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Emerging technologies to measure 
neighborhood conditions in public health: 
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Abstract 

Adverse neighborhood conditions play an important role beyond individual characteristics. There is increasing inter-
est in identifying specific characteristics of the social and built environments adversely affecting health outcomes. 
Most research has assessed aspects of such exposures via self-reported instruments or census data. Potential threats 
in the local environment may be subject to short-term changes that can only be measured with more nimble tech-
nology. The advent of new technologies may offer new opportunities to obtain geospatial data about neighborhoods 
that may circumvent the limitations of traditional data sources. This overview describes the utility, validity and reli-
ability of selected emerging technologies to measure neighborhood conditions for public health applications. It also 
describes next steps for future research and opportunities for interventions. The paper presents an overview of the 
literature on measurement of the built and social environment in public health (Google Street View, webcams, crowd-
sourcing, remote sensing, social media, unmanned aerial vehicles, and lifespace) and location-based interventions. 
Emerging technologies such as Google Street View, social media, drones, webcams, and crowdsourcing may serve as 
effective and inexpensive tools to measure the ever-changing environment. Georeferenced social media responses 
may help identify where to target intervention activities, but also to passively evaluate their effectiveness. Future 
studies should measure exposure across key time points during the life-course as part of the exposome paradigm 
and integrate various types of data sources to measure environmental contexts. By harnessing these technologies, 
public health research can not only monitor populations and the environment, but intervene using novel strategies 
to improve the public health.
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Background
Adverse neighborhood conditions affect various health 
outcomes and play an important role beyond charac-
teristics at the individual level [1]. Characteristics of 
neighborhood conditions can be classified in multiple 
aspects, including the built/physical environment (e.g., 
availability of sidewalks), social and economic conditions 
(e.g., poverty rate), availability of medical care (e.g., pri-
mary care physicians per population), and environmental 

determinants (e.g., organic and inorganic pollutants) [2]. 
There is increasing interest in identifying specific char-
acteristics of the social and built environments adversely 
affecting health outcomes. This is exemplified by recent 
initiatives, such as personalized or precision medicine 
[3]. The Precision Medicine Initiative is a comprehen-
sive effort to better understand which treatments work 
for which individuals and under which conditions [4]. By 
also harnessing environmental exposures, a much more 
comprehensive view of the population can be developed 
because the collective health is shaped by factors beyond 
clinical care and/or genetic predisposition [5]. Some 
called the community-based corollary “precision public 
health” [6]. “Achieving health equity” and “creating social 
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and physical environments that promote good health for 
all” are two of the four Healthy People 2020 goals that 
provide the impetus to examine geographically based dis-
parities related to adverse neighborhood conditions.

Because environmental exposures are responsible for 
the majority of risk for many diseases, systematic and 
comprehensive measures of these exposures need to be 
obtained. Most research has assessed aspects of the built 
and social environmental exposures via self-reported 
instruments or used census data. In contrast to self-
reported measures, field audits involve observers docu-
menting specific characteristics of the built environment 
with checklists and require a visit to each area of inter-
est. These are expensive and time-consuming options, 
especially for geographically dispersed places, hinder-
ing the generalizability of studies beyond relatively small 
geographic areas. Administrative sources (e.g., census 
data) often are based on arbitrary boundaries that may 
not represent neighborhoods. In contrast to relatively 
stable forms of neighborhood conditions (poverty, racial 
segregation, etc.) that are typically measured using these 
approaches, potential threats in the local environment 
such as crime and the response to crime may be subject 
to short-term change that can only be measured with 
more nimble technology.

The advent of newly developing technologies such as 
webcams, social media, or crowdsourcing may offer new 
opportunities to obtain geo-spatial data about neigh-
borhoods that may circumvent the limitations of tradi-
tional data sources used in neighborhood research. New 
methods and technologies to measure exposures should 
be developed that provide a more balanced approach to 
the measurement of the gene-environment equation [7, 
8]. The imbalance in precise measurements of genes and 
variable measurement of environments may result in an 
inability to fully derive the public health benefits from 
expenditures on the human genome. This paper describes 
the utility, validity and reliability of selected emerging 
technologies to measure neighborhood conditions for 
public health applications. It also describes next steps for 
future research and opportunities for interventions.

