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Abstract 

Background:  Transforming spatial data from one scale to another is a challenge in geographic analysis. As part of a 
larger, primary study to determine a possible association between travel barriers to pediatric cancer facilities and ado-
lescent cancer mortality across the United States, we examined methods to estimate mortality within zones at varying 
distances from these facilities: (1) geographic centroid assignment, (2) population-weighted centroid assignment, (3) 
simple areal weighting, (4) combined population and areal weighting, and (5) geostatistical areal interpolation. For the 
primary study, we used county mortality counts from the National Center for Health Statistics (NCHS) and popula-
tion data by census tract for the United States to estimate zone mortality. In this paper, to evaluate the five mortality 
estimation methods, we employed address-level mortality data from the state of Georgia in conjunction with census 
data. Our objective here is to identify the simplest method that returns accurate mortality estimates.

Results:  The distribution of Georgia county adolescent cancer mortality counts mirrors the Poisson distribution of 
the NCHS counts for the U.S. Likewise, zone value patterns, along with the error measures of hierarchy and fit, are 
similar for the state and the nation. Therefore, Georgia data are suitable for methods testing. The mean absolute value 
arithmetic differences between the observed counts for Georgia and the five methods were 5.50, 5.00, 4.17, 2.74, and 
3.43, respectively. Comparing the methods through paired t-tests of absolute value arithmetic differences showed 
no statistical difference among the methods. However, we found a strong positive correlation (r = 0.63) between 
estimated Georgia mortality rates and combined weighting rates at zone level. Most importantly, Bland–Altman plots 
indicated acceptable agreement between paired arithmetic differences of Georgia rates and combined population 
and areal weighting rates.

Conclusions:  This research contributes to the literature on areal interpolation, demonstrating that combined popula-
tion and areal weighting, compared to other tested methods, returns the most accurate estimates of mortality in 
transforming small counts by county to aggregated counts for large, non-standard study zones. This conceptually 
simple cartographic method should be of interest to public health practitioners and researchers limited to analysis of 
data for relatively large enumeration units.

Keywords:  Areal interpolation, Areal weighting, Population weighting, Disaggregation, Geographic scale, Adolescent 
cancer, Compressed Mortality File
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Background
The challenge of transforming spatial data collected at 
one scale to another scale, often referred to as areal inter-
polation or cross-area estimation, has long been recog-
nized in spatial analysis [1]. In many cases, geographic 
boundaries, such as counties, are unsuitable in terms of 
the units needed for meaningful data analysis. This spa-
tial misalignment of data is referred to as the change-of-
support problem, which is concerned with inferences 
about the value of any particular variable at an enumera-
tion unit different from that at which data were collected 
[2, 3]. Researchers and practitioners sometimes require 
estimates for non-standard geographic areas, i.e. target 
zones, to be derived from existing source zones, i.e. the 
zones from which the data are obtained. For example, 
an analyst who requires data for a non-standard enu-
meration unit, say a zone surrounding a U.S. hospital 
(target zone), must transform data collected at another 
zone level, such as a group of U.S. census tracts (source 
zones), to match the boundaries of the zone surround-
ing the hospital. With the growth of available data and 
geographic information systems that can integrate these 
data, there has been a parallel increase in the develop-
ment of methods to address this problem.

Geospatial techniques, well documented in texts and 
the literature, are widely used to deal with transforma-
tion between scales [1–8]. Examples of methods include 
centroid assignment, areal weighting, dasymetric, regres-
sion, and geostatistical (or surface-generating).

For simple geographic centroid assignment, counts of 
some phenomenon are summed for a source zone, and 
allocated to the geographic centroid, that is, the areal 
center of gravity of the zone [9, 10]. Values assigned to 
zone centroids that fall within a target zone are then 
summed to estimate a count for the target zone. The 
binary nature of this technique means centroid assign-
ment is either completely in or out of the zone, in other 
words, an all-or-nothing operation. Additionally, the 
geometry of the zone’s polygon affects the positioning of 
the geographic centroid. Automated centroid placement 
is likely to be different depending upon the selection of 
input zone polygons.

Areal weighting, often used to disaggregate populations, 
is a cartographic overlay method that preserves volume, 
meaning subdivided populations sum to the original pop-
ulation. Weights are determined from the size of the over-
lapping source and target zone areas. For example, if a 
source zone (e.g., a census tract) with a population of 4000 
is split so that 25% of the area falls in target zone A, and 
75% falls in target zone B, 1000 individuals are allocated 
to target zone A and 3000 individuals to target zone B. A 
limitation is that areal weighting assumes an even distri-
bution of population within each source zone [6, 8].

Methods exist to estimate prospective error in areal 
weighting and, as they are relevant to this paper, are dis-
cussed here. Simpson describes two measures to express 
the amount of estimation involved in the transformation 
from source to target zones: the degree of hierarchy, and 
the degree of fit [11]. The degree of hierarchy, or nesting, 
for an entire study area is the proportion of all source 
zones that fall completely within any of the target zones. 
The degree of hierarchy for an individual target zone is 
the proportion of source zones that fall completely within 
that target zone. Degree of hierarchy is calculated as:

where: H is the degree of hierarchy; s is a source zone; t 
is a target zone; and wst is the areal overlap of the source 
zone with the target zone.

