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METHODOLOGY

A nonparametric spatial scan statistic 
for continuous data
Inkyung Jung* and Ho Jin Cho

Abstract 

Background:  Spatial scan statistics are widely used for spatial cluster detection, and several parametric models exist. 
For continuous data, a normal-based scan statistic can be used. However, the performance of the model has not been 
fully evaluated for non-normal data.

Methods:  We propose a nonparametric spatial scan statistic based on the Wilcoxon rank-sum test statistic and com-
pared the performance of the method with parametric models via a simulation study under various scenarios.

Results:  The nonparametric method outperforms the normal-based scan statistic in terms of power and accuracy in 
almost all cases under consideration in the simulation study.

Conclusion:  The proposed nonparametric spatial scan statistic is therefore an excellent alternative to the normal 
model for continuous data and is especially useful for data following skewed or heavy-tailed distributions.
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Background
Geographic disease surveillance involves identifying 
areas with unusually high or low rates of disease outcome. 
One of the most widely used methods is the spatial scan 
statistic, which has been developed for several different 
probability models such as Poisson, Bernoulli, ordinal, 
multinomial, exponential, and normal. The most popu-
lar disease outcome is of count data type such as disease 
incidence or mortality, which can be analyzed using the 
Poisson model when the number of cases is compared to 
underlying population [1]. For case–control type of data, 
the Bernoulli model is used [1]. Multi-category disease 
outcomes such as disease subtypes or cancer stage can 
be analyzed using multinomial or ordinal models [2–4]. 
The exponential model is used for spatial cluster detec-
tion for survival time data [5]. For continuous data such 
as birth weight in infants, a spatial scan statistic based on 
the normal probability model has been proposed [6]. For 
continuous regional measures at geographic levels such 
as mortality rate at the county level, a weighted normal 

model, which considers the weights reflecting the uncer-
tainty of the regional measures or sample size, has been 
proposed [7].

Here we focus on continuous outcome data and pro-
pose a nonparametric spatial scan statistic that does 
not require distributional assumption. The normal and 
weighted normal models are parametric methods based 
on the normal distribution. These models can be used 
for non-normal data because they still maintain the cor-
rect significance by using the permutation procedure 
for obtaining a p-value as indicated by Kulldorff et  al. 
[6]. However, the statistical power of the models has not 
been fully evaluated for non-normal data. In this paper, 
we develop a nonparametric spatial scan statistic based 
on the Wilcoxon rank-sum test statistic and compare the 
performance of the method with parametric models via a 
simulation study under various scenarios.

While the parametric spatial scan statistic is the maxi-
mum value of the likelihood ratio test statistics com-
paring inside versus outside a scanning window over 
numerous windows, the proposed nonparametric spa-
tial scan statistic is defined as the minimum of p-values 
from Wilcoxon rank-sum tests. We also use the permuta-
tion procedure for evaluating the statistical significance 
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of the detected cluster. Therefore, the proposed method 
also maintains the significance level correctly. Through a 
thorough simulation study we evaluate the performance 
of the method. The proposed method is compared to the 
normal-based spatial scan statistic in terms of conven-
tional statistical power, indicated as conditional power 
by Takahashi and Tango [8], and accuracy measures of 
sensitivity and positive predicted value (PPV). Extended 
power proposed by Takahashi and Tango [8] is also 
presented.

Methods
A scan statistic for continuous data based on the normal 
probability model
Suppose that we have continuous outcome data such as 
birth weight at each location of a study region and that 
we want to identify an area with a higher (or lower) mean 
of outcome than remaining areas. Kulldorff et al. [6] pro-
posed a scan statistic for continuous data based on the 
normal probability model for this kind of problem. The 
null hypothesis of no clustering is written as H0 : µ = η 
for all z and the alternative is Ha : µ > η (orµ < η) for 
some z, where μ and η are the means of outcome vari-
ables inside and outside scanning window z, respectively. 
A large number of scanning windows with variable sizes 
are imposed on a study region and each scanning window 
is a candidate for the most likely cluster. Circular scan-
ning windows are considered here.