Google Street View
Omnidirectional imagery measures aspects of the built 
and social environment and refers to simultaneous col-
lection of images in multiple directions from a single 
location, producing a panoramic view (e.g., Google Street 
View). It provides a visual record of an area and allows 
observation of neighborhood characteristics. Google 
Street View has generally been found to be reliable and 
valid relative to the gold standard of in-person audits in 
urban areas [9–15]. Moreover, neighborhood conditions 
measured using Google Street View are associated with 

observed physical activity and children’s antisocial behav-
ior [16, 17].

Advantages of Google Street View include efficiency, 
researcher safety, low cost, unobtrusive data collec-
tion and access to historical images of locations. Google 
Street View and similarly collected data offer an effi-
cient alternative, particularly if audits are needed over 
large or geographically dispersed areas. The ability to “go 
back in time” is an important advantage for longitudinal 
research that cannot be implemented through in-person 
approaches. Google Street View offers the potential for 
longitudinal comparison at a finer spatial scale and from 
a ground-level perspective that may capture features not 
visible from aerial and satellite platforms.

Limitations of Google Street View also exist. First, 
Google Street View focuses on the built environment and 
does not provide data about specific environmental con-
taminations. Second, the level of agreement between vir-
tual and field audit is in general lower for the assessment 
of subjective than objective dimensions of the environ-
ment, including environmental aesthetics (e.g., presence 
of garbage, graffiti) and condition of the sidewalks (e.g., 
sidewalk width, alignment) [9, 11, 18]. Third, visual inter-
pretation is limited to the camera’s perspective and van-
tage point, so auditors may not be able to view features 
as closely as they would in the field. Fourth, images pro-
vided by Google Street View are collected at a particu-
lar point in time, limiting its utility when imagery is not 
available for a time period of interest. Google’s release of 
historical Street View imagery in the spring of 2014 offers 
new opportunities for understanding temporal change at 
locations where historical imagery exists. Some measures 
(e.g., the presence of litter) may be affected by time of 
day, which may or may not be observed by Google Street 
View data. Also, Google Street View may not be avail-
able at all locations; up to 40 % of segments selected in a 
metropolitan sample were not available [19]. This limita-
tion will become less of a problem as Google continues 
to expand the geographic coverage to more streets. Stud-
ies have also identified some imagery date disruptions 
in Google Street View data that may be problematic for 
virtual audits or spatial processing of these data for envi-
ronment-behavior research [20]. Finally, the validity and 
reliability of Google Street View in rural areas is limited 
[13].

Webcams
Web cameras (webcams) are video cameras that capture 
and stream images in real time to a computer or com-
puter network. Webcams provide the ability to conduct 
large scale surveillance of multiple geographic locations 
with minimal personnel burden. Currently, the largest 
and most accessible collection of environmental webcam 
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image data is the Archive of Many Outdoor Scenes 
(AMOS; http://amosweb.cse.wustl.edu/). Established in 
2006, AMOS is a webcam resource providing open access 
to over 29,000 webcams across the world with 847 million 
images and counting [21, 22]. AMOS captures images of 
outdoor spaces and allows for investigation of changes 
in built environment over time as well as examination of 
how individuals interact within the environment. Web-
cams have been shown to be a reliable and valid measure 
of built environment characteristics [23]. Currently, pub-
lic health research utilizing webcams to assess the built 
environment is sparse but burgeoning. Webcams have 
been demonstrated as successful tools to monitor use 
of active transportation—alking and biking—which are 
important health-promoting physical activities [21, 24].

Webcams provide a number of advantages including 
continuous monitoring of the built environment that is 
relatively low in cost and minimally obtrusive. Continu-
ous monitoring of different locations allows for both lon-
gitudinal and cross-sectional research investigating how 
the built environment can impact the population over 
time or how different environments compare without 
introducing the artifact of observer or participant bias 
that is often a limitation of in-person audits. Further-
more, the use of existing infrastructure is valuable and it 
comes at little to no cost for the researchers.

