Kihal-Talantikite et al. Int J Health Geogr (2017) 16:22

DOI 10.1186/512942-017-0094-8 International Jou rnal.Of
Health Geographics

RESEARCH Open Access
@ CrossMark

Developing a data-driven spatial

approach to assessment of neighbourhood
influences on the spatial distribution

of myocardial infarction

Wahida Kihal-Talantikite'", Christiane Weber?, Gaelle Pedrono?, Claire Segala?, Dominique Arveiler®,
Clive E. Sabel®, Séverine Deguen’® and Denis Bard’

Abstract

Background: There is a growing understanding of the role played by neighbourhood’in influencing health status.
Various neighbourhood characteristics—such as socioeconomic environment, availability of amenities, and social
cohesion, may be combined—and this could contribute to rising health inequalities. This study aims to combine a
data-driven approach with clustering analysis techniques, to investigate neighbourhood characteristics that may
explain the geographical distribution of the onset of myocardial infarction (MI) risk.

Methods: All Ml events in patients aged 35-74 years occurring in the Strasbourg metropolitan area (SMA), from
January 1, 2000 to December 31, 2007 were obtained from the Bas-Rhin coronary heart disease register. All cases were
geocoded to the census block for the residential address. Each areal unit, characterized by contextual neighbourhood
profile, included socioeconomic environment, availability of amenities (including leisure centres, libraries and parks,
and transport) and psychosocial environment as well as specific annual rates standardized (per 100,000 inhabitants). A
spatial scan statistic implemented in SaTScan was then used to identify statistically significant spatial clusters of high
and low risk of MI.

Result: Ml incidence was non-randomly spatially distributed, with a cluster of high risk of Ml in the northern part of
the SMA [relative risk (RR) = 1.70, p = 0.001] and a cluster of low risk of Ml located in the first and second periphery
of SMA (RR 0.04, p value = 0.001). Our findings suggest that the location of low Ml risk is characterized by a high
socioeconomic level and a low level of access to various amenities; conversely, the location of high Ml risk is charac-
terized by a high level of socioeconomic deprivation—despite the fact that inhabitants have good access to the local
recreational and leisure infrastructure.

Conclusion: Our data-driven approach highlights how the different contextual dimensions were inter-combined in
the SMA. Our spatial approach allowed us to identify the neighbourhood characteristics of inhabitants living within a
cluster of high versus low Ml risk. Therefore, spatial data-driven analyses of routinely-collected data georeferenced by
various sources may serve to guide policymakers in defining and promoting targeted actions at fine spatial level.
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Myocardial infarction
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Background

Despite a succession of high-profile reports based on
scientific studies demonstrating the links between social
determinants and several health outcomes, health ine-
qualities persist and still constitute a major public health
issue [1-3]. Since the early 2000s, there has been a grow-
ing number of studies demonstrating the role played by
‘place’ where people live (also referred to as ‘context’)
in influencing health status [4-7]. More precisely, the
underlying idea is that the health effect of the environ-
ment exposure is complex, including both direct effect
of specific environmental exposure (e.g. air pollution)
and indirect consequences commonly addressed as the
concept of “neighbourhood” [4, 6-8]. Many literature
reviews support the significant effect of neighbourhood
on a set of outcomes [9] such as mental health, birth [10],
early childhood health [11], and obesity [12].

In order to explain the pathway via which neighbour-
hood may affect health, several papers have proposed
conceptual models related to neighbourhood and to
individuals’ behaviours—such as physical activities [13],
walkability [13], diet [14] and such bio-physiological
events as stress [15]. For instance, the causal framework
proposed by Pearce et al. [16] uses three distinct domains
to describe the various components of neighbourhood:
physical characteristics (quality of outdoor environment
and housing, traffic and physical disorder, etc.), (2) social
characteristics (social network, social cohesion, etc.),
and (3) community resources access (leisure facilities,
healthcare, etc.). More recently, Komeily et al. [17] have
defined neighbourhood as a function of several variables
selected from physical (street design, connectivity, build-
ing type and use, etc.), operational (transit stops, routes,
etc.), socioeconomic (demographics, land use and den-
sity, etc.) environmental (climate, topography, etc.) and
institutional points of view (policy, etc.). In the majority
of studies, however, neighbourhood was characterized by
a single variable such as, for instance, noise [18—20] or
the presence of graffiti, [21] defining the physical domain
in epidemiological studies investigating respiratory [18]
or cardiovascular disease [18-20]. Characterization of
neighbourhood in the domain of community resources
access, food store accessibility [22], primary healthcare
services, recreational facilities, and public open [23, 24]
and green spaces [25, 26] has been investigated in the
literature. The role of the social domain has so far been
explored mainly through data on local violence [27, 28]
and social cohesion (or social capital) [29].

Each of these domains has been recognized as being
associated with health status beyond socioeconomic
status. For instance, the association between a low
social standing measurement for residential neighbour-
hood and blood pressure was found after adjusting for
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individual/neighbourhood socioeconomic status and
individual risk factors for hypertension [30]. A recent
systematic review revealed that the majority of studies
show a reduced risk of cardiovascular disease mortality
in areas having higher residential greenness [31]; a find-
ing confirmed by another study investigating respiratory
disease, which showed that children living in areas with
more street trees have lower prevalence of asthma [32].
In addition, certain neighbourhood characteristics—such
as proximity and/or access to green space or healthcare—
are often not equitably distributed with regard to socio-
economic status [33]—and this could exacerbate health
inequalities.

