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Abstract 

Background:  With more than half of Africa’s population expected to live in urban settlements by 2030, the burden of 
malaria among urban populations in Africa continues to rise with an increasing number of people at risk of infection. 
However, malaria intervention across Africa remains focused on rural, highly endemic communities with far fewer 
strategic policy directions for the control of malaria in rapidly growing African urban settlements. The complex and 
heterogeneous nature of urban malaria requires a better understanding of the spatial and temporal patterns of urban 
malaria risk in order to design effective urban malaria control programs. In this study, we use remotely sensed vari-
ables and other environmental covariates to examine the predictability of intra-urban variations of malaria infection 
risk across the rapidly growing city of Dar es Salaam, Tanzania between 2006 and 2014.

Methods:  High resolution SPOT satellite imagery was used to identify urban environmental factors associated 
malaria prevalence in Dar es Salaam. Supervised classification with a random forest classifier was used to develop high 
resolution land cover classes that were combined with malaria parasite prevalence data to identify environmental 
factors that influence localized heterogeneity of malaria transmission and develop a high resolution predictive malaria 
risk map of Dar es Salaam.

Results:  Results indicate that the risk of malaria infection varied across the city. The risk of infection increased away 
from the city centre with lower parasite prevalence predicted in administrative units in the city centre compared to 
administrative units in the peri-urban suburbs. The variation in malaria risk within Dar es Salaam was shown to be 
influenced by varying environmental factors. Higher malaria risks were associated with proximity to dense vegetation, 
inland water and wet/swampy areas while lower risk of infection was predicted in densely built-up areas.

Conclusions:  The predictive maps produced can serve as valuable resources for municipal councils aiming to shrink 
the extents of malaria across cities, target resources for vector control or intensify mosquito and disease surveil-
lance. The semi-automated modelling process developed can be replicated in other urban areas to identify factors 
that influence heterogeneity in malaria risk patterns and detect vulnerable zones. There is a definite need to expand 
research into the unique epidemiology of malaria transmission in urban areas for focal elimination and sustained 
control agendas.
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Background
The rapid rate of urban growth in sub-Saharan Africa will 
mean that the majority of the population on the conti-
nent will be classified as urban by 2030 [1]. The process 
of urbanization is associated with changes in the demo-
graphic, environmental and socioeconomic landscapes 
which in turn impact on the health of urban residents [2–
4], including their risks of vector-borne diseases [4–6].

Malaria in Africa has long been regarded as a rural 
disease with the process of urbanization reducing suit-
able breeding environments for the dominant vector spe-
cies complexes of Anopheles gambiae s.l. and A. funestus 
[6–9]. However, the risk of malaria infection does persist 
within densely populated, urban settings of Africa. In 
particular, A. gambiae s.l. is more likely to be breed in 
urban aquatic habitats [10–12] than other vector species 
and has been found in domestic containers and highly 
organically polluted habitats in urban areas [13, 14]. The 
focal transmission risk in urban areas is associated with 
proximity to breeding sites due to within urban water 
bodies, urban agriculture and proximity to peri-urban 
peripheries more likely to support vector breeding [6, 8, 
15–19]. This heterogeneity of intra-urban risk is not cap-
tured in continental malaria risk mapping initiatives [20–
23] and are not considered as part of current national 
control strategies that focus protecting less densely popu-
lated rural communities where risk of infection is typi-
cally higher compared to neighbouring urban areas.

Remote Sensing and Geographical Information Sys-
tems (GIS) provide cost-effective tools to identify envi-
ronmental risk factors for high risk areas of vector-borne 
diseases. Previous studies have showed that satellite-
derived or ground defined mapped extents of water 
bodies, swampy areas and agricultural land use, can dis-
tinguish with some precision areas of higher malaria risk 
within the urban settings of Dar es Salaam, Tanzania [14, 
16] Ouagadougou, Burkina Faso [24] and Dakar, Senegal 
[8, 25]. The studies in Dar es Salaam during the early 
2000s used aerial photography and hand-drawn maps 
to digitize potential mosquito breeding sites which were 
compared to empirical measures of mosquito larval den-
sities and limited data on the prevalence of malaria infec-
tion among school children [14, 16]. The authors were 
able to demonstrate spatial declines in school children’s 
infection prevalence from the periphery to the centre of 
Dar es Salaam [16] and higher larval densities were asso-
ciated with closer proximity to urban agriculture [14]. 
High resolution satellite imagery are useful for accurate 
mapping of malaria risk factors in urban area and can be 
used to detect heterogeneity in land cover classes over 
small distances and improve the ability to identify urban 
vector breeding sites are often small, partially or com-
pletely covered by vegetation. High resolution imagery 