However webcams are not without limitations. When 
utilizing images from existing webcams, inconsisten-
cies in image properties (i.e. sizes, refresh rates, scenes) 
are of concern and the data available is limited to those 
locations with existing cameras. Factors such as weather, 
obstructed views, and mechanical malfunction can 
limit the reliability of the images as well. Additionally, 
webcams produce a large number of images and data 
to process and classify. However, this limitation can be 
overcome by using computer-based algorithms to detect 
anomalies of interest for evaluation [25] or by coupling 
webcam technology with crowdsourcing initiatives to 
quickly provide researchers with high quality and inex-
pensive data [24].

Crowdsourcing
Another innovative and efficient manner for harvest-
ing geo-referenced data is through crowdsourcing or 
‘participatory sensing’ applications that rely on citizen 
participation to achieve their goals. These applications 
generate real-time updates of the earth as GPS traces are 
sent via Internet-enabled mobile devices. Crowdsourcing 
is particularly interesting for neighborhood research as 
millions of users are contributing content such as pho-
tos, videos, notes, and social commentary to their vari-
ous locations, rendering data that is rich in quantitative 
and qualitative properties through applications such as 

Google Earth (www.google.com/earth/) and OpenStreet-
Map (www.openstreetmap). For example, these data 
sources have been used to measure motor vehicle traffic 
updates, audio samples to measure citywide noise pollu-
tion [26], and to monitor drug safety surveillance (https://
medwatcher.org/), among others. Open source platforms 
such as GeoChat and Ushahidi, which permit interactive 
mapping of crowdsourced data (including Web forms, 
e-mails, short message services [SMS] text messages and 
Twitter tweets), have gained traction as they can be lever-
aged to aid in times of natural disaster, disease outbreaks, 
and to send alerts in real-time [27, 28]. The combination 
of crowdsourced data and rigorous data analysis via open 
source geographic information system (GIS) software is 
appealing, particularly in low resource settings [29].

Advantages of crowdsourcing include real-time data 
collection, data that is both time stamped and georef-
erenced, and the accessibility of data for analysis. The 
ability of crowdsourcing to monitor environments and 
disease phenomena in real time among large populations 
is unparalleled. Instant access to location-based social 
commentary and spatio-temporal movements of phe-
nomena supply rich data that may provide the power to 
detect associations that cannot be seen with less frequent 
or lower resolution data sources.

The main limitations of crowdsourced data are the reli-
ance on self-reported data, the need to sift through large 
amounts of data to obtain appropriate exposure/disease 
measures, and the potential for selection bias as many 
people do not actively contribute to crowdsourced data 
thereby leading to under/over reporting of events. The 
current emphasis on big data and bioinformatics in pub-
lic health will hopefully reduce the processing time and 
interpretation of large quantities of data in the near future 
[30, 31]. Notably, the wide adoption and usage of web-
enabled devices (e.g., smartphones and tablets) among all 
age groups is likely to continue and thereby increase the 
representativeness of crowdsourced data [32]. Another 
limitation is that low-resource settings may have limited 
access to the necessary mobile cellular networks. How-
ever, efforts conducted in parallel research fields (e.g., 
telemedicine) have successfully used mobile networks 
in low-income countries such as Nepal, Botswana, and 
Bolivia to deliver health care and communicate with phy-
sicians remotely [33–35]. Thus, the potential of crowd-
sourcing in similar settings is promising.

Social media
The use of social media has expanded greatly in the past 
decade and is producing massive amounts of data. With 
more than 1 billion users worldwide, Facebook™ is the 
largest social media network. With the launch of Twit-
ter™ in 2006, daily chatter, conversation, information 
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sharing, and news commentary have become easily 
accessible. Social media provides user-generated data 
that can be collected and analyzed by researchers to 
examine opinions or social norms around specific top-
ics, including health-related foci. Twitter has been used 
primarily to examine discussions about alcohol and 
marijuana use [36], e-cigarettes, hookah use, depression 
[37], and suicide [38–41]. Twitter and other social media 
outlets have been used to assess the positive and nega-
tive nature of posts, specifically for health conditions like 
depression and schizophrenia [42]. They have also been 
used to locate where health conditions are most fre-
quently mentioned [43]. Twitter has been demonstrated 
to be more effective than traditional surveillance meth-
ods to identify the 2009 H1N1 pandemic [44].