Fine neighbourhood characterization for the study of
health effects now has major policy implications for the
public health community, to promote development and
application of policies and social action aimed at reduc-
ing health inequalities [34—36]. Moreover, the spatial
identification of small geographical areas carrying a high
health risk, and their contextual characteristics, could
allow for action more closely targeted at those most at
risk [37, 38].

In this context, the issue is the definition of relevant,
evidence-based public health interventions, armed with
precise knowledge of what truly influences health ine-
qualities in a given setting and among specific, vulner-
able population groups. It should be stressed that such
knowledge may inform the “Health in all Policies” strat-
egy advocated by WHO and the European Union [39,
40], through actions on urban planning, transport, edu-
cational services, social work, and amenities (including
leisure centres, libraries and parks).

In this work, we sought to combine a data-driven
approach with clustering analysis techniques, to investi-
gate neighbourhood characteristics (including socioeco-
nomic and public resources as well as the psychosocial
dimension) that may explain the geographical distribu-
tion of onset of MI risk. This work is not intended to
reveal any relationship or causal pathway between neigh-
bourhood characteristics and MI risk; other, more appro-
priate studies were designed to answer this question [9].

Methods
Study setting
Our study setting was the Strasbourg metropolitan area
(SMA), an urban area of 316 km?, located in the Bas-Rhin
district of the Great-East region of north-eastern France,
and having a population of 500,000. This area comprises
33 municipalities subdivided into 190 French census
blocks named IRIS (Ilots Regroupés pour I'Information
Statistique), each having an average of 2000 inhabitants.
This French census block/IRIS (a sub-municipal French
census block) is defined by the National Institute of
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Statistics and Economic Studies (INSEE). This is the
smallest administrative unit in which socioeconomic
and demographic data are available in France. In terms
of population size, French census block is intermediate
between US census tracts (about 4000 inhabitants) and
US census block groups (about 1000 inhabitants).

Neighbourhood characteristics

To our knowledge, few groups have attempted to com-
bine all the domains addressed above [41, 42]. For
instance, the UK Department of the Environment, Trans-
portation, and the Regions (DETR) [42] developed an
Index of Multiple Deprivation (IMD) as an official meas-
ure of relative deprivation for small areas (or neighbour-
hoods) in England—based on a combination of six or
seven domains.

As in the British contextual frameworks, we have
undertaken a process of characterizing a neighbourhood
in the SMA that includes the most common domains
capable of supporting health studies of related to: socio-
economic, community resources (or public resource),
and psychosocial (or social).

Data sources: Table 1

All socioeconomic data including employment, educa-
tional level, income, data about those receiving child ben-
efit and also those receiving the French welfare allowance
was obtained from the French National Census Bureau
(INSEE-Institut National de la Statistique et des Etudes
Economiques) and from the statistics department of the
CAF (Caisse d’Allocations Familiales), family welfare
system.

To characterize access to public resources, the regional
health agency provided all the FINESS (French National
Directory of Health and Social Establishments) files,
which describe the healthcare system (physicians and
facilities). The SMA made geocoded data available that
allowed us to determine (1) transportation elements such
as bus and tram stops and the number of lines served, as
well as (2) geocoded data on location of public parks and
green spaces. Lastly, the Great-East regional and district
office DRDJS (Office of Youth and Sports) made available
its database of all athletic equipment and facilities. How-
ever, no information concerning the usage of amenities
was collected in this study.

To characterize the psychosocial environment, includ-
ing the civic and community environments, local busi-
nesses and retail stores, and educational environment,
we used SIRENE databases (INSEE), the educational
facilities database available at the SMA authority and
official education institutions, as well as data provided
by the city’s list of itinerant vendors (small markets). The
CIGAL Spatial Data Infrastructure (Cooperation pour
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I'Information Géographique en Alsace), provides a data-
base describing land use and land cover coverage and cat-
egories (see Table 1).

Geographical information system analysis

Of the databases collected, some datasets were available
at administrative spatial base level—such as census block.
Such segmentation might, however, not be relevant for
spatial analysis of other data produced for different pur-
poses, at various scales. Instead of using the available
French census block files, we therefore chose to design
a specific spatial unit mesh, allowing us to manage the
data’s scale heterogeneity (that is, a square grid) for three
reasons:

« Stability of the basic geographical unit; one advan-
tage of cell-based over administrative borders (likely
to change over time) is that it can be fixed: its borders
do not change over time unless desired—in response
for example to changing underlying population or
land-use footprints.

+ Administrative spatial units and their borders are not
necessarily relevant for subsequent analysis other
than that for which they were constructed.

+ To homogenize contextual data; contextual data is
extremely heterogeneous in terms of spatial scales,
collection dates, and exhaustiveness. Use of the grid
makes it possible to homogenize data to some extent,
ahead of any statistical or spatial analysis.

To determine grid path size, we used the “nearest
neighbour” method [43] to characterize the spatial dis-
tribution of the different patterns of geographical points
(retail store, physicians, etc.). The mean distance sepa-
rating points has been calculated as 270 m. Cell dimen-
sion was thus set at 250 m x 250 m to best approximate
underlying data distribution, yielding 5127 cells for the
SMA coverage. All contextual variables collected were
assigned at this cell level.