was shown to be most accurate in identifying A. gam-
biae larval habitats compared to lower resolution satellite 
imagery [26]. The main aim of this study was to identify 
at a high resolution environmental factors that influence 
localized heterogeneity of malaria transmission in the 
city of Dar es Salaam, Tanzania. In this study, we com-
bine data derived from high resolution SPOT satellite 
image and a wider suite of remotely sensed variables to 
estimate their impact of intra-urban variations of malaria 
infection risk in Dar es Salaam between 2006 and 2014.

Methods
Study area
Dar es Salaam is Tanzania’s largest city with a population 
of 4.6 million people [27]. With an annual population 
growth rate of 5.6 %, Dar es Salaam is among the fastest 
growing cities in Africa and the metropolitan population 
of Dar es Salaam is projected to reach over 5 million by 
2020. The city is located on the East African coast and has 
been endemic for Plasmodium falciparum transmission 
since the turn of the last century when it was occupied by 
German Colonial authorities [28]. P. falciparum accounts 
for over 90 % of cases treated within the city [16, 29] with 
over a million malaria cases reported annually by the 
health facilities in Dar es Salaam [29] although some of 
these cases could be imported cases. The commercial 
and administrative significance of the port city of Dar es 
Salaam, meant that it enjoyed a long history of aggressive 
control through mass drug administration under Ger-
man control [16, 28], environmental management under 
British Colonial rule [30, 31] and since the 1970s periods 
of integrated vector management as part of municipality 
control efforts [16, 32] culminating in the current pro-
gramme referred to as the Urban Malaria Control Project 
(UMCP) [15, 16, 29, 33, 34]. Largely community-based, 
the UMCP mainly focuses on integrated malaria vector 
control based on ground-based mapping and surveillance 
of potential mosquito breeding sites. Routine mosquito 
surveillance and larviciding is conducted by community-
based resource persons (CORPs), recruited from local 
communities via the elected local government [29, 33, 35, 
36]. However, ground-based mapping and surveillance 
has been reported as labour-intensive and expensive [15, 
37]. The application of remote sensing as a faster and less 
labour intensive alternative for targeted and effective 
control application is explored in this study. In addition, 
we explore the use of parasite prevalence surveys in esti-
mating urban malaria risk.

Overview of analysis strategy
Figure 1 gives an overview of the framework for analysis 
used in this study and described in more detail in subse-
quent sections.
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Satellite imagery classification
Image acquisition and pre‑processing
High resolution satellite image from SPOT 6 (Sys-
tème Pour l‘Observation de la Terre) at a resolution of 
1.5  m, acquired during the short rains on 14th Decem-
ber 2012 was obtained for the city of Dar es Salaam. 
The satellite image includes four spectral bands blue 
(0.455–0.525  µm), green (0.530–0.590  µm), red (0.625–
0.695  µm), and near-infrared (NIR) (0.760–0.890  µm). 
The image was geo-referenced and projected to UTM 
zones on the WGS84 datum. Atmospheric correction 
was then applied using a Dark Object Subtraction (DOS) 
model in image analysis software, ENVI version 5.0 (Exe-
lis VlS, USA). Radiometric correction was conducted on 
the satellite image by first converting digital numbers to 
spectral radiance then calculating exoatmospheric reflec-
tance (reflectance above the atmosphere) using published 
post-launch gain and offset values [38]. A coastline mask 
was digitized and applied to mask out pixels of the ocean 
from the subsequent analysis.

Unsupervised classification
The SPOT image was then classified to extract land cover 
(LC) classes. In the initial step of image classification, 
exploratory unsupervised classification was run to iden-
tify a manageable number of land cover classes for image 
training. Unsupervised classification using ISODATA 

algorithm repeated over 20 iterations was used to clas-
sify the satellite image into 20 LC classes. Class validation 
was conducted by checking accuracy of the generated 
classification for a random set of points in Google Earth. 
Several LC classes were merged in order to reduce the 
number of classes to 13, which were subsequently used to 
identify training sites that would be used for supervised 
classification in the second step of image classification. 
Similar methods of hybrid classification combining man-
ual digitizing and semi-automated techniques to generate 
training sites for supervised classification have been used 
in previous studies [39–43].