The degree of fit, or overlap, for the entire study area 
sums the maximum proportion, or weight, of each source 
zone as a proportion of all source zones. The degree of fit 
for a single target zone sums the weights of each source 
zone as a proportion of all source zones within the target 
zone. Degree of fit is calculated as:

where: F is the degree of fit; s is a source zone; t is a target 
zone; and wst is the areal overlap of the source zone with 
the target zone.

Degree of hierarchy and degree of fit are usually mul-
tiplied by 100 to be expressed as percentages. The closer 
the output of these measures to 100%, the better the 
transformation estimate; accuracy increases as nesting 
increases and as the number of target zones decreases 
[12]. Researchers and practitioners, particularly in popu-
lation geography, have used Simpson’s measures to esti-
mate potential error in cartographic areal interpolation 
[13, 14].

Dasymetric techniques use various ancillary data, 
such as cadastral, land cover, remotely-sensed, or fine 
resolution population data, to inform data disaggrega-
tion [15–22]. Applying a process conceptually similar 
to a dasymetric approach in the first step of their pop-
ulation-weighted interpolation, Wilson and Mansfield 
transformed county-level mortality rates to congressional 
districts (CDs) [18]. They used ancillary population data 
at census block level, census blocks nesting completely 
within both counties and CDs. For each county, the 
researchers first assigned the same mortality rate to each 
of the census blocks within the county. They then multi-
plied each block rate by block population count as a pro-
portion of the total CD population and finally summed 
all the population-weighted block rates to estimate a CD 
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mortality rate. As well as improving area-to-area trans-
formation, ancillary data can, for instance, also be applied 
to point-level data to generate population-weighted 
centroids.

The cartographic methods described above have gener-
ally been used to transform large populations and rates. 
However, regression and geostatistical methods can 
accommodate small counts as well. Global or regional 
regression approaches use ancillary data as explana-
tory variables to develop models that predict popula-
tion distribution in the source zones to better estimate 
populations in the target zones. These models assume a 
relationship exists among the population and other vari-
ables, such as land cover or parcel data [6, 8, 23]. Regres-
sion models offer the ability to refine estimates with the 
incorporation of covariates and to measure uncertainty. 
However, they also introduce complexity [22], require 
transformation of covariate geography, and generally do 
not handle changing relationships across space, i.e., non-
stationarity, as well as do dasymetric methods, for which 
estimates are locally fitted to each source zone [6].

Geostatistical methods are used to model spatial data 
to produce estimates where data are unavailable [2, 
24–26]. Either a smooth prediction surface or a prob-
ability surface, created from points derived from source 

polygons, is aggregated back to target polygons. As with 
simple areal weighting, geostatistical analysis assumes 
smooth distribution changes across the landscape, which 
is not usually the case. In addition, building a valid model 
can be difficult, as complex geostatistical techniques are 
often applied inappropriately [27].

The analysis discussed in this paper is part of a larger 
ecologic research project to determine a possible asso-
ciation between distance to pediatric cancer facilities and 
cancer mortality among adolescents, ages 15 through 19. 
Children’s Oncology Group (COG) institutions provide 
specialized cancer care for children through clinical tri-
als and research. Whereas most children 14 years of age 
and younger are treated in a COG, the majority of ado-
lescents are referred to adult oncology centers that have 
less access to clinical trials and thus less improvement in 
survival [28–30]. To examine mortality rates by sex, race, 
and ethnicity within zones at varying distances from these 
facilities we needed to estimate adolescent cancer mortal-
ity rates for four, multipart zones surrounding 191 COG 
facilities across the United States (Fig. 1). In this paper, we 
used Georgia adolescent cancer mortality data, examining 
mortality rates by sex by zone, to test the methods.

The four zones represent an effort to define each COG 
institution’s city core, an inner suburban ring, an outer 

State of Georgia -
Data used for validation

C: >25 to 50 mi

D: > 50 mi

B: >10 to 25 mi

A: 0 to 10 mi

Zone

Children's
Oncology

Group
Facility
(N=191)

Fig. 1  Children’s Oncology Group Institutions and Zones. The primary study encompasses the entire United States. This paper focuses on the 
validation of methods using Georgia adolescent cancer mortality data
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suburban/exurban ring, and the balance of land beyond. 
Zone A encircles an area within 10 miles of any COG. 
Zones B and C are concentric rings with distances from a 
COG of >10 to 25 miles and >25 to 50 miles, respectively. 
Zone D comprises the remaining United States. Data 
available for the primary study included census tract level 
demographic data for rate denominators and U.S.-wide, 
county-level National Center for Health Statistics (NCHS) 
Compressed Mortality File (CMF) data for rate numera-
tors. Although the tracts aggregate to counties, the four 
zones coincide with neither tracts nor counties. For this 
methods paper, we used residential address-level mortality 
data from the state of Georgia along with tract population 
data to evaluate methods to transform county mortalities 
(source zones), to the four study zones (target zones).