The normal distribution has two parameters of mean 
and variance. Kulldorff et al. [6] assumed a common vari-
ance inside and outside the scanning window under the 
alternative hypothesis. Given window z, the log-likeli-
hood ratio test statistic LLR(z), equivalent to  the likeli-
hood ratio test statistic LR(z), is given by

where N is the total number of observations, xi are the 
continuous observations (i = 1,…, N), µ̂ =

∑

i
xi/N  and 

σ̂ 2 =
∑

i

(

xi − µ̂
)2
/N  are the maximum likelihood esti-

mates (MLEs) of the mean and variance under the null 
hypothesis, respectively, and σ̂ 2

z  is the MLE of the com-
mon variance under the alternative hypothesis, which is 
given by
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∑
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hypothesis, where nz is the number of observations inside 
window z. The LLR(z) depends on z only through the last 
term, and therefore, the most likely cluster is the area that 
minimizes the variance under the alternative hypothesis, 
which in turn maximizes LLR(z).

To evaluate the statistical significance of the most likely 
cluster, randomly permuted data sets are generated and 
the maximum of LLR(z) is calculated for each data set. 
The p-value of the most likely cluster is computed as the 
rank of the maximum of LLR(z) from the original data set 
among all data sets divided by the number of all data sets. 
All procedures for finding the most likely cluster and 
obtaining the p-value have been implemented into the 
SaTScan software [9].

Kulldorff et  al. [6] applied the normal-based scan 
method to New York City birth weight data, and iden-
tified two statistically significant clusters of low birth 
weight that corresponded to areas with high infant mor-
tality. These authors suggested that the normal model 
could be used for a wide variety of continuous data, 
which may not be normally distributed, however it was 
not recommended for exponential or other types of sur-
vival data. Kulldorff et al. [6] further mentioned that the 
correct type I error rate will be maintained even for non-
normal data due to the permutation procedure. However, 
the statistical power of detecting clusters for non-normal 
data has not been evaluated.

A nonparametric spatial scan statistic
Here we proposed a nonparametric spatial scan sta-
tistic for continuous outcome data, which requires no 
distributional assumptions. The null hypothesis is writ-
ten as H0 : Fin = Fout for all z and the alternative is 
Ha : Fin(x) = Fout(x −�) for some z, where Fin and 
Fout are the cumulative distribution functions (cdfs) of 
outcome variable inside and outside scanning window 
z and � is a location shift of the cdf for outside relative 
to inside z. A positive � implies that outcomes tend to 
be higher inside compared to outside z and a negative 
� indicates the inverse outcome. We propose to use the 
Wilcoxon rank-sum test statistic as the test statistic for 
the nonparametric spatial scan statistic. Specifically, we 
compute the Wilcoxon rank-sum test statistic for a given 
scanning window comparing inside versus outside z and 
obtain a p-value, and the minimum of p-values over all 
scanning windows is the test statistic. The area associ-
ated with the smallest p-value is defined as the most 
likely cluster. Calculation of the Wilcoxon rank-sum test 
and a p-value is quite simple. Assign ranks to the obser-
vations, using the average rank in the case of tied obser-
vations, and suppose that the rank of xi is Ri (i =  1, …, 
N). The Wilcoxon rank-sum test given z is Wz =

∑

i∈z Ri 
and a p-value can be obtained using the normal 
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approximation for Wz. Under H0, E(Wz) = nz(N + 1)/2 
and Var(Wz) = nz(N − nz)(N + 1)/12. For nz ≥ 10 
and (N− nz) ≥ 10, Tz = (W − E(Wz))/

√
Var(Wz) is 

approximately normally distributed with a mean of 0 and 
a variance of 1 [10]. Therefore, the test statistic given z is 
1−Φ(Tz) for � > 0 and Φ(Tz) for � < 0, where Φ is the 
cdf of the standard normal distribution. For small values 
of nz or N− nz, the exact method to compute a p-value 
can be used [10].

We also use the same permutation procedure as the 
normal-based scan statistic to evaluate the statistical 
significance of the most likely cluster. In addition to the 
most likely cluster, we also report secondary clusters with 
statistical significance, if any, when they have no geo-
graphical overlap with more significant clusters.