Supervised classification
The output of the unsupervised classification was used 
to identify training classes for the supervised classifi-
cation. For each of the 13 LC classes, a training dataset 
was selected on the satellite image by manually digitizing 
multiple training polygons for each class. One hundred 
training sites were obtained for each of the LC class.

A supervised classification algorithm based on ran-
dom forest (RF) modelling was used to classify the satel-
lite image [44–46]. Unlike the statistical algorithm used 
for the unsupervised classification that is based on the 
assumption that each cluster comes from a spherical 
normal distribution which is often not true for remote 
sensing images; the RF algorithm does not start with a 
predetermined model but instead learns the relationship 
from the data [45]. To build the RF model, spectral val-
ues were extracted from the multi-band SPOT image for 
each pixel within the training polygons. Optimal values 
for the number of trees (N) and number of observations 
per node (m) that maximize the classification accuracy 
while minimizing the computational time were selected 
by testing different combinations. Error rate estimates 
and confusion matrices were used to assess classification 
accuracy. All analyses were conducted using the statisti-
cal environment R (version 2.15.3). The RF model was 
developed using the random forest package version 4.6–7 
[46] and additional functions provided in [47].

Additional environmental and geographical variables 
extraction
Using the LC classes developed above, a vegetation pre-
dictor was determined by combining dense and riverine 
vegetation LC classes. Using focal statistics techniques, 
percentage vegetation was then calculated within a 1 km 
radius. Similarly, built-up classes were combined and 
percentage built-up pixel calculated within a 1 km radius. 
Euclidean distance tool in ArcGIS was used to calculate 
distance to water bodies for each pixel represented by the 
parasite prevalence survey location. The distance from 
inland water variable was calculated using water channels 
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Fig. 1  Conceptual framework used in the analysis of urban environ-
mental factors that influence malaria prevalence in urban settings. 
Note the proportion of coverage of each LC class was extracted 
within a rectangular moving window of 1 km. Ancillary environmen-
tal variables assembled in Stage 2 were also extracted within a 1 km 
radius
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identified in the image combined with data from the 
Global Lakes and Wetlands Database (GLWD) to account 
for seasonal water channels in the study area that could 
have been present over the study period but not identi-
fied in 2012 satellite imagery.

In addition, several additional variables including 
humidity, vegetation and soil indicators were calculated 
from the SPOT image. The Normalized Difference Veg-
etation Index (NDVI) was calculated using the NIR and 
Red spectral bands as (NIR-Blue)/(NIR + Blue) while the 
Normalized Difference Water Index (NDWI) was calcu-
lated by normalising the difference between the green 
and NIR bands calculated as (NIR-Green)/(NIR + Green) 
[48]. The NDWI is useful in potentially delineating open 
water features while eliminating the presence of soil and 
terrestrial vegetation features. Ancillary environmental 
and geographical datasets shown to be associated with 
malaria transmission in the literature were acquired from 
secondary sources. Altitude was obtained from ASTER 
Digital Elevation Model (DEM) available at 30 m spatial 
resolution [49]. The Aster DEM was also used to calculate 
a Compound Topographic Index (CTI), a wetness index 
that is a function of topographic slope and the upstream 
contributing area orthogonal to the flow direction [50]. 
Mean monthly temperature for each month in the period 
2006 to 2014 was calculated from land surface tempera-
tures (LST) dataset extracted from daily Moderate Res-
olution Imaging Spectro-radiometer (MODIS-Terra) 
images. These would then be matched to the month 
of malaria prevalence survey for each community site. 
MODIS LST is freely available at 1 km spatial resolution 
[51]. Annual precipitation estimates in 2012 were calcu-
lated from daily rainfall estimates obtained from African 
Rainfall Estimates version 2 (RFE 2.0) dataset developed 
as a collaborative programme between NOAA’s Climate 
Prediction centre (CPC) and USAID/Famine Early Sys-
tems Network (FEWS) [52]. A summary of all covariates 
used in the model, their sources as well as their spatial 
resolution is given in the Table 1.