Some tweets, posts on Twitter, are able to be georef-
erenced. Twitter data showed that Adderall was tweeted 
with higher frequency around college campuses relative 
to outside those areas, particularly in the northeastern 
United States [45]. Twitter also found that areas desig-
nated as food deserts had a lower proportion of tweets 
about healthy food with a positive sentiment and higher 
proportion of unhealthy tweets [46]. Exposure to a 
healthful food environment in an individual’s immediate 
vicinity facilitates healthful choices while showing that 
an obesogenic food environment may not necessarily 
increase the likelihood that individuals will patronize fast 
food restaurants [47]. Other georeferenced social media, 
such as Flickr™, have been used to identify characteristics 
of specific areas using spatial clustering algorithms [48–
50]. Few studies have validated neighborhood conditions. 
Quercia and colleagues showed that smells about indus-
try, transport, and cleaning correlated with air quality 
indicators using georeferenced picture tags from Flickr 
and Instagram, and georeferenced tweets from Twitter 
[51]. Facebook and other social media outlets have been 
used to recruit research participants in specific areas, 
which may allow for increased access to georeferenced 
data and the potential to explore implementation and 
evaluation of public health interventions [52–55].

Challenges in using social media for public health 
research related to neighborhood conditions include 
access to data that is not publicly available and the lack 
of population-based representation of users. For exam-
ple, only some public posts on social media are accessible 
and able to be georeferenced. Despite the large volume 
of data generated by the many social media users [56], 
young adults, African Americans, urban/suburban resi-
dents, and mobile users use Twitter at higher rates [57]. 
However, less than five percent of tweets included spe-
cific geographic locations [45, 46]. The location infor-
mation retrieved by built-in GPS receivers might also 
be inaccurate for various reasons. Furthermore, users 

can individually choose to add their precise location to 
a tweet or attach general location information (such as a 
city or neighborhood). This might result in imprecise and 
coarse location information of geotagged tweets. Individ-
uals who allow their social media posts to be located are 
likely different from those who did not, which may lead to 
selection bias. The distribution of social media use may 
also be spatiotemporally heterogeneous because users do 
not contribute equally across space and time. Tweets and 
other social media use vary across different real-world 
scale levels (country, city, etc.) and might result in sparse 
data coverage for some geographical areas [48]. Finally, 
some users may have multiple accounts and may make 
comments on neighborhood conditions outside the area 
they are in. Thus, analyses using social media data should 
not overstate its representativeness among all residents 
within a defined geographic study area.

Unmanned aerial vehicles (drones)
Unmanned aerial vehicles (UAVs), also referred to as 
drones or as unmanned aerial systems (UASs), have 
experienced a surge in abilities and availability over the 
past few years. Drones are starting to be used in public 
health applications, such as identifying locations for tar-
geted soil sampling to detect chemical spills and areas 
where the soil is contaminated [58, 59]. Drones have also 
been used to investigate the causes of infectious disease; 
explaining a surge in malaria caused by human incur-
sion and carrier species displacement [60], and identi-
fying spatial determinants of tuberculosis in Spain [61]. 
They have also been fitted with near infrared cameras to 
detect the biomass of forest areas [62, 63], as well as with 
lightweight gamma-spectrometers to assess radioactive 
contamination and the effectiveness of decontamination 
efforts near the Fukushima Daiichi Nuclear Power Plant 
in Japan [64].

Drones have several advantages over other methods of 
observation and/or environmental sampling, and have 
already been proven to be useful tools in public health. 
A study using drones to detect copper-contaminated soil 
found that the benefits of drones included lower flight 
altitude than normal planes (25  m in their study) allow-
ing for high resolution photos, and faster speed com-
pared to normal planes (4 m/second in their study) [58]. 
In addition, drones are capable of obtaining high quality 
image data. The highest spatial resolution from satellite 
data (commercially available) is 41  cm; however, drones 
can capture images at a resolution of 4–20 cm [60]. This 
increased spatial resolution proved very useful in the 
Fukushima radiation contamination assessment trial, 
along with the protection of humans from radiation expo-
sure which occurs with manned flight or ground survey 
work [64]. As drone prices continue to decline and flight 
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performance continues to improve, inexpensive UAVs 
will become more available for wider use in public health 
research [65]. Currently, the main attraction of drones is 
their ability to obtain data in real time and to repeatedly 
sample study areas as frequently as needed [60].