Zonal data (such as the socioeconomic data obtained
at IRIS scale for the 1999 census) was fitted to the
250 x 250 m grid using a clipping function. The “zone
clipping” algorithm is then used to disaggregate the vari-
able, according to a geometric overlap principle. The
value of the information transferred to the cell is thus
a function of the area common to the initial area (for
example, the IRIS) and the grid cell.

In this desegregation approach, we assume equal den-
sity of the phenomenon across the area. The space con-
sidered, however, is not isotropic. This constraint was
overcome using available geographic information (topo-
graphic database) to improve characterization of the dis-
aggregation of the initial area.
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In our study, we postulate that the equidistribution of
data was a function of the buildings’ volume: in this case,
we estimated the population of the cells proportionally to
the habitable area of the buildings included in the cells,
according to the following formula:

i—1
Population = Z Prris; X
N

S™=1 Area of housing;
Total area of housing in IRS;

where Area of housing = Building footprint area of hous-
ing x Number of habitable floors. Number of habitable
floors = housing height/3.

Once all socioeconomic variables had been deseg-
regated at cell level, we calculated the socioeconomic
indicator for each cell (e.g. unemployment rate, % of
blue-collars among the active population with permanent
jobs, non-permanent job rate).

For all spatial analyses described below, each cell was
represented by the centroid of the inhabited built area.

A data-driven approach to neighbourhood
characterization

First, the 25 variables described in Table 1 were geolo-
cated and analysed in line with the approaches proposed
by various studies (Table 2).

Second, we aimed to create a multidimensional profile
with which to characterize each neighbourhood based
on the underlying data structure using a data-driven
approach, and without any a priori models.

Consider a data set composed of each domain within
the same unit as group of variables. As we had several
groups of both quantitative and qualitative contextual
variables (socioeconomic, public resource, psychosocial)
and because we wanted to give each equal weight regard-
less of the number of variables in it, we used Multiple
Factor Analysis (MFA) [44]—a technique well-suited to
this situation.

The MFA entailed performing either a Principal Com-
ponent Analysis (PCA) for each subset, if the group is
composed of quantitative variables (sets of both socio-
economic and public resources domain variables), or a
Multiple Correspondence Analysis (MCA) if the group
is composed of qualitative variables (sets psychosocial
domain of variables). This first step allowed us to com-
pute distance between units by giving a specific weight
to each variable, based on use of the highest eigenvalue
of the PCA or the MCA for each group, thus obtaining a
particular metric. In the second step of the MFA, we used
the previously obtained metric to perform a PCA on the
whole data set. This allowed us to compare groups of dif-
ferent types of variables.

Following the MFA, we applied Hierarchical Ascendant
Clustering (HAC) [45] to create meaningful contextual
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profile (cf. Appendix for Fig. 4). HAC is an unsupervised
clustering method that creates a hierarchy of classes
(clusters), and is frequently used after MFA. Given a set
of variables created by the MFA, the HC algorithm cre-
ates a hierarchy of categories, step by step—at each step
merging the two categories that are closest, according
to a given distance between categories. When it is a par-
ticular distance (Ward distance), this algorithm aims to
obtain categories that are homogeneous within and het-
erogeneous between one another, with respect to an iner-
tia-based criterion.

These approaches therefore allow us to build a partition
of our unit into homogeneous clusters (low within-varia-
bility) that are different from one another (high between-
variability), ultimately producing a categorical indicator,
referred to in our previous work as the Neighbourhood
Deprivation Index (NDI) [46] (for more detail, see Sabel
et al. [46]). These analyses were performed using SPAD
7.0 statistical software.

Synthetic neighbourhood design

To evaluate spatial implication of neighbourhood plan-
ning, we have chosen to define specific boundaries of the
neighbourhood, so as to use (1) a more homogeneous
area (with high intra-zone homogeneity and inter-zone
heterogeneity), and (2) an area with population size set
to 2000 inhabitants, similar to the French census blocks,
ensuring health data confidentiality.

To produce these synthetic neighbourhoods, we used
the AZTool zone design program provided by David
Martin (University of Southampton, UK) to aggregate
contiguous and homogeneous spatial units (cells) for gen-
erating optimal geographies [47, 48]. To produce a syn-
thetic homogeneous neighbourhood, three criteria were
considered: (1) output zone homogeneity (and inter-zone
heterogeneity), using our NDindex as the homogeneity
criterion; (2) population target size equal to 2000 inhab-
itants (similar to French census blocks) to ensure health
data confidentiality; (3) shape compactness, avoiding
linear or quasi-linear output zones. To design the new
zones, we used different combinations of relative weight-
ing of parameters (criteria) in the AZTool (population
target, shape and homogeneity) to create candidate sets
of pseudo-blocks (in total six experimental conditions
were tested). To improve AZT performance, we used
simulated annealing (SA). Next, we evaluated the zonal
system (each criterion defined below) to identify the opti-
mal solution using a measure of within-area homogeneity
(IAC) and measure shape compactness (P2A score) for
each experimental condition. International experience
and AZTool parameter setting advice accepts an IAC of
greater than 0.5 as representing a very reasonable degree
of homogeneity. Then, to improve AZT’s solution and
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the found optimum solution, we sought to optimise two
conditions for which IC >0.5 and which also presented a
shape that was more compact than linear, by increasing
the number of iterations. For more details, see Sabel et al.
[46].