Relationship with malaria parasite prevalence: BRT 
modelling
In the third stage, community level parasite prevalence 
survey data was combined with LC classes (Stage 1) and 
other environmental factors (Stage 2) to identify envi-
ronmental factors that influence malaria risk within the 
urban area.

Plasmodium falciparum parasite prevalence data
As part of continued support to the National Malaria 
Control Programme (NMCP) in Tanzania, the Infor-
mation for Malaria Project (INFORM) has assembled 
from published and unpublished sources all available 

community based survey data on malaria infection prev-
alence for the country, including survey data from Dar es 
Salaam [53]. In brief, data included the month and year 
of the survey, numbers of individuals examined, lower 
and upper ages of the population sampled, methods used 
to detect parasites and the longitude and latitude of the 
community surveyed. Due to diversity in the age ranges 
of sampled populations between studies, there was need 
for a standardized age range to make meaningful com-
parisons of Plasmodium falciparum parasite rates across 
surveys. We therefore standardised parasite prevalence 
into the 2–10 years age group (PfPR2–10) using algorithms 
based on catalytic conversion models first used in malaria 
by Pull and Grab [54] that uses the lower and upper range 
of the sample and the overall prevalence to transform 
into a predicted estimate in children aged 2–10 years as 
described in Smith et al. [55]. The working paper on data 
assembly under the INFORM project is available on the 
INFORM website (http://www.inform-malaria.org/work-
ing-papers/). Only data from 2006 to 2014 were selected 
for the analysis to coincide with periods of remotely 
sensed image used for urban risk classifications. The final 
dataset included 169 community surveys at 116 sample 
locations within Dar es Salaam. The majority of the data 
locations (N = 75, 65 %) were from surveys undertaken 
between 2011 and 2014, where 30 were undertaken as 
part of school based investigations of malaria risk under-
taken by the NMCP in 2014. The majority (82 %) of the 

Table 1  Summary of  variables used in  BRT model to  esti-
mate PfPR2–10 risk

All variables except distance to water were extracted within 1 km radius

Data sources: a SPOT imagery; complete section on SPOT data
b  Global Lakes and Wetlands Database. www.worldwildlife.org/GLWD
c  http://www.jspacesystems.or.jp/ersdac/GDEM/E/index.html
d  https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/
mod11a1
e  http://www.cpc.noaa.gov/products/international/data.shtml

Variable Source Data source spatial 
resolution

Land cover classes 
(C1–C13)

SPOT satellite imagea 1.5 m

Percentage dense/ 
riverine vegetation

SPOT satellite imagea 1.5 m

Percentage built-up SPOT satellite imagea 1.5 m

Distance to inland 
water (m)

SPOT satellite imagea 
and GLWDb

1.5 m

–

NDVI SPOT satellite imagea 1.5 m

NDWI SPOT satellite imagea 1.5 m

Altitude ASTER GDEMc 30 m

Wetness Index (CTI) ASTER GDEMc 30 m

Temperature MODIS LSTd 1 km

Rainfall RFE 2.0e 1 km

http://www.inform-malaria.org/working-papers/
http://www.inform-malaria.org/working-papers/
http://www.worldwildlife.org/GLWD
http://www.jspacesystems.or.jp/ersdac/GDEM/E/index.html
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod11a1
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod11a1
http://www.cpc.noaa.gov/products/international/data.shtml
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surveys were tested using RDT. A summary of key char-
acteristics of the PR survey data is given in the Additional 
file 1.

The geographic coordinates of each community survey, 
measured at the estimated geographic centre of the sur-
vey site, were used as a unique identifier to extract values 
of the LC classes at the survey location. The extractions 
were done in ArcGIS 10 (ESRI, USA) using spatial neigh-
bourhood analysis technique to obtain the proportion of 
coverage of each LC class within a rectangular moving 
window of 1 km radius surrounding each grid cell. Ancil-
lary environmental variables assembled in Stage 2 were 
also extracted within a 1 km radius.

BRT modelling
Boosted Regression Tree (BRT) modelling was then used 
to examine the relationship between parasite prevalence 
(PfPR2–10), urban LC classes as well as other environmen-
tal variables sampled at each community survey site. BRT 
is a machine learning technique increasingly used for 
modelling event distribution in ecology and epidemiol-
ogy [56–59], in remote sensing land cover classification 
[60] and land cover change modelling [61].

