable values to the
nearest half-unit (i.e. 30 minutes) in order to get integer
values. We also run models using other discretization
procedures (rounding to the nearest unit and double
unit) to check for statistical stability and findings were
essentially unaltered, with unchanged spatial patterning of
relationships (data not shown). We also run a geograph-
ically weighted logistic regression model by separating
active commuters from non-active ones, followed by a
second Gaussian GWR model only applied to active com-
muters, and results again were very similar in terms of dir-
ection, intensity and spatial structure of the relationships
(data not shown).
In addition, a limitation of our study is the fact that

the outcome variable, walking and cycling to/from work,
was self-reported. This may be a source of potential mis-
classification, knowing that physical activity usually tends
to be over-reported [18,66,67]. Second, we only focused
on active transportation for commuting, but some studies
have shown that relationships can be inversed when deal-
ing with walking for leisure or errands. For instance, in
four Japanese cities, Inoue et al. [68] showed the expected
associations between neighborhood aesthetics and walking
in the neighborhood, walking for leisure and walking for
daily errands, while no relationship was found with walk-
ing for commuting purposes. Finally, this study did not
take into account the environmental characteristics of the
workplace or the commuting routes, which may also be
associated with active transportation behaviors [10,69].

Conclusion
After showing global, significant associations between
individual/environmental factors and active commuting
(walking and cycling to/from work) in a French web-
cohort, this study implemented a geographically weighted
Poisson regression to investigate possible non-stationarity
among these associations. At a local scale, GWPR-based ana-
lyses enable nuances to be understood by clearly highlighting
the spatial heterogeneity of the relationships. For instance,
the influence of the overall neighborhood environment
appears to be more pronounced in the southern part of
the study area (département of Val-de-Marne) than in
Paris, whereas more complex patterns were revealed else-
where. We also showed that socio-economic level is sig-
nificantly and positively associated with the outcome in
the extreme northern and southern parts of the area. On
the contrary, in some locations, the built environment ap-
pears to be non-significantly, or even correlated, in an
unexpected way with active commuting (for example in
Paris). Perception-based variables are also subject to non-
stationarity. Specifically, a better perception of bike safety
in traffic is mainly associated with an increase in walking
and cycling, except in the northwestern part of the area
(Seine-Saint-Denis) where the relationships were inversed.
This non-stationarity in the relationships has two main
implications. First, from a practical point of view, our re-
sults suggest that public policies should follow the spatial
patterning of the relationships in order to strengthen their
efficiency. GWPR modeling, and its easily readable associ-
ated maps, can be a useful tool to guide the design of tai-
lored and area-targeted public policies promoting physical
activity for health. Second, from a theoretical point of
view, our data suggest that ecological models of health
behavior should be not only population- and behavior-
specific but also location-specific.

Appendix A. Global Poisson regression model
(GPR)
GPR is a kind of generalized linear model and is typically
used for the modeling of count data. The Poisson prob-
ability distribution of the number h of occurrences of an
event is expressed as follows:

PðhjλÞ ¼ e−λλh

h!
f or h ¼ 0; 1; 2;… and λ > 0 A1ð Þ

where λ is the only Poisson parameter, as the distribu-
tion is equidispersed (i.e. the mean and variance of Poisson
distribution are both equal to λi). In the Poisson regression
model, the expected value λ is the result of the exponential
function of the linear combination of the explanatory vari-
ables. Indeed, the log-linear model does not contain nega-
tive values of λ. Hence, GPR takes the following form:

log λi ¼ β0 þ β1xi1 þ β2xi2 þ…þ βkxik A2ð Þ

where β0,…, βk are the parameters (or coefficients) of
the model and x1,…, xk are the predictors (individual
and environmental variables). Regression parameters are
then estimated by maximizing the log-likelihood in an it-
erative manner. Because the dependent variable is log-
transformed, parameters are interpreted as odds ratios
(ORs), just as in logistic regression: each parameter βi is
the estimated increase in the log-odds of the outcome
per unit increase in the value of the predictor xi.
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Appendix B. GWPR parameter estimation
According to Nakaya et al. [30], the local parameters can
be estimated with a modified local Fisher scoring pro-
cedure, a form of iteratively reweighted least squares:

β̂ ui; við Þ ¼ ðX0
W ui; við ÞA ui; við ÞXÞ−1X0

W ui; við ÞA ui; við Þy

B1ð Þ

where X is the design matrix of explanatory variables, W
(ui, vi) is the diagonal spatial weights matrix calculated
for each calibration residential location of subject i, A
(ui, vi) denotes the variance weights matrix associated
with the Fisher scoring for each residential location of
subject i and y is the n × 1 vector of adjusted dependent
variables.

Appendix C. GWPR bi-square weighting scheme
The bi-square function is expressed as follows [28]:

wij ¼ 1− dij=Gi kð Þ
� �2� �2

0

dij < Gi kð Þ
dij > Gi kð Þ

C1ð Þ
(

where wij is the geographical weight of the jth observa-
tion at the ith regression point, dij is the Euclidean dis-
tance between i and j and Gi(k) is the adaptive bandwidth
size defined as the kth nearest neighbor distance.
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