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Abstract 

Background:  Malaria is highly sensitive to climatic variables and is strongly influenced by the presence of vectors in 
a region that further contribute to parasite development and sustained disease transmission. Mathematical analysis of 
malaria transmission through the use and application of the value of the basic reproduction number (R0) threshold is 
an important and useful tool for the understanding of disease patterns.

Methods:  Temperature dependence aspect of R0 obtained from dynamical mathematical network model was used 
to derive the spatial distribution maps for malaria transmission under different climatic and intervention scenarios. 
Model validation was conducted using MARA map and the Annual Plasmodium falciparum Entomological Inoculation 
Rates for Africa.

Results:  The inclusion of the coupling between patches in dynamical model seems to have no effects on the 
estimate of the optimal temperature (about 25 °C) for malaria transmission. In patches environment, we were able 
to establish a threshold value (about α = 5) representing the ratio between the migration rates from one patch 
to another that has no effect on the magnitude of R0. Such findings allow us to limit the production of the spatial 
distribution map of R0 to a single patch model. Future projections using temperature changes indicated a shift in 
malaria transmission areas towards the southern and northern areas of Africa and the application of the interventions 
scenario yielded a considerable reduction in transmission within malaria endemic areas of the continent.

Conclusions:  The approach employed here is a sole study that defined the limits of contemporary malaria transmis-
sion, using R0 derived from a dynamical mathematical model. It has offered a unique prospect for measuring the 
impacts of interventions through simple manipulation of model parameters. Projections at scale provide options to 
visualize and query the results, when linked to the human population could potentially deliver adequate highlight 
on the number of individuals at risk of malaria infection across Africa. The findings provide a reasonable basis for 
understanding the fundamental effects of malaria control and could contribute towards disease elimination, which is 
considered as a challenge especially in the context of climate change.
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Background
Malaria is one of the oldest and deadliest human vector-
borne diseases. It is well known that malaria is transmit-
ted among humans by the female Anopheles mosquito 
species, and the transmission cycle is essentially driven 
by the human-biting habit of the mosquito [1]. Malaria 
vectors are found in tropical and subtropical areas of 
the world and in sub-Sahara Africa, this disease is one 
of the major problems of public health [2, 3]. In 2015 an 
estimated 212 million (range 148–304 million) cases of 
malaria occurred worldwide and 429,000 people died, 
mostly children in Africa [2, 3]. In 2016, there were an 
estimated 216 million cases of malaria in 91 countries, 
an increase of nearly 5 million cases over 2015 [3]. The 
disease is endemic and/or epidemic, depending on the 
climatic parameters and ecological characteristics of 
the geographic regions [2, 3]. In general, occurrence of 
malaria vectors is organized into various patterns under 
the influence of temperature and the presence of breed-
ing sites, which facilitates their reproduction and the 
increase of vector populations [2, 3]. These parameters 
therefore influence the epidemiology of malaria in a par-
ticular region.

The use of dynamic mathematical models to describe 
the time evolution of epidemiological systems dates 
back to centuries [4, 5]. The time evolution of the inter-
actions between human population and malaria vectors 
are modeled using several methods, which include dif-
ferential equations, discrete time maps, meta-population 
networks and geo-spatial approaches [6, 7]. Differential 
equations where space is ignored and the total number 
of individuals in the population of vectors or hosts is con-
stant are mostly applied. In reality, the dynamics of pop-
ulations are usually effected by a variety of interactions 
(both inter and intra); and as a consequence, it is appro-
priate to consider a grouping of small local population of 
vectors occupying small habitat zone “network” distrib-
uted in uniform matrix [8, 9]. In certain recent models of 
spreading epidemic, the location of the patches in space 
is treated explicitly by taking into account the number of 
connections k (degree) that any given patch within the 
network may have [10]. A common feature in the major-
ity of such studies is the inclusion of temperature as a 
climatic variable [11]. Temperature-dependent models 
have been abundantly developed and the effects of tem-
perature on population dynamics of malaria vectors have 
been well analyzed [12–14]. The proliferation of such 
modeling approach was motivated by the fact that tem-
perature is a key element in the development of malaria 
vectors and parasites. A simulation model that includes 
the four life stages of mosquito life cycle (egg, larva, 
pupa, and adult) using delayed differential equations is 
presented in Depinay et al. [12]. Through, this model, the 