We sought to identify the simplest interpolation 
method that returned satisfactory mortality estimates. 
Given the large geographic scope of the primary research, 
i.e., zones encompassing the entire U.S., we aimed for 
straightforward methods with workable data require-
ments. In other words, we required a conceptually sim-
ple technique with readily available, statistically robust, 
nationwide data.

In this paper, we examine and discuss the results of 
five interpolation methods. Commonly used in research 
and practice, we explored geographic and population-
weighted centroid assignment, simple areal weighting, 
and geostatistical areal interpolation. We also developed 
and tested a conceptually simple technique, combined 
population and areal weighting, which merges a dasymet-
ric population weighting with areal weighting. We chose 
not to examine regression to estimate mortality because 
the sole intent of the primary study was to examine the 
association between adolescent cancer mortality and dis-
tance to a COG and we wanted to avoid the complexities 
of U.S.-wide regression models using multiple covariates. 
We believe cartographically-focused estimation tech-
niques are more appropriate for this methods paper.

Methods
Data sources for the primary study included U.S. Census 
2000 and 2010 100% population counts at the tract level 
as well as 1999–2011 county-level cancer mortality data 
for those aged 15 through 19 from the NCHS CMF, 
which are compiled from individual state death certifi-
cates [31–33]. To preserve confidentiality, NCHS pro-
vides mortality data at the county level only, upon a 
substantiated request and signed data use agreement.1 

1  Although NCHS CMF users are permitted to estimate sub-national 
counts and rates for their own analyses, they cannot report any sub-national 
count or rate based on totals less than 10. NCHS CMF users, as well as 
users of any confidential data sets, must ensure they comply with data use 
agreements.

However, some states consider death certificates public 
record and share residence-level point data. We therefore 
obtained point-level, adolescent cancer mortality data 
from Georgia, a state that releases mortality data for 
research, also upon a substantiated request and signed 
data use agreement, to assess the accuracy of our meth-
ods in this paper [34].

Inasmuch as the four COG study zones, A, B, C, and D, 
are independent of any standard enumeration unit, we 
estimated numerators and denominators for each zone. 
Numerator and denominator estimation were tied to 
census year because of the differing 2000 and 2010 geog-
raphies, particularly at the tract level. Though the census 
years fell at equal positions along the study’s time span 
of years 1999 through 2011, we could not “split” mortal-
ity data for the study’s mid-point year, 2005, because we 
did not have month of death. For that reason, we chose 
to use 7 years (1999 through 2005) of mortality data with 
Census 2000 geographies and populations and 6  years 
(2006 through 2011) of mortality data with Census 2010 
geographies and populations. The mortality rate was cal-
culated as the number of deaths over the 13-year study 
period for a specified population subgroup, such as 
males (numerator), divided by the total population, or 
person-years at risk, of that specific subgroup (denomi-
nator). We weighted the denominator population by 
census year:

Denominator (population count) estimation
For our testing, we estimated Georgia mortality for 
males, females, and the total population, aged 15 through 
19. To approximate population for study zones surround-
ing a COG (i.e. zone A, B, C, and D) for the denomina-
tor, we used the Population Estimator tool, developed by 
CDC’s Geospatial Research, Analysis, and Services Pro-
gram (GRASP), which performs simple areal weighting 
[35]. The area of overlap of the census tract (source zone) 
with the study zone was divided by the area of the entire 
census tract to obtain the proportion, or areal weight, 
of the tract area within the study zone. The population 
of interest for each tract (male, female, or overall) was 
then multiplied by the areal weight for that study zone as 
follows:

where: Ept is the areal-weighted population estimate for 
the tract, or tract portion, within the study zone; Azt is 
the geographic overlap area of the tract and study zone; 
At is the geographic area of the entire tract; and Pt is the 
tract population.

(3)
13−year death total/((2000 population ∗ 7)

+(2010 population ∗ 6))

(4)Ept =

(

Azt

At

)

∗ Pt
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The resulting areal-weighted populations were summed 
to estimate a population total for the study zone for cen-
sus years 2000 and 2010 (Fig.  2). We then calculated a 
weighted sum, as expressed in (3) above, to estimate a 
total 13-year population for the denominator. This pro-
cess was repeated for each study zone, A, B, C, and D.

Numerator (death count) estimation
Source zones for the numerator were counties with small 
numbers of deaths relative to the denominator popula-
tions. We tested five numerator estimation methods: (1) 
geographic centroid assignment, (2) population-weighted 
centroid assignment, (3) simple areal weighting, (4) 

combined population and areal weighting, and (5) geo-
statistical areal interpolation. For all five methods, we 
used Esri’s ArcGIS 10.3.1™ software. For the geostatisti-
cal method, we also used Esri’s Geostatistical Analyst 
extension in ArcMap.