Health data: Mi

All MI events [International Classification of Diseases,
9th Revision (ICD-9): 410] occurring in the SMA, among
the population aged 35-74 years, collected by the Bas-
Rhin coronary heart disease register [49] between Janu-
ary 1, 2000 and December 31, 2007 were geocoded at
their residential address areal unit (see below). Spe-
cific annual rates, standardized by age and gender (per
100,000 inhabitants), were calculated for each neighbour-
hood by contextual profile. Khi® tests were performed
to compare the annual rate between the five contextual
profiles.

Spatial method

In order to explore the geographic pattern of the MI
risk, we used the spatial scan statistics (implemented in
the SaTScan software [50]) to statistically and signifi-
cantly detect the presence of potential clusters for both
high and low risk. This approach, used in an increasing
number of applications in the field of spatial epidemiol-
ogy [51-55], allowed us to (1) identify the specific spatial
location of the clusters and (2) evaluate and understand
the implications of neighbourhood characteristics in the
spatial distribution of MI risk [56, 57].

The procedure works as follows: a circle (or windows)
of variable radius (from zero up to 50% of population size
[56]) is placed at every centroid of the synthetic neigh-
bourhood and moves across the whole study area to
compare the MI rate in the windows with what would be
expected under a random distribution.

In our study, the Poisson probability model imple-
mented in the SaTScan software [50] was chosen as clus-
ter analysis method. The number of cases in each census
block is assumed to follow a Poisson distribution. Our
cluster detection approach identified clusters of both
high and low rates with maximum circle window size, to
include up to 50% of the population at risk. Identification
of the most-likely clusters is based on a likelihood ratio
test [56] with an associated p value obtained using Monte
Carlo replications [58]. The number of Monte Carlo rep-
lications was set to 999 to ensure adequate power for
defining clusters and considered a 0.05 level of signifi-
cance (p value derived from 999 replications).

If we detect a significant most-likely cluster (with
p < 0.05) using this method, a logical next step is to take
account of the individual characteristics acknowledged in
the literature and available in our studies, to see whether
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the significant cluster can be explained by suspected
risk factors. Spatial analyses were thus performed in two
stages (step by step):

1. Unadjusted analysis, to identify and localize the
most-likely cluster of high/low risk of MI.

2. Analysis adjusted for age and sex included this infor-
mation directly in the SaTScan model [50].

Results

The MFA was applied on the 27 selected variables cov-
ering the three contextual groups described above. The
first four components explain only 17, 8, 5 and 5% of total
variance respectively (Table 3). These components can be
interpreted using the contributions made by both groups
and variables to the components or their graphical repre-
sentations. To explain 60% of total variance, we needed to
use ten components, because all ten were used as a basis
for the HC in order to preserve all the variability of the
initial information.

In line with the MFA, we performed an HAC—and
according to both the dendrogram and the Ward dis-
tance (Fig. 1), we chose a 5-category partition. From
the HAC analysis, then, five clusters (or contextual pro-
files Table 4), were determined using the coordinates
of the cells for the first ten factorial axes of the MFA.
Using the characteristics of each category by variable
(Table 4), five contextual profiles can be identified in
the SMA.

In total, we have identified: Two profiles (A and B)
characterized by favourable socioeconomic conditions,
low psychosocial cohesion, and poor access to public
resources; two profiles (D and E) characterized by low
socioeconomic conditions, very strong psychosocial
cohesion and very good access to public resources, and
profile (C) characterized by medium socioeconomic con-
ditions, high psychosocial cohesion and average access to
public resources.

Table 4 shows neighbourhood characteristics for the
five contextual profiles, determined through multidimen-
sional analysis (MFA and HAC).

Figure 2 shows the spatial distribution of these five
contextual profiles from ‘A’ (least deprived) to ‘E’ (most
deprived). Mapping these profiles shows that neighbour-
hood planning is spread unevenly across our study area.
We have highlighted a centre-periphery gradient with
two groups (C and D) characterizing the city centre and
the old urban cores. A first periphery of SMA (profile E)
concentrated on inner city neighbourhoods, which tend
to be more distant from the historic city centre. A second
periphery of SMA (profiles A and B) correspond to the
urban extensions of the last decade and the urban spread
in the SMA.
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Table 3 Eigenvalue and variance explained by the ten first components of the MFA