authors showed that the ambient temperature conditions 
play important roles both on the mosquito life-history 
processes and the parasites. In the study carried out by 
Mordecai et al. [13] temperature was introduced on the 
basic reproduction number (R0) and the results showed 
that the optimal temperature for malaria transmission 
is about 25  °C, whereas the work done by Parham and 
colleagues [14] estimated identical variable with a mag-
nitude of 31 °C that is 6 °C higher than predicted in Mor-
decai et al. [13].

Mathematical analysis of the threshold values of R0 
is an important and useful tool for the understanding 
of disease patterns. The basic reproduction number R0 
depends on the following variables: mosquito density 
and biting rate, vector competence and survival rate as 
well as parasite development time within the mosquito 
(i.e. extrinsic incubation time) and human recovery rate, 
which are related to mosquito abundance, biology or 
physiology, and are linked to environmental conditions 
[13]. Mathematically, R0 is employed to characterize the 
possibility of a disease outbreak to occur if it exceeds 1 
(R0 > 1), and the possibility of the disease to die out when 
R0 < 1. The quantity R0 can also help in determining the 
initial exponential increase in the number of infection 
during the disease outbreak [15]. In regions with endemic 
vector-borne diseases, it possible to determine potential 
control actions by varying the magnitude of the thresh-
old value of R0 (usually 1). Such analysis provides appro-
priate guidance in the context of public health initiatives 
directed towards the reduction of the disease burden 
[14].

The control and eradication of infectious diseases are 
among the most important goals for improving public 
health. Although global eradication of communicable dis-
eases (e.g. smallpox) was achieved [16], it has been diffi-
cult to eradicate malaria and other vector-borne diseases. 
Several countries in Africa, through diverse intervention 
measures [usage of artemisinin-combination therapy 
(ACT), long lasting insecticide-treated nets (LLINs), 
indoor residual spraying (IRS), mass screening and treat-
ment (MSAT), etc.] have strengthened malaria control 
programs with perceptible triumph in decreasing both 
the disease incidence and sustained transmission. How-
ever, climate variability and changes associated to other 
factors are potentially redefining the conditions and areas 
of suitability and competence of malaria vectors and the 
risk of the disease as well as the sustenance of residual 
transmission [17, 18]. The most direct way in which cli-
mate change is projected to effect malaria is associated 
with the variation of ambient temperature. This climate 
variable has an impact on both the mosquitoes’ life-
history processes and the parasites development; which 
both contribute to malaria transmission [13].



Page 3 of 13Moukam Kakmeni et al. Int J Health Geogr  (2018) 17:2 

Geospatial science is currently offering new oppor-
tunities to infer spatial and temporal knowledge linking 
models that incorporate important disease characteristic 
patterns to modeling and mapping [19]. The outcomes of 
such models often yield potential zones of disease distri-
bution and vector occurrence [19]. In this context, differ-
ent modeling techniques have been used in mapping the 
spatial distribution of malaria vectors and transmission 
areas within local, regional and global scales [20–25]. In 
[26] advanced statistical techniques (non-linear discri-
minant analysis, random forest, and generalized linear 
model) were employed to investigate the environmental 
suitability in the Netherlands for three indigenous mos-
quito species. In [27] the annual entomological inocula-
tion rate for the Plasmodium falciparum transmitted by 
Anopheles gambiae was utilized as a proxy to map the 
intensity of malaria transmission in Uganda. Climate 
parameters coupled with areas of seasonal abundance 
were used for spatial simulations of key malaria vectors 
(A. gambiae and Anopheles arabiensis) in Africa [28, 29]. 
Justifications in undertaking these studies were to reduce 
the disease burden through knowledge and information 
dissemination to empower public health workers and 
policymakers in better approaches to management of 
malaria. Still in this direction, the present study uses tem-
perature-dependence aspect of the reproductive number 
obtained from dynamical mathematical network model 
to derive spatial distribution maps under different cli-
matic and intervention scenarios to understand and fore-
cast malaria transmission dynamics. The roles played by 
different interventions to control the disease and changes 
in temperature on the basic reproduction number are 
well analyzed.