To build the BRT model, the optimal number of trees 
nt was determined using the gbm function provided by 
Elith et  al. [62]. Several combinations of the learning 
rate (LR) (0.025, 0.05, 0.1) and tree complexity (tc) (1, 5, 
9) parameters were tested. Cross-validation techniques 
were used to evaluate model predictive performance, by 
randomly separating the dataset into a modelling dataset 
that was used to fit the model and a testing dataset that 
was excluded from model fitting and was used for test-
ing the model’s predictive performance. The ratio model 
set was set at 75 % which defined the percentage of the 
data sampled at every run. This was further improved 
using bootstrapping techniques over 25 iterations. Root 
mean square error (RMSE) was used to select the optimal 
model using the smallest value. Important predictors of 
PfPR2–10 were identified using the relative contribution 
output of the BRT model while the relationship patterns 
between individual predictors and PfPR2–10 were exam-
ined through partial differential plots. Variables with zero 
influence or <1  % relative contribution were dropped 
from the model. BRT models were developed using the 
R package ‘gbm’ version 1.6–3.2 [63] and the additional 
functions provided in Elith et al. [62]. All analyses were 
conducted using R (version 2.15.3) [64].

Malaria risk mapping
In the last stage, the final selected BRT model was used to 
predict malaria parasite prevalence on a 10 m grid level 
for the city of Dar es Salaam based on the identified asso-
ciations between LC classes, environmental variables and 

parasite prevalence. To obtain more reliable results, the 
BRT model runs were repeated in 25 iterations with the 
mean predicted value over the 25 iterations calculated as 
the final value for each grid cell. The mean parasite prev-
alence was then estimated by ward, the lowest adminis-
trative unit level used for municipal planning in Dar es 
Salaam.

Results
The final classification defined 13 LC classes, distributed 
as five urban classes (depending on the type of buildings 
and tarmacked roads), three vegetation classes (light, 
dense or riverine), two water classes (inland or sea) and 
three bare soil classes (sand, bare soil, or bare soil mixed 
with vegetation) (Fig. 2). The accuracy of the image clas-
sification result was evaluated using an error matrix, 
one of the most widely used post-classification accuracy 
assessment methods. Overall classification accuracy of 
the satellite image covering Dar es Salaam was 87.1  % 
with Kappa co-efficient of 0.854.

Empirical estimates of malaria infection risk (PfPR2–10) 
ranged from 0 to 38.8  %, with 18  % of surveys report-
ing zero infection among the 169 sample locations. The 
lowest RMSE value, indicative of the best fitting model, 
was used to determine the parameters of the final BRT 
model. Several combinations of the learning rate (LR) 
(0.025, 0.05, 0.1) and tree complexity (tc) (1, 5, 9) param-
eters were tested. The BRT model with the smallest 
RMSE value of 16.02 was selected as the most optimal 
model with the final tuning parameters set to: learn-
ing rate (LR) = 0.1, tree complexity = 1 and number of 
trees = 100. An evaluation of the model prediction accu-
racy measured using the Area under Curve (AUC) over 
25 iterations showed AUC = 0.89.

The relative contribution of significant predictor vari-
ables on the outcome (malaria positivity) is summarized 
in Table  2. Among the LC variables, the percentage of 
dense/riverine vegetation, built-up areas and proximity 
to water were found to be important predictors of PfPR2–

10. The percentage of dense/riverine vegetation within a 
1 km radius was found to be the most important predic-
tor of parasite prevalence with a relative contribution of 
close to 30  % (Table  2). Partial differential plots show-
ing the effect of the environmental variables on the PfPR 
are shown in Fig.  3. The risk of malaria infection was 
shown to increase as the percentage of dense vegetation 
increased. Urban land cover, measured using percentage 
built-up area, was ranked as the second most important 
predictor of parasite prevalence with a relative contribu-
tion of 27 % (Table 2). Partial responses indicated malaria 
infection risk decreased with increase in built-up land 
cover beyond 10 % of built-up areas. Proximity to inland 
water was found to be the third most important predictor 
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of malaria infection risk, with an overall relative con-
tribution of 9 % (Table 2). Communities closer to water 
bodies were found to be at a higher risk of infection than 
those living further away. 