Method 1: Geographic centroid assignment
For geographic centroid assignment, we attributed Geor-
gia Department of Public Health (GADPH) mortality 
counts to each county’s geographic centroid. County 
deaths assigned to centroids that fall within a study zone 
were summed, by sex and year, to estimate the number of 
deaths for that zone (Fig. 3).

227

292

196

142

258

220 191

195114

152

109

93

1

0.808

0.798

0.258

0.122

0.304

1
0.083

0.086

1

1
1

0.742

0.917

0.914

0.696

0.192

0.202

0.752

Tract boundary

County boundary

Zone A

Zone B
Propor on of tract 
in zone A, i.e. areal weight
(Azt / At)
Tract popula on of
interest (Pt)

0.798

292
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0.083 * 258 = 21.41
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0.258 * 196 = 50.57
0.304 * 142 = 43.17
0.798 * 292 = 233.02
0.808 * 227 = 183.42
1.000 * 93 = 93.00
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1.000 * 152 = 152.00
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Total es mate: 1,236.80

Fig. 2  Denominator estimation for a hypothetical part of study zone A. The population for those aged 15 through 19 for each tract (Pt) is multiplied 
by the proportion of the tract, or areal weight (Azt/At), in the study zone. The output for each tract (Ept) in the entire zone is summed to obtain a 
population estimate for the study zone. Note: For graphic simplicity, only a subset of zones are shown in the figures. Methods are the same for each 
of the four study zones, A, B, C, and D
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Method 2: Population‑weighted centroid assignment
For population-weighted centroid assignment, we attrib-
uted census tract populations of males and females 
aged 15 through 19, for years 2000 and 2010, to tract 
centroids. For each of Georgia’s 159 counties, we used 
the tract centroids to calculate mean centers, weighted 
by the tract-level population of interest, for each year. 
County deaths assigned to population-weighted cen-
troids that fall within a study zone were summed, by sex 

and year, to estimate the number of deaths for that zone 
(Fig. 4).

Method 3: Simple areal weighting
Simple areal weighting, is the same technique used for 
the denominator estimates, as described above. In this 
case, the area of overlap of the county source zone with 
the COG target zone was divided by the area of the 
entire county to obtain the proportion, or areal weight, 

2
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0
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0
0

0

1

1
1

1

0
County deaths2

Tract boundary

County boundary

Zone A

Zone B

Zone C

Zone D

County
geographic centroid

Fig. 3  Geographic centroid assignment. Each county centroid is attributed a county mortality count for the population of interest. Mortality counts 
for centroids falling within each study zone are summed to estimate mortality, as a whole number, by zone. In this hypothetical example, zones A 
and B are assigned zero deaths, despite the overlap of three counties on zone A (two potential deaths) and five on zone B (four potential deaths). 
Zone C is assigned four deaths, but has the possibility of more
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of the county area within the study zone. The number 
of deaths for each county was then multiplied by the 
corresponding areal weight for that county. The result-
ing areal-weighted mortalities were summed to esti-
mate the number of deaths for the study zone. Figure 2 
illustrates the method, with deaths by county source 
zones instead of population by tract source zones as 
shown.

Method 4: Combined population and areal weighting
To estimate numerators for each COG study zone we 
(1) used population weighting, a conceptually dasymet-
ric approach similar to that of Wilson and Mansfield, to 
disaggregate mortality from county level counts to tract 
level estimates; then (2) weighted each tract mortality 
estimate by its geographic area within the study zone; 
and finally (3) aggregated the combined population- and 

2

0

0

0

0

2

0

0

1
1

1

0

Zone A

Zone B

Zone C

Zone D

Tract boundary

County boundary

Tract centroid
County
popula on-weighted
centroid
County deaths2

Fig. 4  Population-weighted centroid assignment. Each tract centroid is attributed the population of interest. County centroids are placed using the 
mean center of tract centroids weighted by the tract population. Mortality counts for centroids falling within each study zone are summed to esti-
mate mortality by zone. Results for zones A and B in this example, zero deaths for both, are the same as those for geographic centroid assignment. 
Zone C is assigned five deaths because the centroid in the northeast, with a value of “1,” is now positioned within zone C
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areal-weighted tract mortality estimates for each zone. 
In contrast to Wilson and Mansfield, who used popula-
tion-weighted interpolation to estimate rates for stand-
ard enumeration units (CDs), we estimated mortality 
counts using population subgroup proportions for non-
standard study zones. In addition, unlike Wilson and 
Mansfield who transformed census blocks with 100% 
hierarchy and fit both from county and to CD, we per-
formed the second step, areal weighting, because our 
non-standard COG target study zones split the source 
census tracts.

We detail the combined population and areal weight-
ing process here. Because we had numbers of deaths by 
county-level only, we took advantage of the county/tract 
hierarchy and assigned each tract a population-weighted 
mortality estimate as follows:

where: Emt is the population-weighted mortality estimate 
for the tract; Pt is the tract population; Pc is the county 
population; and Mc is the number of deaths in the county.