Methods
Temperature data
The spatial simulation of R0 is made with temperature 
data obtained from WorldClim (http://www.worldclim.
org/) and CCAFS (Climate Change, Agriculture and Food 
Security; http://www.ccafs-climate.org) databases. Data 
for the year 2000 were used to analyze the present situa-
tion whereas simulated data for the year 2050 were used 
to represent future scenario. The data are layers (grids) 
with a spatial resolution of 2.5  min containing average 
minimum and maximum temperatures.

Mathematical model
Among existing mathematical models developed for 
malaria, the model of Ross and Macdonald [30], which 
has laid the foundation of majority of current epidemi-
ological models has attracted a lot of considerations. In 
conducting the spatial panorama of malaria prevalence in 
Africa under climate change and interventions scenarios, 

the Ross and Macdonald model [30] was selected. This 
model is entrenched on the assumption that at any given 
moment, an entire population of either humans or vec-
tors can be divided into distinct compartments made of 
the susceptible (those who are vulnerable to infection) 
and infectious (those that have acquired infection and 
are able to infect others). The infection spreads by ran-
dom contact between susceptible and infectious “com-
partments” of the human and mosquito populations 
[31]. The Ross–Macdonald model has two equations 
for describing the changes in the number of infectious 
hosts and vectors. The changes in the number of suscep-
tible hosts and vectors are implicitly modeled since the 
host and vector population sizes are kept constant [32]. 
The patchy model of the system was proposed in [33] by 
considering vectorial transmission. Such transmission is 
considered to be strongly correlated to climate variables, 
which heavily influence the distribution of vectors across 
geographical scales [11]. However, the extent to which 
current and future projections of temperature contrib-
ute to the patterns of disease prevalence is yet to be well 
established. This understanding is of great importance in 
evaluating and better preparing for future malaria trans-
mission/risk, and would inform strategies of address-
ing current residual malaria transmission in Africa. A 
multi-malaria model inter-comparison that considered 
the impact of climate change on the disease transmis-
sion at global scale is presented in [18]. Herein, we use 
a patchy process-based model that accounts for both the 
vector and parasite influences. From the model, the basis 
basic reproduction number R0 was derived and used to 
project the disease transmission at scale. Then the result 
was reproduced at country level to both analyze climate 
change and intervention impacts on the population. The 
latter factor, which is often neglected in most studies was 
considered here as the element that brings originality 
into the present research. In this framework, the Ross–
MacDonald model in patch environment is described by 
the following equations [33].

The variables ui and vi are the numbers of infected host 
and vector respectively, in each patch. Without the loss of 
generality, the following variables were kept constant in all 
patches and are defined as: a is the biting rate of the vec-
tor, p is the probability that the bite of infectious vector 
will lead to the successful infection of a susceptible host, 
q is the probability that a susceptible vector that bites an 
infectious host will become infected, ξ is the rate at which 
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infectious hosts recover, δ is the mortality rate of infected 
vectors and, MHi represents the total host population in 
patch i, and MVi is the vector population in patch I; mij is 
the migration rate from patch i to patch j with i ≠ j.