Topographic variables were also found to influence 
parasite prevalence. Altitude derived from ASTER 30 m 
DEM was ranked 4th with 9 % relative contribution, with 
a trend toward malaria risk decreasing with increasing 
altitude. The topography Derived Wetness Index (CTI) 

was also shown to be associated with malaria infection 
risk, ranked as the fifth most important predictor and a 
relative contribution of approximately 7 % (Table 2). The 
partial differential plot indicates that wetter areas were 
associated with higher values of PfPR2–10. NDVI showed 
similar trends with an increase in NDVI (above 0.15) 
associated with an increase in parasite prevalence. How-
ever, NDWI, temperature and precipitation performed 
poorly as predictors of malaria infection risk with <0.01 

Legend

Water bodies

Dense/Riverine vegetation

Sparse vegetation

Open vegetation

Built up areas

Bare ground

Fig. 2  Thematic mapping showing the results of supervised classification of SPOT 6 satellite imagery using RF algorithm in section of Dar es Salaam 
city
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relative contribution and not included in the subsequent 
model.

The optimal BRT model (Stage 3) was used to estimate 
parasite prevalence rates for each grid cell across Dar es 

Salaam with the predictions improved using bootstrap-
ping techniques averaged over 25 iterations. The final 
ensemble prediction map identifies the spatial patterns 
of parasite prevalence across the city of Dar es Salaam 
(Fig. 4a). The spatial patterns of predicted parasite preva-
lence from the composite model suggest that the risk of 
malaria transmission increases away from the city cen-
tre. There is a higher risk of infection along water chan-
nels and close to dense vegetation and lower risks among 
the dense, built up areas of the city where vegetation is 
sparse (Fig.  4a). Transformation of these high resolu-
tion risk predictions to zonal estimates by administra-
tive wards is shown in Fig. 4b. Predicted mean PfPR2–10 
ranged between 1 and 5  % in wards within central Dar 
es Salaam, with the lowest estimates, PfPR2–10 less than 
1  %, predicted in Makurumia and Tandale wards in the 
city centre (Fig.  4b). A slightly higher mean PfPR2–10 of 
6 % was predicted in Upanga ward, which borders man-
grove swamps at the mouth of Msimbazi River. There was 
an increase in malaria prevalence in peri-urban wards 
as a result of increasing vegetation cover and decreas-
ing built-up areas. The predicted mean PfPR2–10 ranged 

Table 2  Summary of the average contributions of the sig-
nificant predictor variables using a Boosted Regression 
Trees (BRT) model

BRT model developed with cross-validation over 25 bootstraps. Average relative 
contribution refers to the influence of each variable to the BRT model calculated 
as the proportion of times that a variable was selected for splitting, weighted 
by the squared improvement to the model as a result of each split [73]. This was 
then averaged over the 25 iterations of the BRT model run. This has added to the 
footnote of Table 2. Variables with zero influence or relative contribution <1 % were 
dropped from the analysis. Effect of other land cover classes was controlled for

Variable Average relative 
contribution (%)

Percentage dense/riverine vegetation 29.94

Percentage built-up 26.85

Distance to inland water (m) 8.98

Altitude 8.34

Wetness Index (CTI) 6.61

NDVI 5.44

Fig. 3  Partial dependence plots showing the effect of different environmental predictors on the PfPR. Note effect of each environmental predic-
tors after accounting for the average effect of other explanatory variables Results are shown for a vegetation with 1 km (%), b percentage built-up 
c Proximity to inland water, d altitude, e Wetness Index (CTI), f NDVI. Results of each of the 25 bootstrap runs are shown in grey dashed lines while 
average/mean plot is shown in red line
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between 5 and 10 % in the peri-urban areas. The highest 
mean PfPR2–10 of above 10 % was predicted in Pugu ward 
in the outskirts of Dar es Salaam and close to the Pugu 
forest reserve (Fig. 4b).