Drone development is occurring at a rapid pace, and 
several promising innovations are currently being devel-
oped that could prove useful in measuring neighborhood 
conditions. For example, drones may be used to remotely 
inspect personal compliance with guidelines (such as 
wearing personal protective equipment), and measur-
ing stressors such as heat, cold, radiation, pollution, and 
noise over time [66]. This environmental monitoring 
ability will be enhanced by solar powered drones with 
extended run time that are currently under development 
[67]. Drones have been used to transport automated 
external defibrillator (AED) devices to people under car-
diac arrest. Drone use is planned for rapid inspection of 
bridges and roads [66], suggesting that neighborhood 
condition audits could also be accomplished by drones. 
Some have suggested that drones can locate people and 
monitor the movement of human populations [68], which 
suggests that drones could be used to assess the neigh-
borhood social as well as the built environment.

There are several concerns regarding drone use, includ-
ing safety and privacy. Drones are currently poorly regu-
lated, and as such, pose a risk of varying degree [69]. For 
example, the misuse of drones concerns include inva-
sion of privacy, either in the pursuit of journalism or of 
voyeurnalism (for example by paparazzi), or through 
voyeurism [69]. The number of drone incidents reported 
to the United States Federal Aviation Administration 
has increased from 238 total in 2014, to 1133 through 
November in 2015 [70]. To help alleviate some of these 
concerns, the United States Federal Government is now 
requiring the registration of most drones [70]. Addi-
tionally, current United States federal regulations limit 
the autonomous flight of drones, and require that they 
remain in sight of the operator [70]. Other areas also cur-
rently regulate drone usage or are developing regulations 
including Europe through the European Aviation Safety 
Agency (EASA), and Australia through the Civil Aviation 
Safety Authority Regulations (CASR-101) [69]. Addition-
ally, international guidelines are being developed that will 
help inform regulations regarding drones by the Interna-
tional Civil Aviation Organization (“unmanned aircraft 
systems [UAS]”, ICAO Circular 328-AN/190, 2011), and 
by the Joint Authorities for Rulemaking on Unmanned 
Systems (JARUS Press Release No. 2016/13, April 25, 
2016). As rules and regulations regarding the permissi-
ble utility of drones are still under debate, the extent of 
their potential use in public health research remains in 
question.

Lifespace measurement
Lifespace refers to the geographic space in which a per-
son lives and functions [71]. Lifespace arose from studies 
of aging and mobility impairment but has been associ-
ated with broader health and functional capacity, includ-
ing quality of life, resource availability, social interaction, 
and travel patterns [71]. Traditionally assessed via self-
report, mobile technology provides an opportunity to 
passively measure lifespace with greater precision and 
accuracy, reducing potential recall and social desirabil-
ity bias. Using a lifespace approach may help identify the 
appropriate geographic area/resolution to be used as the 
basis for deriving exposure measures based on a person’s 
travel pattern. It may also move toward a people-based 
rather than a place-based understanding of exposure 
and context [72]. Proof of principle studies using GPS 
technology and accelerometer apps in mobile phones 
established that the technology can reliably capture 
community-level movements for various populations 
[73–75]. With the addition of Bluetooth beacons, lifes-
pace measurement can be scaled for room-level, in-home 
measurements [74].

Strengths of this approach include relatively low cost, 
low participant burden, objective measurements, and the 
ability to analyze lifespace as time-series measurements 
to create a variety of metrics including visual represen-
tations. Limitations include potential data loss due to 
phone battery life (and need for participant to charge the 
phone each night) and participant decisions about when 
to turn the device on/off which may result in underre-
porting of less-active times of day. In addition, the use of 
mobile phones does not indicate whether the participant 
needed assistance in travel, which is typically collected 
using the lifespace self-report measure.