Basic reproduction number in patches environment
The basic reproduction number generally represented by 
R0 is a fundamental quantity in the study and analysis of 
mathematical models in epidemiology. R0 is commonly 
defined as the number of secondary cases that can be 
produced by one case of an infected individual in a com-
pletely susceptible population. The general framework 
for the determination of the basic reproduction number 
can be found in [15]. R0 is presented for different disease 
transmission models based on a system of differential 
equations. The expression of R0 for the patchy Ross–
Macdonald model presented above is given in [33]. To 
observe the effect of the coupling model components, we 
sequentially analyzed the model with single and double 
patches. The expression of the basic reproduction num-
ber for a single patch is given by [32]:

With double patches, the expression of the basic reproduc-
tion number is more complex and is given as follows [33]:

The m12 and m21 are the migration rates from patch 1 to 
patch 2 and from patch 2 to patch 1 respectively, MV1

 and 
MV2

 are the vector population densities in patch 1 and 2 
respectively, while MH is the total host population per patch.

Two cases were considered in the analysis:

1.	 If the population is distributed uniformly, then the 
migration parameters are set to m12 = m21 =  k. In 
this instance, the identical proportion of vector pop-
ulation migrates from one patch to another, while 
keeping the overall populations at individual patches 
constant. Under this assumption the formulation of 
the basic reproduction number is given by:
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2.	 Here, the population is distributed uniformly, 
however, the migration parameters are different 
(m12 ≠ m21) and the population of infected vectors in 
one of the patches is set to 0. This case depicts a situa-
tion whereby the population of infectious mosquitoes 
in one patch is maximum and null in the other patch. 
With these considerations, the expression of the basic 
reproduction number, which depends on coupling 
and other parameters of the system, is given by:

The existence of an endemic equilibrium in the model is 
guaranteed when R0 > 1 [34]. The control of vectors con-
tribute to the decrease of vector-host ratio, which reduces 
the basic reproductive ratio of the pathogen; then decreases 
the equilibrium number of infectious hosts and vectors. 
Therefore, for successful disease control, the vector popula-
tion density has to be reduced at least to a level below the 
entomological threshold that is mathematically expressed as:

Parameterization of the reproductive number
To parameterize the reproductive number, we opted to 
undertake a literature search. In Eq. (3), there are 10 vari-
ables, among which five are found to be dependent on 
temperature. They have been well described by authors 
in [34]. Therefore, under the assumptions that vectors 
and parasites are dependent on temperature, the function 
to represent the reproductive number as temperature 
dependent for a single patch is given in Eq. (8) below:

Similarly R0 for two patches is obtained by:
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In this Eq.  (9), other parameters ξ, m12, m21, and MH 
are kept constant. In [13], the optimal temperature for 
malaria transmission was estimated at around 25  °C. 
This estimate is close to the values obtained from a study 
on entomological inoculation rates [35]. Hence, for our 
parameterization we opted for the approach proposed 
by [13] in which a constant number of vector popula-
tion density is assumed in each patch. The quantity 
MVi(T) (i = 1,2) is estimated as:

EFDi(T) is the number of eggs laid by a vector per day, 
PEAi(T) is the probability that an egg survives to become 
an adult mosquito vector, and τEAi(T) is the duration of 
egg to adult development in each patch i. The relation 
p(T )q(T ) = φ(T )e−δ(T )EIP(T ) expresses the product of 
the probability that the bite of an infectious vector will 
lead to the successful infection of a susceptible host p, 
and the probability that a susceptible vector that bites 
an infectious host will become infected q with the vec-
tor competence φ(T). The mortality rate is δ(T) and the 
extrinsic inoculation rate is EIP. Using relation (9) and 
replacing the parameter time by rate, the complete tem-
perature dependent R0 for malaria can be described as 
per the following cases:

When the system has only one patch Eq. (2) is given by:

When the system possesses two patches, then two sub-
cases are generated and their equations are:
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Table 1 is the summary of the temperature dependent 
expressions of R0 parameters. They were obtained from 
the analysis described in Mordecai et al. [13].