Axe | Eigen- % %
value Variance | Cumul
1 1_9973 1739 1739 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k >k 3k 3k 3k 3k ok 3k 3k 3k 3k 3k 3k >k 3k 3k 3k 3k ok 3k ok sk 5k ok 3k ok 3k 5k 3k 3k >k 3k 3k 3k 5k 3k 3k ok 3k ok 3k 3k 3k 3k 5k 3k 5k 3k 3k 3k 3k 5k 3k 3k 3k 3k 5k 3k 3k 3k 3k 3k %k %k %k %k k k ok
2 0.9973 8.69 26.08 3k 3k 3k 3k 3k K 3K ok ok ok 3k o ok ok oK 3K ok 3k 3k ok ok K 3K ok 5k 3k 3k ok 3k K K oK oK 3k ok K K Kok
3 0_6796 5.92 3200 3k 3k 3k 3k 3k 3k 3k 3k >k 3k 3k 3k 3k ok 3k 3k 3k 3k ok 3k %k sk ok kok kk ok kok ok
4 0'6029 5.25 37'25 3k 3k 3k 3k 3k 3k ok sk ok 3k 3k ok sk ok 3k ok ok ok ok sk ok sk ok kk ok
5 0_5052 443 4168 3k 3k 3k 3k ok 3k 3k 3k K 3k %k ok %k ok %k %k ok %k ok k ok k
6 0'4693 409 4577 3k 3k 3k 3k 3k 3k 3k 3k ok 3k >k 3k %k %k ok k ok kk
7 0_4439 3.87 4964 3k 3k 3k 3k 3k 3k 3k 3k ok ok %k %k ok kok kok ok
8 0'4256 3.74 53'38 3k 3k 3k 3k %k 3k ok 3k ok 3k ok 3k ok kok sk k ok
9 0_4184 364 5702 3k 3k 3k 3k 5k 3K 3k %k %k %k ok %k %k k k kok
10 0.4065 3.54 60.56 a3k 3k 3k % ok K K ok ok ok ok ok K Kok

5———’

Fig. 1 Dendrogram showing the classification of 5 contextual profiles

Table 5 presents the age-standardized mean annual
rates (per 100,000 inhabitants) by gender and by neigh-
bourhood contextual profile. Regardless of contextual
profile, MI rates in women are always lower than those
in men, at all ages, and MI rates are always much higher
among the elderly. Secondly, profile A and B neighbour-
hoods are characterized by lower rates than the other
profiles. Finally, MI rates differ significantly between con-
textual profiles among women.

Identification of Ml risk cluster
Spatial distribution of MI risk is not random, either
across all SMA or between the five contextual profiles.
We identified three spatial clusters of high risk of MI
(Fig. 3; Table 6) located mainly in the Strasbourg cen-
tre and first periphery of Strasbourg. These clusters
are presented in order of most-likely cluster to least
likely cluster in Fig. 3. Risk in the most-likely cluster
(in the northern SMA) is 1.70 times greater than in
the rest of the study area (p value = 0.001). The sec-
ond cluster, also identified within the northern part

of the metropolitan area (RR = 1.28) was not statisti-
cally significant, while the third cluster was located in
the southern part of the metropolitan area (RR 2.02).
After adjustment for gender and age group, we found
the same most-likely cluster [relative risk (RR) 1.64;
p value = 0.001] with a slightly lower likelihood value
(down from 22.56 to 19.73), indicating that age and sex
can explain some of the excess risk of MI observed in
the unadjusted analysis (Fig. 3).

On the other hand, we identified two spatial clusters of
low MI risk (Fig. 3; Table 6) located mainly in the Stras-
bourg first and second peripheries. These clusters are
presented from most-likely cluster to least likely cluster
in Fig. 3. The most-likely cluster, in the western SMA,
has lower risk that than in the rest of the study area (RR
0.04; p value = 0.001). The second cluster was also in
the northern part of the metropolitan area, and was also
statistically significant (RR 0.68; p value = 0.001). After
adjustment for gender and age group, we found the same
most-likely cluster, with a slightly lower likelihood value
decreasing from 46.94 to 46.19 (Fig. 3).
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Table 4 Description of neighbourhood characteristics of five contextual profiles

Class A Class B Class C ClassD Class E
Socio economic feature
Proportion of population covered by CAF 42.2% 44.7% 50.24% 51.40% 62.16%
Proportion of population covered by RMI 1.9% 1.5% 5.19% 4.64% 10.88%
Population density 71.13 180.24 556.10 706.04 47048
Proportion of precarious jobs 8.62% 9.33% 13.32% 14.46% 16.58%
Proportion of stable jobs 76% 75% 68% 65% 59%
Unemployment rate 5.95% 6.61% 10.04% 1% 19.83%
Proportion of blue-collar workers 18.77% 18% 17% 16% 32%
Proportion of high school graduates 10.38% 10% 6.68% 9.70% 5.29%
Proportion of single-parent families 8.19% 9.11% 13.01% 13.5% 19.79%
Proportion of foreigners 4.03% 4.5% 8.79% 9.45% 17.60%
Proportion of people without cars 9.02% 10.5% 23.38% 30.6% 29.04%
Proportion of people with 2 cars 43.54% 3841% 20.69% 17.05% 17.64%
Access to resources
Availability of green space 548 2.06 4.75 8.89 6.91
Distance to healthcare facilities (m) —1385.55 478.25 263.71 214.88 399.00
Public transportation coverage 2.28 7.75 20.88 23.19 1512
Distance to sports facilities (m) 996.96 522.37 35344 339.95 349.59
Psychosocial environment
Quantity of civic associations Very low Low high Very high Medium
Local school socio-educational classification Very high High Low Medium Very low
Local retail store score Very low Low High Very high Medium
Urban fabric (housing types) Single-family Mixed buildings Mixed build-  Center-city homes and Multiple-dwelling

homes ings Mixed unit buildings

Very high: very good social support, high: good social support; low: low social support; very low: very low social support