Simulation study settings and performance measures
To evaluate the statistical power and accuracy of the 
proposed nonparametric spatial scan statistic and the 
normal-based method, we conducted a simulation study 
under various scenarios. Assuming several different dis-
tributions, we created a true cluster that tends to have 
higher outcomes than the remaining areas on an 8 ×  8 
unitless grid with a length of two units for each side of a 
cell. The center of the true cluster was at the coordinates 
11 and 5, and any cell whose center is within the radius of 
a length of 3 was included in the true cluster. In this way, 
the true cluster consisted of 9 cells, the center cell at the 
6th column from left and the 3rd row from the bottom 
and 8 cells around the center cell. We considered nor-
mal, logistic, double-exponential, uniform, lognormal, t-, 
and Cauchy distributions. Under each distribution, loca-
tion parameters were set different inside and outside the 
true cluster. For normal, logistic, double-exponential, and 
uniform distributions, the mean of the distributions was 
set to c

√
2 (c = 0.5, 1, 1.5) inside and 0 outside the clus-

ter. For lognormal distributions, the mean was set to 2 +  
c
√
2 (c = 0.5, 1, 1.5) inside and 2 outside the cluster since 

the mean of lognormal distributions cannot be zero. The 
variance was set to 1 over all areas for normal, logistic, 
double-exponential, uniform, and log normal distribu-
tions. For t-distributions, the degrees of freedom was set 
to 3 and the mean difference between inside and outside 
the cluster was c

√
2 (c =  0.5, 1, 1.5). For Cauchy distri-

butions, we set the scale parameter to 1 and the location 
parameter to c = 2, 4, 6, inside and 0 outside the cluster, 
because the Cauchy distribution does not have mean and 
variance.

We generated 1000 data sets of sample size 64 for each 
scenario and tested whether there was a cluster that 
tended to have higher outcomes than remaining areas for 
each of the 1000 simulated data sets, using the proposed 
method and the normal-based method. The statistical 

power was estimated as the number of rejected data sets 
out of 1000 at the significance level of 0.05. We also esti-
mated sensitivity and PPV in order to evaluate the accu-
racy of the detected cluster. Sensitivity was defined as 
the proportion of the number of cells correctly detected 
among the cells in the true cluster and PPV as the pro-
portion of the number of cells belonging to the true clus-
ter among the cells in the detected cluster. Sensitivity and 
PPV were estimated as the average of the proportions 
only for data sets rejected at the significance level of 0.05.

Although power, sensitivity, and PPV are well-defined 
and useful measures for comparing the performance 
of spatial scan statistics [2–6], another useful tool is 
the extended power and its profile proposed by Taka-
hashi and Tango [8]. The extended power is defined as 
a weighted sum of a bivariate power function, P(1,s) of 
“length” l, which is the size of the detected cluster (i.e. the 
number of cells in the detected cluster), and “include” s, 
which is the number of cells belonging to the true cluster 
among the cells in the detected cluster. In our simulation 
setting, P(9,9) indicates the power of exactly detecting 
the true cluster. The weight function includes penalties 
for false positives (FPs) and false negatives (FNs) and 
the extended power is expressed as a function of the 
penalties. Using certain penalties, the extended power 
is reduced to the usual power. Takahashi and Tango [8] 
proposed to use the profile of the extended power which 
represents the extended power continuously for all values 
of the ratio of penalties, r. Further details on the extended 
power can be found in the paper by Takahashi and Tango 
[8], and an example of its application was reported by 
Guttmann et  al. [11]. We also presented profiles of the 
extended power using the results from the simulation 
studies.

Results
Table 1 shows the estimated power, sensitivity, and PPV 
for the proposed method and the normal-based method. 
In most cases, except for uniform distributions, the 
power of the nonparametric method was higher than 
that of the normal-based method. Even for normal dis-
tributions, the nonparametric method demonstrated 
slightly higher power than the normal-based method. 
Although the power of both methods becomes higher 
as the difference in location parameters inside versus 
outside the cluster gets larger, the power of the non-
parametric method was much higher, especially for very 
heavy-tailed distributions such as t(3) and Cauchy, as 
well as for asymmetric distributions such as lognormal. 
Sensitivity was also higher for the nonparametric method 
than the normal-based method in most cases. In cases of 
uniform distribution, the sensitivity of the nonparamet-
ric method was as good as the normal-based method 
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even though the power was slightly lower. The PPV of the 
nonparametric method was similar to or slightly lower 
than the normal-based method in most cases. This may 
be because clusters detected using the normal-based 
method are rather smaller than clusters identified using 
the nonparametric method. Sensitivity and PPV depend 
on the size of detected clusters. Therefore, the profile of 
the extended power presented in Fig. 1 can be very useful 
for describing overall performance. We used the quanti-
ties for the values associated with penalties for FN and 
FP as proposed by Tango and Takahashi [8]. As shown 
in Fig.  1, the nonparametric method is uniformly more 
powerful than the normal-based method in every case 
except for uniform distributions. The extended power of 
the nonparametric method was much higher than that of 
the normal-based method, especially for lognormal, t(3), 
and Cauchy distributions.