Discussion
Dar es Salaam, on the Tanzania coast, is characteristic of 
many rapidly growing, densely populated cities in Africa. 
Malaria transmission is generally considered lower in 
urban areas of Africa compared to neighbouring rural 
communities with an average entomological inocula-
tion rates (EIR) of 18.8 infective bites per year estimated 
in urban areas compared to 126.3 in rural areas in a 
review of 33 independent surveys [7]; a similar trend was 
observed using 286 urban–rural pairs of parasite preva-
lence data [65]. However, the results of this study show 
that malaria risks do exist within the urban extents and 
that malaria risk within urban areas is not homogenous. 
In this study, we predicted heterogeneity in malaria risk 
using high resolution SPOT satellite image and ancil-
lary environmental data without recourse to highly 
labour intensive ground mapping of risks. The variation 
in malaria risk within Dar es Salaam was shown to be 
influenced by varying environmental factors in different 
parts of the city with higher malaria risk associated with 
proximity to dense vegetation, inland water and wet/
swampy areas while lower malaria risks were predicted in 
densely built-up areas. These results correspond to find-
ings from mosquito vector abundance studies in Dakar 
where proximity to dense vegetation and large marsh-
land areas was associated with increased mosquito densi-
ties and increased risk of malaria infection [8, 25, 66]. In 
Accra, Ghana, an increase in malaria cases was reported 
for people living within 1 km of urban agricultural activ-
ity [67] and in Ouagadougou, Burkina Faso, built up 
areas were significantly associated with declining malaria 
infection risks [24].

The findings of this study have implications for the 
recent efforts to model the intensity of malaria transmis-
sion across Africa through time [20–23]. These studies 
applied a single rule in all urban and peri-urban areas 
assuming malaria risk of infection was uniformly dis-
tributed within urban areas. However, the results of this 
study show that empirically measured risks across Dar es 
Salaam vary considerably and that this heterogeneity can 
be predicted based on the varying landscape within the 
city (Fig. 4a, b).

Remote sensing of the urban environment as used in 
this study offers some valuable information when aim-
ing to identify areas within urban settlements in Africa 
where malaria continues to pose a significant prob-
lem. The predicted malaria risk map of Dar es Salaam, 
when reformatted to administrative areas used by the 

municipality (Fig.  4b), shows areas of high, moderate 
and low risk influenced by the distribution of predictor 
variables. These maps can serve as valuable resources 
for municipal councils aiming to shrink the extents of 
malaria across cities, target resources for vector control 
or intensify mosquito and disease surveillance. The semi-
automated modelling process developed in this study can 
be updated with new data for monitoring and estimating 
trends in malaria risk over time. There is also potential to 
scale up malaria risk evaluation to other urban areas in 
Africa using the methods developed in this study which 
can easily be replicated to identify factors that influence 
heterogeneity in malaria risk patterns and detect vulner-
able zones.

The current malaria control strategy in Dar es Salaam 
implemented by UMCP focuses on integrated malaria 
vector control based on ground-based mapping and sur-
veillance of potential mosquito breeding sites. However, 
this has been reported as labour-intensive and expensive 
[15, 37] while the translation of entomological-based 
measures into disease outcomes, such as the prevalence 
of malaria infection, is not straightforward [15, 37]. 
Remote sensing of the urban environment as used in this 
study provides a faster and less labour intensive alterna-
tive for targeted and effective control application. We also 
explore the use of parasite prevalence which is simpler 
to measure in the field with standardized methods and 
has previously been used in urban settings [15, 24]. We 
used PfPR measured at community level which allowed 
directly linkage to local environment characteristics 
when evaluating malaria risk factors. This is an advan-
tage over infection estimates collected at health facilities 
that rarely include information on the community of resi-
dence of patients making it difficult to directly estimate 
the impact of environmental variables on local malaria 
risk. Further, community parasite prevalence surveys are 
obtained through active detection by screening popula-
tions irrespective of the presence symptoms of malaria 
unlike health facility level data that relies on symptomatic 
patients presenting for diagnosis and treatment. Finally, 
with community level parasite rates, populations at risk 
of malaria infection can be accurately estimated.