The first two axes of the MFA explained 29.14% of the variance. From the HAC analysis, 5 clusters or contextual profiles were determined from the coordinates of the
cells for the first ten factorial axes of the MFA, so as to preserve all the variability of the initial information

CAF fund for family allocations, RMI minimum insertion income

The
periphery

Neighborhood characteristics

The city centre
and the old
urban cores

Strong Mixed single-family and multiple-dwelling unit E] ¢

Fig. 2 Mapping of the deprivation profile of the 5 categories of neighborhoods identified by the Hierarchical Ascendant Clustering (HAC)
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Table 5 Distribution of myocardial infarction event rates according to contextual profiles

Mean annual event rates, A B C D E p values”
per 100,000 (Cl 95%)

Neighbourhood contextual profiles (years)

Females 35-74 382 (240-523) 383 (333-466) 459 (381-537) 548 (402-694) 720 (600-840)  0.0008**
35-54 88 (2-174) 143 (98-201) 204 (137-271) 175 (72-278) 430 (314-546) 0.0121**
55-74 859 (515-1202) 777 (654-961) 855 (685-1025) 1202 (843-1562) 1241 (977-1505)  0.0320**
Males 35-74 1424 (1147-1702) 1612 (1540-1822) 1773 (1610-1936) 1678 (1411-1944) 2171 (1955-2387) 0.0794
35-54 737 (486-989) 834 (743-997) 1230 (1062-1398) 1112 (849-1374) 1283 (1079-1488) 0.2081
55-74 2601 (1983-3219) 2980 (2787-3423) 2785 (2440-331) 2909 (2283-3535) 3880 (3386-4374) 0.2104

* Khi? test

** Significant p value <5%

Spatial implication of neighbourhood characteristics of the
clusters

In the clusters for high MI risk, the population profile is
mainly ‘D & E’ which is socioeconomically very disadvan-
taged, with weak psychosocial cohesion and good access
to public resources (see Tables 2, 7). Thus, compared to
inhabitants in the rest of the study area, people living in

those clusters identified as high MI risk, which had the
highest proportion of population covered by welfare ben-
efits (family allowances/child benefits, and the French
“safety net” welfare allowance for people with resources
below the poverty line), high rates of insecure employ-
ment, and the highest proportion of foreigners. These
spatial units are characterized by good access to sports

RS
R

SR

Risk of myocardial infarction
Cluster of high risk
] RR=1.70 (Most iely cluster)
[ IRr=t128
RR=2.2 (Least likely cluster)
Cluster of low risk
] RR=0.036 (Most iikely cluster)
[ ] RR=0.68 (Least likely cluster)
Road
~ Inhabited building

Administratives boundaries

Risk of Myocardial infarction

Cluster of low risk

] RR=0.036 (Most likely cluster)
RR=0.70 (Least likely cluster)

Cluster of high risk

] RR=1.64 (Most likely cluster)

[Irr=to4

RR=1.99 (Least likely cluster)

Road

Inhabited_building

| Administrative boundaries of census block

Fig. 3 Spatial location of significant Clusters of high risk of myocardial infraction (in red) and low risk of myocardial infarction (in blue) identified in
Strasbourg metropolitan area a crude analysis; b adjusted analysis on age and sex
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Table 6 The most likely clusters of high and low risk

Radius (m)  Area included/population Expected cases  Observed cases  RR? LLr® p value
Most likely cluster of high risk 1207.74 10/11,486 125.68 205 1.70 2256 0.001
Most likely cluster of low risk 1978.61 5/5018 5491 2 0036 4695  0.001

2 rr Relative risk

b LLrLog likelihood ratio

Table 7 Comparison between neighbourhood characteristics of inhabitant of cluster of high risk and inhabitant of clus-

ter of high risk

Main characteristics Most likely cluster p value*
Cluster of high risk? Cluster of low risk®

No civic associations 1.2% 99% <0.0001
No school graded ZEP¢ 2211 96% <0.0001
Proportion of population covered by CAF higher that 60% 67% 13.62 <0.0001
Multiple—dwelling unit buildings 58.79 2.90 <0.0001
Single—family homes 246 9043 <0.0001
Distance to healthcare facilities (<500) 76.8 493 <0.0001
No public transportation 10 60 <0.0001
Availability of green space 26 14 <0.05

2 Neighbourhood characteristics of profile “E” and “C" which composed cluster of high risk

b Neighbourhood characteristic of profile “A” which composed cluster of low risk
¢ ZEP Priority education zones: where establishments receive additional resources, an
* Khi test

facilities and high retail store scores. This group is distin-
guished by the highest availability of green spaces, high
public transportation coverage and weak community/
civic fabric.

However, in the low MI risk cluster, the population
profile is mainly ‘A—which describes the most socio-
economically advantaged areas having low psychosocial
cohesion and very poor access to public resources (see
Tables 2, 7). This most-likely cluster identified for low MI
risk (n = 5018 inhabitants in the significant spatial clus-
ters) had a significantly lower proportion of inhabitant
rates of unemployment and of insecure (or temporary)
jobs: on the contrary, the employment rate is stable and
the proportion of high school graduates is highest. This
group is characterized by the longest distances to health-
care facilities, and very poor access to public transport. It
has an extremely favourable socioeconomic profile with
low psychosocial cohesion and very poor access to public
resources.