The output of Eq. (5) was multiplied by the geographic 
proportion of the tract that falls within the study zone, 
in other words, the areal weight (Fig.  5). This process-
ing assumes an even distribution of tract population. We 
summed the resulting population and areal-weighted 
mortalities, by sex and year, to estimate the number of 
deaths for the zone. Expressed in its entirety, the study 
zone death count is estimated as:

(5)Emt =

(

Pt

Pc

)

∗Mc

(6)Mz =

∑n

t=1
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Fig. 5  Combined population and areal weighting. The geographic area of the tract within the zone, the areal weight (Azt/At), is multiplied by 
population-weighted mortality estimate for the tract (Emt). The output for each tract is then summed to estimate the number of deaths for the 
zone. We demonstrate, in this example, how estimates for portions of zones A and B are calculated. Note: As illustrated in Figs. 3 and 4, except for 
two counties, with two deaths each, the remaining counties within zones A and B recorded zero deaths for the population of interest; to simplify 
the illustration, we omitted counties with zero deaths. Also, because we show only portions of zones A and B, the estimates are technically only a 
portion of Mz for zones A and B
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where: Mz is the study zone mortality count estimate; 
∑n

t=1 sums results for all tracts, or tract portions; Azt is 
the geographic overlap area of the tract and study zone; 
At is the geographic area of the entire tract; and Emt is the 
population-weighted mortality estimate for the tract.

Method 5: Geostatistical areal interpolation
To determine how geostatistical methods of interpolation 
compared to the cartographic methods described above, 
Georgia mortality counts were interpolated from county 
level data using one geostatistical interpolation model 
from among multiple explored, over-dispersed Poisson 
areal kriging, as described by Krivoruchko et  al. [26], 
and implemented in ArcMap 10.3.1’s Geostatistical Wiz-
ard. We interpolated mortality count data for adolescent 
males and females separately. Using visual variography, 
we fitted a stable kriging interpolation model to a plot of 
empirical covariance versus distance, creating a continu-
ous surface depicting the probability of event occurrence 
in the study area. The geostatistical method we used pro-
duced standardized root mean square error values of 1.02 
for females and 1.12 for males, for which an ideal value 
would be 1.0. During variography we used a lattice spac-
ing of 1000 m, a lag size of 5000 m, and 18 lags. The con-
tinuous probability surface was then used to estimate the 

mortality event counts for the COG zones, providing a 
numerator to determine a mortality rate for each zone 
based on the previously calculated population.

Statistical analyses to assess the methods included: (1) 
the distribution of county mortality counts, (2) meas-
ures of potential transformation error among numerator, 
denominator, and zones in terms of degrees of hierarchy 
and fit, and (3) absolute value arithmetic differences from 
observed Georgia mortality counts, t-tests on absolute 
value arithmetic differences among the five methods to 
check for statistical difference, Pearson’s r correlations 
between Georgia rates and estimated rates, and Bland–
Altman plots depicting 95% level of agreement between 
Georgia mortality rates and those of the five methods 
[36–39].

Results
Distribution of adolescent cancer county mortality counts: 
Georgia versus the U.S
Histograms of the distribution of county mortality 
counts reveal a pattern in Georgia similar to that of the 
U.S. (Fig.  6). The histogram of the Georgia mortality 
counts (N =  238) demonstrates a Poisson distribution, 
strongly right skewed. Of 159 counties, 80 (50%) record 
zero mortalities for the 13-year period. Seventy-two 
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counties (45%) report between one and five deaths and 
fewer than 5% of counties (n  =  7) record more than 
five deaths. The mean number of deaths by county for 
Georgia is 1.50. The histogram of the U.S. mortality 
counts (N = 7687) demonstrates a Poisson distribution, 
strongly right skewed. Of 3143 counties, 1478 (47%) 
record zero mortalities for the 13-year period. Forty-
four percent of counties (1374) report between one and 
five deaths and 9% of counties record more than five 
deaths (n = 291). The mean number of deaths by county 
for the U.S. is 2.45.

Transformation error: degrees of hierarchy and fit
As discussed above, the degree of hierarchy (nesting) and 
the degree of fit (overlap) are two measures to express the 
amount of estimation, or error, involved in the transfor-
mation from source to target zones, particularly affect-
ing the cartographic methods. The closer the output of 
either of these measures to 100%, the better the trans-
formation estimate should be. Table 1 shows the degrees 
of hierarchy and fit, in percentages, for both the Georgia 
and U.S. denominators, which use census tract source 
zones for populations, and numerators, which use county 
source zones for numbers of deaths. Denominator per-
centages for hierarchy, and particularly for fit, are high, 
with overall hierarchy at 81.7% for Georgia and 83.7% 
for the U.S., and overall fit at 96.6% for Georgia and 97% 
for the U.S. Numerator percentages for all measures are 
much lower than those for denominators, meaning the 
error is higher for numerator estimation. Overall hierar-
chy is 52.2% for Georgia and 45.1% for the U.S. Overall 
fit is 88.7% for Georgia and 87.2% for the U.S. Of note is 
the zone A degree of hierarchy for Georgia; a zero value 
means that none of the counties nest completely within 
zone A. Patterns of zone values are roughly similar for 
Georgia and the U.S. For example, most zone D measures 
indicate less potential for error than those of the other 
zones, because it is large relative to other zones, with lit-
tle change-of-support.