Spatial projection of the reproductive number
Many countries in Africa experience a spatial variation 
of temperatures and the predictions of humidity and 
precipitation are highly uncertain, here temperature was 
considered as a key factor. The selection of temperature 
alone is further justified by the fact that a small increase 
in the value of this variable leads to a significant increase 
in malaria vector development time and in the frequency 
of blood feeding in adults [36]. It has been well estab-
lished that the parasites responsible for malaria occur-
rence are transmitted to their hosts during blood meals 
by female vectors [36]. Therefore, to regionally map R0, 
the monthly max and min temperatures are simulta-
neously extracted from the databases and their aver-
age estimated. The obtained information is organized 
into matrices with longitude as the column and latitude 
as the row. A point object, representing the tempera-
ture dependent mathematical expression of R0 is gener-
ated and applied in each geographical coordinate. A new 
matrix is formed with the values of the R0 in the respec-
tive geographical coordinates. The results are converted 
to American Standard Code for Information Interchange 
(ASCII) files and transferred to an open source software 
Q-GIS [37] for visualization of the potential risk areas of 
malaria transmission under selected climate scenarios. A 
similar approach was used for the intervention scenarios. 
Overall, the method exploits the spatial variation of tem-
perature to provide geographical predictions.

Climate change and intervention scenarios
The choice of scenarios was guided by the availability of 
datasets, which were obtained from WorldClim (http://
www.worldclim.org/) and CCAFS (Climate Change, 
Agriculture and Food Security) (http://www.ccafs-cli-
mate.org) databases. Downscale datasets for the year 

Table 1  Temperature dependent parameters [13]

More details about the derivation and errors calculations can also be found in supplementary materials [13]

Variables Definition Mathematical expression Estimate of parameters

a Biting rate cT(T − T0) (Tm − T)1/2 c = 0.000203; Tm = 42.3; T0 = 11.7

φ Vector competence qT2 + rT + s q = − 0.54; r = 25.2; s = − 206

δ Adult mortality rate [ln(qT2 + rT + s)]−1 q = − 0.000828; r = 0.0367; s = 0.522

PDR Parasite development rate cT(T − T0) (Tm − T)1/2 c = 0.000111; Tm = 34.4; T0 = 14.7

EFD Eggs laid per adult female per day qT2 + rT + s q = − 0.153; r = 8.61; s = − 97.7

PEA Egg-to-adult survival probability qT2 + rT + s q = − 0.00924; r = 0.453; s = − 4.77

MDR Mosquito development rate cT(T − T0) (Tm − T)1/2 C = 0.000111; Tm = 34; T0 = 14.7

http://www.worldclim.org/
http://www.worldclim.org/
http://www.ccafs-climate.org
http://www.ccafs-climate.org
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2050 (future climate) of the SRES-A1B [38] was chosen 
for the analysis.

To take into account the contribution of different inter-
ventions on the burden of malaria in Africa for our pro-
jections, we identified studies that recorded trends in the 
disease indicator over a period of time [39]. The study 
demonstrated that vector control has immensely con-
tributed to the decline of the burden caused by malaria 
in sub-Saharan Africa. With the selected modeling 
framework, four parameters (mosquito biting rate a, vec-
tor competence bc, adult mosquito mortality rate µ, and 
the probability that mosquito eggs survive to become 
adult PEA), which are directly linked to malaria vectors 
population were adjusted based on intervention effects. 
The application of the interventions criteria on these 
parameters has a direct impact on the amplitude of the 
basic reproduction number R0. The following two inter-
vention scenarios were adopted: (1) uniform application 
of 40% reduction in the amplitude of a, bc,µ and PEA 
respectively; and (2) selection of two African countries 
and reducing the magnitude of a, bc,µ and PEA by up to 
40% (Cameroon) and 80% (Kenya) [40, 41]. The baseline 
for the beginning of interventions was set to year 2000. 
Year 2050 represents the future scenario to measure the 
impacts of the interventions. In the analysis, the temper-
ature values of the years 2000 and 2050 were successively 
replaced by the variable T in the mathematical expression 
of the reproductive number R0.