Discussion

Our study confirms work we previously conducted on
the SMA [59], which demonstrated that, whatever the
level of deprivation, the rates of events in men were
always clearly higher than those in women, at all ages.
The literature reported that the relationship between

d have greater autonomy for dealing with educational and social difficulties

neighbourhood characteristics may vary by gender, as
our findings suggest. For instance, several studies have
found stronger associations of neighbourhood charac-
teristics with CHD outcomes in women than in men
[60-62]. These gender differences could result from gen-
der differences in health-related behavioural responses to
neighbourhood perceptions. In addition, we observed a
clear increase to the event rate with age, even after strati-
fication by gender and deprivation.

Our study’s data-driven approach has allowed us to
provide a fine description of the neighbourhood, using
a set of contextual data. It highlights several neighbour-
hood profiles and provides us with evidence on the dif-
ferent combinations of dimensions within the SMA. In
comparison with the literature, our profiles reveal differ-
ences—especially with regard to how the socioeconomic,
social cohesion and access to amenities dimensions are
combined.

Several studies show that individuals living in deprived
socioeconomic environments have less access to busi-
nesses, sports leisure and other infrastructure. For
instance, some have revealed that people living in
deprived neighbourhoods are less likely to make use
of green spaces because they do not perceive the need
to do so [63, 64]. We revealed an inverse relation in the
SMA: neighbourhoods with a deprived socioeconomic
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environment are characterized by a substantial presence
of sports leisure infrastructure, unlike neighbourhoods
with an advantaged socioeconomic environment.

Another aspect highlighted by the literature concerns
the relationship between social capital and socioeco-
nomic deprivation. Research projects have demonstrated
that socioeconomic deprivation is associated with
reduced levels of social capital [65]. Our study, however,
shows the opposite result. In the SMA, neighbourhoods
with an advantaged socioeconomic environment are
characterized by a low level of social cohesion in com-
parison with neighbourhoods with a deprived socioeco-
nomic environment, which are characterized by a high
level of social cohesion.

Regarding the geospatial analysis performed (based
on the Kulldorff approach), our study characterized the
neighbourhoods of inhabitants living within a cluster of
high MI risk, in comparison with those living within a
cluster of low MI risk. Although our study allows us to
precisely characterize the neighbourhoods included in
the cluster with higher MI risk, it was not designed to
reveal the MI risk factor among neighbourhood charac-
teristics. Our spatial analysis is more suited to the for-
mulation of certain hypotheses aimed at improving our
understanding of the unequal spatial distribution of MI
risk using the contextual data panel.

« First, the neighbourhood characteristics of inhab-
itants living within a cluster of high or low MI risk
seem to have more disadvantaged and advantaged
conditions respectively, confirming the results of pre-
vious studies [66]. Indeed, MI risk was significantly
higher among: those whose education ceased after
primary or secondary school, compared with those
with a higher level of education (university) [66]; the
unemployed [67], and men in the lowest socioeco-
nomic group [68].

« Secondly, using only the accessibility and attractive-
ness of amenities indicator, our study revealed that
within high MI risk clusters, inhabitants have excel-
lent access to various amenities (including trans-
port, green space and park and sports facilities)—in
contrast to the low MI risk clusters. In the literature,
results are contrasted depending on the measure
used to describe availability/proximity of the infra-
structure. For instance, some studies reported pro-
tective associations of green space against high blood
pressure [69], coronary heart disease and cardiovas-
cular disease mortality [70]. In New Zealand, how-
ever, Richardson et al. found no evidence that cardio-
vascular disease mortality was related to availability
of either total or usable green space. In Tamosiunas
et al. [71] found that the prevalence of cardiovascular
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risk factors was not related to the distance from peo-
ple’s homes to green spaces—but was significantly
lower among park users than among non-park-users.

+ Lastly, the characterization of neighbourhoods of
inhabitants living within a cluster of high MI risk
show that they have high psychosocial cohesion in
comparison with inhabitants within a cluster of low
MI risk. This finding is incoherent with other stud-
ies which found that lower neighbourhood cohesion
predicted higher coronary artery calcification preva-
lence [72].

What this research adds in public health?

Beyond the geospatial approach applied on the local ter-
ritory in France, this study answers to a major problem
identified today by WHO to which classical epidemio-
logical approaches do not respond. The European Union,
supported by the World Health Organization (WHO),
recognizes that it is time to move from the research
about risk factors of health disparities to actions which
aim to reduce them. Research conducted in public health
policy issues supply little evidence for effective interven-
tions aiming to improve population health and to reduce
health inequalities.

This paper is attempts to fill the gap regarding a need
for powerful tool to support priority setting and guide
policy makers in their choice of health interventions, and
that maximizes social welfare.

Today, more and more international and European
institutions suggest certain actions on place that could
improve health and thus tend to reduce health inequali-
ties, such as improving access to, and quality of, green
space, particularly in deprived areas—providing places
for play, physical activity and favouring social interaction.
For instance, the World Health Organization has also
announced that access to green spaces can reduce health
inequalities, improve well-being [73]. More recently,
NHS Health Scotland stated, in the “Place and Commu-
nities Report” that policy and practice should continue
to integrate health, housing, environment, transport, and
community and spatial planning to improve health out-
comes and promote sustainability [74].