Comparisons between observed and estimated mortality 
measures
Table  2 shows comparisons between observed 1999–
2011 Georgia adolescent cancer mortality and estimated 
mortality, by method and zone. For the death counts 
(i.e., numerators), the “Georgia total” row illustrates 
the concept of volume preservation. That is, each of the 
four cartographic methods maintained overall counts, 
unlike the geostatistical method. The arithmetic differ-
ences between the observed counts and those for the 
methods become apparent in the zone estimations. The 
mean absolute value arithmetic differences between 
the observed Georgia mortality counts and their paired 
count estimates, were 5.50, 5.00, 4.17, 2.84, and 3.43 for 
each of the five methods, respectively. Standard devia-
tions of these means decrease progressively for the car-
tographic methods 1 through 4. Geostatistical method 5, 
however, has a standard deviation higher than method 
4, but slightly lower than method 3. The largest absolute 
arithmetic difference for method 4 was less than five, 
whereas for methods 1, 2, 3, and 5, the largest arithmetic 
differences were much greater, at 16, 11, 8.59, and 7.85, 
respectively. Comparing the methods through paired 
t-tests of absolute value arithmetic differences, however, 
showed no statistical difference among the methods, with 
no method a statistically significantly closer estimator 
than any other method.

Table  2 also displays the robust denominator esti-
mates as well as rates by method and zone. The mean of 
arithmetic differences from paired Georgia death rates 
are −0.12, −0.10, 0.10, 0.01, and 0.15 for the methods, 
1 through 5, with method 4 closest to zero and method 
5 furthest from zero. As with the counts, the standard 
deviations of these means decrease progressively for 
the cartographic methods, with method 4 the lowest 
at 0.33. For method 5, however, the standard deviation 
of the mean of the arithmetic differences from paired 
Georgia rates, at 0.42, falls between those of methods 
3 and 4.

Table 1  Measures of potential error: degrees of hierarchy and fit

Degree of hierarchy (nesting) and degree of fit (overlap) between source and target study zones. The higher the percentage, the better the estimate
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We calculated the Pearson product moment correla-
tion coefficients (Pearson’s r) for the rates. For methods 
1 through 5, the r values were 0.184, 0.191, 0.327, 0.627, 
and 0.413 respectively. In social science research, meth-
ods 1 and 2 demonstrate weak positive correlations, 
methods 3 and 5 suggest moderate positive correlations, 
and method 4 a strong positive correlation with the 
Georgia rates.

For each of the five methods, we used Bland–Altman 
plots, a tool to compare methods estimating the same 
variable, to visualize the agreement between arithmetic 
differences of paired Georgia and method rates (Fig. 7). 
Usually Bland–Altman plots measure equipment perfor-
mance against a known standard. We apply them here 
to assess geographic data processing methods as com-
pared to known data values. The plots display the means 
of each pair of rate estimates (x value), versus the arith-
metic differences between the paired estimates (y value). 

For example, the estimated Georgia mortality rate for 
males in zone A is 3.371, whereas for method 1 the 
estimated rate is 3.984 (see Table 2). The mean of these 
values is 3.667 and the difference is −0.613. This point 
(3.667, −0.613) is displayed as the rightmost square on 
the method 1 plot of Fig.  7. The plots also display the 
mean of the arithmetic differences between the Geor-
gia estimates and each paired estimate, known as the 
bias, as a red horizontal line. Limits of agreement, confi-
dence intervals at the 95% confidence level, are drawn as 
black lines. For the method to be a good match with the 
Georgia estimated rates, all the plotted points must fall 
within the limits of agreement, close to the bias. Of the 
five plots, method 4 most closely replicates the Georgia 
estimates; all the plotted points are within the limits of 
agreement, which is also the smallest of the five meth-
ods, and the mean of arithmetic differences is closest to 
zero.

Fig. 7  Bland–Altman plots to compare Georgia rates with the five method rates. The Bland–Altman plots compare 1999–2011 Georgia adolescent 
mortality rate estimates to estimated rates for methods 1 through 5. Method 4 demonstrates the greatest agreement
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Discussion
Among the five methods tested for numerator estimation, 
method 4, the combined population and areal weighting 
technique, had the lowest mean absolute value arithmetic 
difference between the estimation and observed Georgia 
death counts. Method 4 also generated the only strongly 
positive correlation with the estimated Georgia rates. 
However, correlation tests, i.e. Pearson’s r, which support 
the selection of method 4 as the best method, are inad-
equate to completely assess the accuracy of an estimation 
method. A strong correlation may exist, but the output 
measurements could, theoretically, be consistently differ-
ent. A more definitive measure of method performance 
is that of agreement. To visualize agreement, we used 
Bland–Altman plots which display the means of each pair 
of estimates—the Georgia rates compared to each of the 
five methods—against the arithmetic difference between 
the estimates. Method 4 again produced the best results, 
with each of the eight plotted points falling within small 
95% limits of agreement.