There are however some limitations when interpret-
ing the results of this study. First, the temporal/seasonal 
trend in malaria risk could not be estimated in this study 
due to the unavailability of frequently collected parasite 
prevalence survey data that is well distributed across Dar 
es Salaam. We therefore used PR estimates aggregated 
over the period of study to predict a single risk map which 
does not account for change in environmental variables 
over the study period. Secondly, there were no details 
from the surveys included on whether infections were 
acquired locally, or whether an individual had travelled 
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outside of his/her usual residence. The assumption made 
throughout this study has been that all infections were 
locally acquired from the point where someone was sur-
veyed. However, studies suggest that some of malaria 

cases reported in urban areas are imported from travel to 
areas with high levels of malaria transmission and in the 
presence of proficient malaria vectors, increases malaria 
risk in urban areas [17, 18, 68, 69]. The inclusion of travel 

Fig. 4  a Predicted PfPR2–10 in Dar es Salaam against surveys conducted 2006–2014. b Summarised by Ward. Note a the distribution of community 
level surveys conducted between 2006 and 2014 (point data) is shown against the predicted PfPR2–10 in Dar es Salaam in the background. In part 
(b), the predicted PfPR2–10 predicted is summarized by wards, the lowest level of administration used by the municipal of Dar es Salaam
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histories of children positive for malaria in future para-
site prevalence surveys would therefore be important in 
overcoming this limitation and can improve the results of 
the study.

There are also some constraints in using geospatial 
datasets at varying scales as used in this study. Although 
high resolution data is necessary for accurate mapping of 
malaria risk, remote sensing datasets are rarely available 
at the high resolution needed and it is often necessary to 
combine datasets of varying resolution to estimate risk. 
All resampling methods introduce some level of spatial 
errors as they preserve the pattern recognized at coarser 
resolution without increasing the information content. 
Secondly, there are some constraints in identifying a lim-
ited number of land-cover classes when using very high 
resolution satellite imagery. To minimise this constraint, 
a two-step hybrid classification method was used to 
aggregate land cover classes with similar characteristics 
with numerous training samples distributed across the 
study area taken to account for spectral range within a 
land cover class.

In addition, by using parasite prevalence summarised at 
community level, variability in risk within the community 
is not accounted for and thus the estimated relationship 
with environmental variables is effective at the community 
level. There is potential to explore variability in predicted 
risk using higher resolution parasite prevalence data. A 
recent study in Mozambique showed that models match-
ing national household-level malaria infection data to high 
resolution environmental datasets resulted in more pre-
cise prediction compared to models using lower resolution 
data of greater than 30  m [70]. There is need to explore 
the application of household level datasets with urban 
contexts in Africa. Lastly, in order to account for the true 
effect of time on environmental determinants of malaria, 
the environmental covariates used must be matched with 
the observed data on malaria transmission. However, the 
environmental datasets are rarely available at time points 
that correspond with the date of surveys as most are 
derived from long-term processed remotely sensed satel-
lite imagery or modelled climatic data generated as synop-
tic estimates that do not represent a specific year [71, 72].

Finally, while the development of the malaria risk map 
does not require extensive ground survey work of envi-
ronmental risk factors, there are a number of caveats to 
their wider applicability. First, the model development 
depends on high resolution satellite imagery that is not 
free to public health practitioners which limits their use 
in public health. Public health practitioners including 
NMCP could benefit from collaborations with donors 
that lower or subsidize the cost of high resolution satellite 
imagery. Second, the model requires that there are some 
survey data that enables a training of environmental 

data. This in itself is not a caveat, models unencumbered 
by data often do not reflect the complexities of disease 
under controlled and real life conditions. However, the 
implications are that there is a need to test the externality 
of findings presented here across of a range of urban set-
tings in Africa where data do exist and their wider appli-
cations across Africa’s urban extents.

Conclusion
With more than half of Africa’s population expected to 
live in urban settlements by 2030, the burden of malaria 
among urban populations in Africa will continue to rise 
with the increasing number of people at risk of infection. 
However, malaria intervention across Africa remains 
focused on rural, highly endemic communities with 
far fewer strategic policy directions for the control of 
malaria in rapidly growing African urban settlements. 
The complex and heterogeneous nature of urban malaria 
requires a better understanding of the spatial and tem-
poral patterns of urban malaria risk in order to design 
effective urban malaria control programs targeted to spe-
cific zones. The semi-automated image classification and 
modelling process developed in this study can easily be 
replicated in other urban areas to identify environmental 
factors that influence heterogeneity in malaria risk pat-
terns and detect zones of vulnerability. There is a definite 
need to expand research into the unique epidemiology of 
malaria transmission in urban areas for focal elimination 
and sustained control agendas.
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