In the majority of epidemiological research projects
investigating health inequalities, sophisticated analyses
are implemented to measure the strength of the associa-
tion between risk factors and outcomes. These research
findings may be pivotal to public health policy, but an
attempt to distinguish between correlational and causal
associations does not form the basis of effective inter-
ventions aimed at improving population health and
reducing health inequalities. These classic epidemiologi-
cal approaches offer limited guidance to policymakers
in their choice of intervention, and suggest the need for
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spatial approaches to the investigation of social health
inequalities.

Our study describes an approach that may guide poli-
cymakers in selecting which priority setting to use, and
in choosing and developing the most appropriate local
intervention if, for instance, they decide to apply the ‘pro-
portionate universalism’ strategy described by Marmot
in 2010. Policymakers are thus enabled to plan targeted
interventions, choosing one of two appropriate broad
approaches to action that are commonly accepted today
as reducing health inequalities [36].

The present paper permits to novel way to investigate
the social health inequalities:

1. Our work highlights that the investigation of the
spatial distribution of multiple risk factors, includ-
ing social, economic and contextual factors, can help
policy makers to choose appropriately between two
or more broad approaches which will be performed
for the whole population, but with a scale and inten-
sity proportionate to need.

2. The local diagnosis can assist policy makers to focus
the scope of prevention/intervention programs and
changes to the health care system, thus providing
more effective interventions in order to response to
individual needs, and public resources can be distrib-
uted more efficiently. Thereby, this spatial tool may
assist the policy maker to tackle the social gradient
in health if they choose to apply the strategy named
‘proportionate universalism’ and described by Mar-
mot in 2010 [75].

3. In addition, our study show that the use of a rou-
tinely-collected data set within a data-driven
approach to characterize neighbourhood, alongside
a geospatial tool combined with GIS will be particu-
larly relevant and of interest to policymakers involved
in the identification, definition and promotion of tar-
geted health inequality actions at varying spatial lev-
els.

4. This study illustrates the usefulness of the geospatial
approach using routinely-collected data to support
policy makers in planning more focused community
interventions in appropriate areas and to choose if
public health interventions should be declined either
at a national level, at a local level, or both.

Strengths

The areal unit we constructed at a very small scale
allowed us to consistently accommodate data produced
at different scales. Our use of a single grid allowed us to
minimize the effect of scale associated with the modifia-
ble areal unit problem (MAUP), [76] because all the basic
spatial units (cells) were constructed to have the same
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area. These new spatial units offer three benefits: (1) they
make it possible to homogenize the best of the data col-
lected, prior to any statistical or spatial analysis; (2) they
allow us to spread the value of a piece of geographic
information initially noted or represented according to
a specific unit, in values calculated according to regular
spatial units, while preserving the integrity of the initial
information; and finally (3) the point of using these cells
as statistical units is to allow an extremely detailed anal-
ysis while preserving total health data anonymity in the
subsequent analysis.

Weaknesses

Our approach did have certain limitations in terms of the
contextual data used. Data availability necessarily con-
strains the variables integrated to this analysis, so that the
number of contextual dimensions used to characterize
neighbourhood context is also constrained.

We acknowledge that some data could not be included
in our analysis. This is the case, for example, for violence
in neighbourhoods, the presence of exterior annoy-
ances and substandard housing. Traffic noise data, for
instance, is considered politically sensitive when dis-
played at a fine scale, and we were unable to obtain access
to this. The collection of data regarding quality of hous-
ing and exterior annoyances is available only for the City
of Strasbourg, and is not available across the SMA scale.
In addition the health data was collected between 2000
and 2008, while the contextual data was mainly avail-
able between 2007 and 2008, with the exception of the
socioeconomic data, obtained from the 1999 census.
The collection of data according to availability may result
in a temporal gap between contextual data and its out-
come data, which could influence the result observed.
In our study, we are however unable to measure this
misclassification.

Conclusion
We proposed a data-driven approach developed at fine
spatial scale level, aimed at the investigation of neigh-
bourhood characteristics capable of explaining geo-
graphical distribution of the onset of MI risk. In our
study, we characterized the neighbourhood free of any a
priori hypothesis, and without weighting certain contex-
tual neighbourhood components, privileging the use of
diverse contextual neighbourhood profiles and the ad hoc
synthetic neighbourhood areal unit. Our spatial approach
allowed us to identify the neighbourhood characteristics
of inhabitants living within a high MI risk cluster in com-
parison with those living within a low MI risk cluster.
Therefore, spatial data-driven analyses of routinely-
collected data georeferenced by various sources may
serve to guide policymakers in defining and promoting
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targeted actions at fine spatial level. Armed with local
characterization of the combination between the socio-
economic dimension, social cohesion and access to
amenities relating to social inequalities in health, policy-
makers may be able to promote more accurately-targeted
actions aimed at reducing health inequalities, and pro-
mote a better understanding of social, healthy behaviour
among deprived populations. An open question worthy
of further research would be to determine the minimal
set of data (according to the principle of parsimony and
for the sake of efficiency) needed to appropriately char-
acterize neighbourhood influences, given that what holds
true in a given area may differ across geographical set-
tings having different historical and sociological contexts.
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