Examining the other methods, we observe several rea-
sons for their weaker performance. Although method 1 
is easy to perform, the county centroid location is based 
solely upon the county’s geographic center of grav-
ity, with no accounting for the distribution of the study 
populations. This binary “all or nothing” condition means 
that mortality assignment could be 100% incorrect (or 
100% correct or any percentage in between). Method 1 
therefore returned the least accurate results. Population-
weighted centroid assignment, method 2, improved cen-
troid placement, but was still limited by the binary nature 
of the potential error as exemplified in method 1. The two 
centroid methods generated the highest absolute arith-
metic differences from the Georgia counts, weak positive 
correlations with the Georgia rates, and displayed—via 
Bland–Altman plots—a lack of agreement with Georgia 
rates. Method 3, simple areal weighting, is superior to the 
centroid methods, indicating an intermediate absolute 
value difference from Georgia counts as well as a moder-
ate positive correlation with the Georgia rates. However, 
method 3 failed the agreement test, most likely because 
the affected population was not taken into account inas-
much as simple areal weighting assumes an evenly dis-
tributed population.

Geostatistical areal interpolation, method 5, showed 
slightly stronger positive correlation with the Georgia 
rates than method 3. However, the geostatistical method 
still failed the agreement test. This lack of agreement may 
be the result of the nonstationary nature of the source 
data. Mortality count data should vary in a similar way 
to population, which is known to be somewhat nonsta-
tionary. The violation of the stationarity assumption 
makes fitting model parameters much more difficult, and 

limits the accuracy of the probability surfaces produced. 
In addition, geostatistical areal interpolation does not 
preserve volume, as do the cartographic methods tested.

There is also a conceptual problem with method 5. 
Count data are inherently discrete rather than continu-
ous. As geostatistical methods are surface generating, 
i.e. they create continuous data, the use of geostatistics 
to interpolate counts is tenuous. While we would have 
preferred to interpolate mortality rates, the high number 
of counties with zero mortalities (80 of the 159 Georgia 
counties had no adolescent cancer deaths during the time 
of the study) precluded rate interpolation as the model 
invariably assigned a rate of zero across the study region. 
However, in the case of event interpolation, the data 
structure mismatch is solved by producing a continu-
ous probability surface, rather than a prediction surface, 
from which to estimate COG zone counts. The surface 
generated represents the probability of an event occur-
ring based upon the number of times that event occurred 
in each of the original geographies, mortality count by 
county in this study. This type of interpolation may be 
problematic if something other than the underlying dis-
tribution of counts affects the probability of observing 
the event, e.g. if different counties had different reporting 
practices.

Method 5 also presented a unique challenge that could 
makes its application difficult for those without expert 
knowledge of geostatistical methods. Aside from the dif-
ficulty associated with the visual variography required 
when using the Geostatistical Wizard in ArcMap, geo-
statistical areal interpolation can be sensitive to data 
structuring. For this project, shapefiles used for the COG 
target zones had to be preprocessed so that aggrega-
tion of the probability surface to the target zones would 
produce accurate results. Specifically zone D, shown in 
Fig. 1, posed a problem. In the state of Georgia zone D 
encompassed an area of roughly 103,000  km2, whereas 
the next largest zone covered only about 15,000  km2. 
Although this large land expanse with little change-
of-support produces good results for the cartographic 
methods, the size disparity led to the over estimation of 
mortality counts and the prediction of a high standard 
error in zone D when the geostatistical probability sur-
face was aggregated to the COG study zones. To reduce 
predicted error, we split zone D into nine smaller poly-
gons, bringing the largest individual polygon down in 
size to roughly 18,000  km2 and reducing the predicted 
standard error for male mortality counts from 40.99 in 
the combined zone D to a mean of 3.62 and sum of 32.59 
for the nine polygons that make up zone D. Female count 
corresponding standard error numbers were 35.68, 3.16, 
and 28.42 respectively. Summing the estimated counts in 
these nine zones provided reasonably accurate results, 
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shown in Table  2, especially as compared to the esti-
mated counts when zone D was not split (77.86 for males, 
56.82 for females). We expect this size disparity between 
zone D and the other study zones to require even more 
preprocessing for a national scale geostatistical analysis.

The most effective method, method 4, incorporated 
ancillary census tract data to weight deaths by the at-
risk populations to estimate mortality, the intent being 
to reduce the error associated with assuming an evenly 
distributed population across county source zones. In 
essence, disaggregation using population weighting 
is analogous to locally fitting the distribution of each 
source zone. Additionally, in combined population and 
areal weighting, unlike centroid methods or simple areal 
weighting, error is distributed across the target zones by 
allocating “mortality” weighted by population and area. 
Although it is more processing-intensive than the other 
cartographic methods described here, the processing can 
be automated. Further, method 4 is conceptually simple, 
particularly in contrast to the geostatistical techniques of 
method 5.