Future directions and opportunities 
for interventions
To-date, most studies examining neighborhood charac-
teristics have been limited by: (1) a focus on residence 
only when most people spend one-third of their time 
elsewhere; (2) failure to consider cumulative exposures 
over time (e.g., residential history); and (3) use of arbi-
trary administrative units (county, census tract, or zip 
code) to infer neighborhood risks. Future studies should 
measure exposure across key time points during the 
life-course as part of the exposome paradigm [2, 8, 76, 
77] and integrate various types of data sources to meas-
ure environmental and community contexts (such as 
work, residential, and daily-life settings) in addition to 
biological and social factors [7]. A GIS is ideally suited 
to integrate various types of data across multiple levels, 
recognizing that specific challenges need to be overcome 
related to ‘big data’ issues particularly when using small 
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geographic areas and a life-course perspective. Merging 
appropriate methods from various disciplines, including 
epidemiology, health behavior, genetics and geography 
will provide a more complete understanding of the spa-
tial interactions that result in spatial patterns of disease. 
A new paradigm is needed to assess how a lifetime of 
exposure to environmental- and community-level factors 
affects the risk of disease [78]. One such paradigm may 
be eco-geographic genetic epidemiology that integrates 
various disciplines into models of geographic disease eti-
ology [79].

Combining the digital traces that remain as people 
interact with the world through smart phones and the 
aforementioned emerging technology may now provide 
unprecedented methods to assess a range of environ-
mental factors objectively and with minimal expense and 
burden to participants. Ecological Momentary Assess-
ment may focus on tracking individuals and events of 
interest (e.g., smoking, drinking alcohol), but may also 
collect data about neighborhood conditions through 
Google Street View and social media (e.g., noise, smells) 
as persons interact with their environment because smart 
phones are equipped with GPS technology. However, 
detailed knowledge about the whereabouts of people and 
their behaviors as they interact with the world with high 
spatial and temporal resolution is largely unexplored. The 
spatiotemporal analysis of Location Based Social Net-
works has great potential to help better understand the 
processes of behavior and explore the impact of spatial 
structures on human activity [80, 81]. Social media posts 
may also be used to examine the effect of crowd behavio-
ral patterns (e.g., physical activity) and urban characteris-
tics (e.g., built environment) on individual behavior [82].

Real-time interventions use mobile technology to 
deliver interventions to individuals as they go about 
their daily lives. These Ecological Momentary Interven-
tions are provided to people during their everyday lives 
(i.e., in real time) and in natural settings (i.e., real world) 
[83], are starting to be developed and tailored to indi-
vidual characteristics, although few are evidence based 
[84, 85] or location dependent. Perhaps interventions 
delivered via mobile devices at the time when the user 
needs it in a high-risk situation (e.g., Flu on Call™) [86] 
or when struggling to avoid violating a behavior-change 
goal can be triggered based on the passively sensed geo-
graphic location of individuals [87]. For example, when a 
patient leaves residential treatment for alcohol use disor-
ders and nears a bar, the mobile device initiates an alert 
asking the patient if s/he wants to be there [88]. A recent 
study developed a mobile phone application and sup-
porting architecture, in which machine learning models 
predicted patients’ mood, emotions, cognitive/motiva-
tional states, activities, environmental context, and social 

context based on at least 38 concurrent phone sensor val-
ues (e.g., global positioning system, ambient light, recent 
calls), which showed important effects on major depres-
sive disorder diagnosis [89]. While most research has 
focused on addiction, future research could examine the 
effectiveness of interventions focused on other behaviors 
that also contain a locational component, such as obe-
sity-related disorders (e.g. obesity, diabetes, cardiovascu-
lar disease). Mobile phone sensors can be used to develop 
context-aware systems that automatically detect when 
patients require assistance. For example, a context-aware 
system gathered observations about participants and 
their environment, developed an algorithm to inductively 
“learn” the relationship between sensor data and the par-
ticipant’s reported social context, activity, location, and 
internal states and subsequently intervened based on 
these predictions [89]. Issues of confidentiality may play 
a role in this type of research depending on the type of 
behavior examined. By harnessing real-time data from 
social media, local programs can be evaluated as they 
are implemented, generating timely feedback to assess 
the effectiveness of interventions to improve health out-
comes.  Such adaptive designs using accumulating data 
to modify the intervention’s course have been used infre-
quently in community-based evaluations [90, 91].