Model validation
The process of determining the degree to which the simu-
lated regional maps are accurate was conducted through 
comparison of observed risk areas for malaria transmis-
sion as described in [17, 42] with the maps of the basics 
reproduction rate R0 obtained from the present analysis. 
The P. falciparum entomological inoculation rate (PfEIR) 
is a measure of the proportion of exposure to infectious 
mosquitoes [27]. It is often translated as the amount of P. 
falciparum infective bites received by each human within 
a season or annually [27]. The synthesis of Annual P. fal-
ciparum Entomological Inoculation Rates (APfEIR) data 
found in the literature of 22 spatially distinct records in 
Africa, post-1980, across the continent was used to com-
pare the values of R0 obtained from our model [17, 42].

Results
In the present context, the basic reproduction number R0 
is used as a tool in evaluating and predicting risk zones 
for malaria transmission. High values of R0 (>  1) corre-
spond to malaria risk zones. Our results indicate that for 
a population density of MH = 100 and an immunity coef-
ficient of ξ =  0.1, the values of R0 range between 0 and 
9. Such values provide an overall view of the intensity of 

malaria transmission in the region. The areas in Africa 
where R0 was close to the value 9 correspond to loca-
tions with high malaria prevalence. The value of R0 tends 
to zero in areas with low risk of malaria transmission. 
The maximum values of R0 are obtained at the locations 
where the optimal temperature for malaria transmission 
is about 25 °C.

In the case of one patch, the graph of R0 is represented 
in Fig. 1a. For two patches, if m12 = m21, the value of the 
basic reproduction number doubles. When m12 ≠  m21, 
we set m12 = α m21 and substituted it in Eq. (3) and then-
plotted R0 in three dimensions as presented in Fig.  1b. 
The result of the simulation was quite interesting as high-
lighted herein. In Fig. 1b, it was observed that as the ratio 
of the migration between the two patches increases, the 
basic reproduction number decreases up to a threshold 
value α =  5. Furthermore, an increase of the value of α 
does not change the value of R0. In this circumstance, the 
numerical value of R0 obtained when α > 5 (i.e. where the 
basic reproduction number converge) is identical to the 

Fig. 1  a Plot of the basic reproduction number R0 expressed as a 
function of temperature and b 3D plot of the temperature-depend-
ent basic reproduction number R0 for two patches as a function of 
the migration ratio between the patches
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value estimated by Ross–Macdonald model with a single 
patch. Whenα = 1, the basic reproduction number is the 
double of the critical value of R0 obtained at α > 5.

It was observed that the introduction of the coupling 
between the patches only has effects on the amplitude 
of R0 and not the optimal temperature for the transmis-
sion of malaria. In order words, a model with one or 
two patches will produce almost similar outcomes when 
projected spatially. Based on these results, we decided 
to limit the production of the spatial distribution map 
of the basic reproduction number R0 to a single patch 
model given by Eq. (11). The distribution maps predicting 
the values of R0 in Africa are shown in Figs. 2 and 3. The 
predictions comprehensively match the known distribu-
tion map for malaria transmission and endemic zones in 
Africa.

The map representing the present distribution (Fig. 2a) 
inferred by the degree of magnitude of R0 indicates 
greater values in most malaria endemic regions such as 
west and central Africa. The magnitude of R0 consider-
ably reduced as we move northward and southward and 
became almost close to zero in the temperature regions 
of northern and southern parts of Africa, which are cur-
rently characterized by a very low level of malaria trans-
mission. A similar trend is observed in the highlands of 
eastern Africa, South Africa, western Cameroon, central 
Angola and the plateau of Madagascar.

For future projection (2050), we observe a shift in areas 
of transmission of the disease towards the northern and 
southern regions of Africa (Fig. 2b). A projection of the 
developed model indicates a high risk of transmission 
and establishment of the disease in these regions. Malaria 
transmission will remain present in regions close to the 
equator. The future scenario also indicates that the level 
of malaria transmission in the Sahara Africa will highly 
reduce.