All spatial disaggregation techniques generate error. 
Because of confidentiality requirements, we were limited 
to county resolution for the NCHS numerator mortality 
data as opposed to tract-level resolution for the denomi-
nator populations. Denominator estimation was straight-
forward and stable because the tract source zones were 
small relative to the larger target zones surrounding the 
COGs, the degrees of hierarchy and fit were large, and 
the populations large.

In contrast, numerator estimation was more challeng-
ing. The Wilson and Mansfield population-weighting 
technique, which informed the population-weighting 
component of our combined population and areal weight-
ing method, transformed mortality rates from one set 
of standard zones (counties) to another set of standard 
zones (congressional districts) both built from perfectly 
nested census blocks with 100% hierarchy and fit. In 
contrast, we required numerator mortality counts to be 
transformed from counties to non-standard study zones. 
We therefore combined population, in a conceptually 
dasymetric approach, and areal weighting, to estimate 
numbers of deaths for the numerators of our study zones.

Source zones for the numerator were counties within 
which census tracts nest hierarchically. Counties were 
therefore, by definition, larger than the tract source zones 
used for denominator estimation, with the rare exception 
of counties consisting of a single tract. Lower degrees of 
hierarchy and fit reflect this dichotomy between counties 
and tracts. Small numbers of deaths per county also led 
to less stable results for numerator estimation. In sum, 
low hierarchy and fit values for the numerators, along 
with smaller numerator counts, showed greater error in 

numerator estimation, in contrast to the high hierarchy 
and fit measures, as well as much larger counts, for the 
denominators.

Adolescent cancer mortality counts from the GADPH 
were appropriate for testing the methods explored. The 
distribution of county mortality counts for Georgia mir-
ror those of the U.S. Likewise, patterns of zone values are 
roughly similar for the state and the nation. In terms of 
area, however, medium-sized Georgia has some of the 
smallest counties in the country (N = 159) and therefore 
may not be representative of other U.S. states. As noted, 
the mean number of mortalities per county is 1.50 ver-
sus 2.45 for the U.S. as a whole. It may be that counties 
with smaller geographic areas return better results than 
larger counties for the five tested methods. However, as 
method 4 employs combined weighting, which distrib-
utes error across study zones, we would still expect to 
observe improved estimation over the centroid meth-
ods in regions of the country with larger counties. With 
Georgia’s smaller counties, improvements over the other 
methods in this study should be seen as conservative.

One potential limitation involves the relationship 
between census tract population and geographic area. 
The optimal population for a tract is 4000, therefore less 
densely populated counties are likely to have fewer tracts, 
though with larger geographic areas. Georgia counties 
have higher population densities and smaller tracts than 
many counties in other states, so error cannot be distrib-
uted at as fine a level of granularity elsewhere as in Geor-
gia. For our own primary research, however, counties 
with small numbers of tracts were not a major concern 
because those counties are located in zone D, which has 
limited change-of-support.

Another limitation was the small number of statisti-
cal data points available, eight (four zones by two sexes) 
for each method. Examining these four methods in other 
states would provide additional data points along with an 
opportunity to study the effects of larger or less densely 
populated counties on estimation methods. Another 
approach to increase statistical data points for method 
validation would be to explore Bland–Altman plots of 
additional zone configurations within the state of Geor-
gia, e.g. random region delineations.

We chose not to examine regression to estimate mortal-
ity because the purpose of the primary study was solely to 
examine the association between adolescent cancer mor-
tality and distance to a COG. Other than population dis-
tribution by sex, we avoided a priori assumptions in our 
estimation of the COG proximity zone mortality patterns. 
We also wanted to avoid the complexities of U.S.-wide 
regression models using multiple covariates. Given the 
satisfactory results we obtained from population and areal 
weighting, simple in concept and practice, we did not see 
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the need to include multivariate regression in our prelimi-
nary analysis. Nonetheless, race, ethnicity, poverty, and lack 
of health insurance, among other factors, influence adoles-
cent cancer mortality distribution. These factors vary geo-
graphically and will be considered in future exploration of 
potential explanatory variables in the primary study.

Conclusions
This research demonstrates that combined population 
and areal weighting, compared to cartographic centroid 
and simple areal weighting methods, and a geostatistical 
method, returns more accurate estimates of mortality in 
transforming small counts by county to aggregated counts 
for large target zones that do not conform to standard 
enumeration units. Weighting by ancillary population 
data to take into account at-risk population, in conjunc-
tion with the allocation of weighted mortalities, which 
eliminates the “all or nothing” problem inherent in cen-
troid methods, distributes error across study zones, thus 
improving estimates. Furthermore, practitioners without 
the resources of geospatial statisticians and software, may 
find this simpler cartographic method more accessible 
and just as effective in transforming county-level source 
zone counts to larger, non-standard target zones. This 
methodology should be of interest to practitioners and 
researchers limited to analysis of count data for relatively 
large enumeration source units, such as NCHS county-
level mortality counts, among other data sources. We 
expect to observe increased support for using combined 
population and areal weighting estimates, particularly 
over other cartographic overlay methods.
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