Georeferenced social media responses may also help 
identify where to target intervention activities. For exam-
ple, Twitter analysis may drive an intervention focused 
on reducing Adderall use around college campuses [45] 
or georeferenced tweets could focus on healthy food 
options in food-desert-identified areas [46]. Tweets may 
be used to evaluate changes before and after implementa-
tion of local interventions, recognizing that only a select 
minority of individuals in specific areas allow their tweets 
to be georeferenced.

Other emerging technologies may also be used to pas-
sively evaluate the effectiveness of interventions. For 
example, webcams may be applied to public health inter-
vention research by monitoring individual- and com-
munity-level interaction with the built environment. 
Additional applications could include the use of webcams 
to monitor differences in the use of green space and out-
door activity based on neighborhood characteristics and 
how changes to the built environment can impact this 
relationship. Furthermore, lifespace measurement could 
be applied to multiple affected population (e.g. diabetes, 
obesity, depression, physical disability including veter-
ans’ injuries) to conduct both needs assessment and pro-
gram evaluation of interventions that aim to address the 
impact of transportation, housing, and built environment 
policies on mobility in these populations. We recognize 
that mobile technology is evolving rapidly that may pro-
vide additional opportunities to measure neighborhood 
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conditions. For example, wearable technology such as 
smart watches with GPS-enabled technology can track 
study participants as they move through their environ-
ment or are tagged by geolocated environmental sensors.

We should not lose sight of the fact that many of these 
emerging technologies collect data about conditions at 
specific locations within a geographic area. The atomis-
tic or individualistic fallacy occurs when one attempts to 
generalize an individual relationship to a higher level of 
the hierarchy (e.g., group effect). This can also occur with 
geographic data when relationships from a specific loca-
tion (or from several locations) are erroneously assumed 
to hold at an aggregate level (e.g., census tract). There-
fore, the application of multilevel and spatial statistics 
to analyze these data are recommended to account for 
these hierarchies and for statistical inference among geo-
graphic areas [92]. Another approach is to use a GIS to 
approximate aggregate measures using the distance-area-
for-clinical-care method which averages values from a 
finite number of locations that are proximal to a fixed 
location [93–95], Regardless of the method chosen, it 
should be noted that statistical models that incorporate 
the spatial (geographic) aspect of data collection should 
be employed to maximize the information contained in 
geographically referenced data.

Ethical considerations must also be taken into account 
when integrating spatial data into public health research 
and action. Geographically identifiable data is benefi-
cial for helping public health research and practitioners 
to understand individuals as they move through their 
environment. However, this requires an examination of 
the ethics of using data in this manner, especially given 
individuals may be unaware that data collected about 
them in public spaces if being used for research purposes 
to which they have not consented. Clearly, the data col-
lected by the emerging technologies that utilize publicly 
available images and posts and were not intended by the 
user to be categorized and analyzed in this manner. Sen-
sitivity and caution should be exercised in this context 
when reporting analyses of these data, particularly due to 
the limited details in user agreements.

Finally, there seems to be tension between epidemio-
logical studies that aim to collect data from well-defined 
populations using probabilistic sampling frames and data 
collected by emerging technologies that are unlikely rep-
resentative of the general population. Weighting of the 
data collected by the latter method is recommended to 
obtain more representative samples. However, in some 
instances characteristics of the users are unknown, mak-
ing weighting more difficult. Challenges also exist incor-
porating these data into existing methods, particularly 
when the data, obtained from emerging technologies, 

are not implemented by and not under the control of 
research teams.

Conclusion
To most effectively and precisely measure built and social 
environment constructs, researchers should consider 
integrating new technology to assess these character-
istics. Emerging technologies such as omnidirectional 
imagery, social media, drones, webcams, and crowd-
sourcing abound with data and may serve as effective and 
inexpensive tools to measure the ever-changing environ-
ment. By harnessing these technologies, public health 
research can not only monitor populations and the envi-
ronment, but intervene using novel strategies to improve 
the public health.
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