Conclusions and discussions
We have proposed a nonparametric spatial scan statistic 
for continuous data. As seen in simulation studies, the 
nonparametric model has higher power and precision 

than the normal model especially for heavy-tailed or 
asymmetric distributions. It is somewhat surprising 
that the power is higher even for normal distributions 
although the difference is not very large. This could be 
due to the current simulating setting of a relatively small 
number of data points. Another simulation study involv-
ing more varied situations would help to better evaluate 
the performance of the proposed method; however, we 
believe that the nonparametric model works very well 
and can serve as an excellent alternative to the normal 
model for spatial cluster detection for continuous data.

The proposed method can be applied to a wide range of 
continuous data such as birth weight, body mass index, 
and cholesterol level of individuals, except for survival 
time data, for which methods that can handle censored 
observations [5] are more suitable. Ordinal type of data 
with many categories can also be analyzed by the pro-
posed method.

As the parametric normal-based spatial scan statis-
tic, the proposed test statistic was constructed under 
the assumption of independent observations. However, 
this does not mean that the test assumes that there is no 

Table 1  Statistical power, sensitivity, and  positive predictive value (PPV) of  the nonparametric spatial scan statistic 
and normal-based method for various distributions

Power (%) Sensitivity PPV

Nonparametric Normal Nonparametric Normal Nonparametric Normal

c = 0.5

 Normal 17.3 14.8 0.71 0.65 0.63 0.65

 Logistic 17.7 12.9 0.72 0.64 0.64 0.65

 DoubleExp 24.0 13.5 0.81 0.67 0.74 0.72

 Uniform 13.4 15.4 0.65 0.66 0.62 0.69

 Lognormal 19.7 7.6 0.74 0.50 0.64 0.52

 t(3) 13.9 7.6 0.66 0.44 0.59 0.55

 Cauchy (c = 2) 31.4 5.7 0.83 0.44 0.76 0.38

c = 1.0

 Normal 71.8 69.8 0.90 0.87 0.85 0.89

 Logistic 76.9 66.7 0.91 0.89 0.88 0.91

 DoubleExp 76.9 62.1 0.93 0.89 0.88 0.91

 Uniform 62.2 74.8 0.88 0.86 0.85 0.89

 Lognormal 83.2 45.0 0.93 0.86 0.87 0.87

 t(3) 45.8 25.9 0.86 0.75 0.80 0.80

 Cauchy (c = 4) 76.1 16.9 0.92 0.79 0.88 0.74

c = 1.5

 Normal 98.6 98.4 0.97 0.96 0.92 0.96

 Logistic 98.8 96.8 0.97 0.96 0.93 0.97

 DoubleExp 97.6 94.1 0.97 0.96 0.93 0.96

 Uniform 98.4 99.1 0.97 0.96 0.93 0.96

 Lognormal 99.8 87.9 0.99 0.96 0.93 0.95

 t(3) 83.8 58.8 0.92 0.86 0.87 0.89

 Cauchy (c = 6) 90.9 30.4 0.94 0.87 0.91 0.85
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Fig. 1  Profiles of the extended power for the nonparametric (solid line) and the normal-based (dashed line) spatial scan statistic under various 
distributions
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spatial auto-correlation. As described in SaTScan User 
Guide [12], it is a test of whether there is spatial auto-
correlation or other divergences from the null hypoth-
esis. Spatial auto-correlation should not be adjusted away 
when we are interested in detecting clusters due to such 
correlation.

The nonparametric spatial scan statistic can be easily 
extended to space–time settings by considering a three-
dimensional cylindrical scanning window with a base 
representing space and a height representing time. Con-
sidering different shapes for scanning windows other 
than circles, such as ellipses [13] or irregular shapes [14–
16] would also be interesting for the nonparametric spa-
tial scan statistic.
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