The changes in the values of R0 due to the temperature 
change between the years 2010 and 2050 are presented in 
Fig. 2c. The map displays the difference ΔR0 = R01 − R02, 
where R01, is the basic reproduction of the baseline sce-
nario obtained by replacing the variable temperature 
with the values of the year 2000 and, R02 the malaria 
transmission map for future scenario corresponding to 
substituting temperature with the values of the year 2050. 
Two classes of singularities are observed on the map: (1) 
areas where there will be an increase in the value of R0, 
and (2) areas in which R0 values decrease considerably. 
The increases in the values are found in regions mores 
close to the equator and at the Horn of Africa. The south-
ern and northern regions of Africa are also of great con-
cern given the observed increase in value of R0 (Fig. 2c), 
which demonstrates a possibility of disease endemicity in 
these areas.

The effects of interventions were computed from the 
subtraction of the baseline (year 2000) map to future 
scenario (2050) map, in which changes in the ampli-
tude of certain models parameters as described above 
were made. By including intervention measures into 
the model, most of the regions are likely to experience 
a decrease in the values of R0 (Fig. 2d). The central and 
eastern African highlands and the southern regions of 
Africa are with the least decline in R0 values. Current 
steady areas where malaria is endemic are character-
ized by values of R0 that tend to zero; justifying the 
efficiency of the interventions in reducing the disease 
burden.

The maps of two selected countries with different 
intervention levels are presented in Fig.  3. This analy-
sis was carried out in order to observe the effect of the 
intervention at the local scale. For Cameroon, a large 
variation in the value of R0 is observed in western high-
lands and Adamawa Region (Fig.  3a, b). The magnitude 
of the difference ΔR0 varies from − 4.5 to 4. We defined, 
ΔR0I = R01 − R02I as the difference between the values of 
the reproduction number obtained for the baseline (the 
year 2000) and future scenario (the year 2050) with and 
without interventions; respectively. The application of 
the intervention measures considerably decreased the 
magnitude of ΔR0I as many points on the map have nega-
tive values. These values range between −  6.4736 and 
−  0.0029. The smaller the value of ΔR0I, the higher the 
impact of the intervention(s).

The maps of Kenya (Fig. 3c, d) indicate the values of ΔR0 
ranging between − 4.00 and 4.00. By applying the inter-
vention measures, the changes in the areas of prevalence 
between 2000 and 2050 (ΔR0I) ranges from −  8.4188 to 
0.0052. The lowest magnitude in the change of the val-
ues of the basic reproduction number was observed in 
highland areas of the countries. Overall, the changes in 
the values of R0 are more pronounced in Kenya than in 
Cameroon as Kenya may have benefited from high level 
of interventions than Cameroon.

To further confirm the performance of our approach, 
we overlaid the entomological APfEIR survey data with 
the magnitudes of the basic reproduction number. By 
considering a region with the APfEIR value greater than 
0 as endemic, and if APfEIR  <  1, the region is moder-
ately endemic. APfEIR > 10 were predicted for areas with 
very high risk of the disease transmission. In Table  2 
the summary of the basic reproduction numbers com-
puted for sites specific to the values of APfEIR are pre-
sented. The values of the basic reproduction number are 
large enough in all sites corresponding to high values of 
APfEIR. Overall, the maps of R0 for malaria endemic-
ity revealed minimal bias with predicted APfEIR map. 
Nevertheless, the present map with R0 has the general 
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Fig. 2  Maps illustrating the spatial distribution of malaria transmission using the basic reproduction number R0 derived from a mathematical 
model. a Distribution of the baseline scenario obtained by replacing the variable temperature with the values of the year 2000; b malaria trans-
mission map for future scenario corresponding to substituting temperature with the values of the year 2050. c, d Differences on the values of R0 
between the baseline (year 2000) and future scenario (2050) without (c) and with (d) interventions respectively. Without intervention means only 
the predicted values of temperatures are substituted into the expression of R0 while with interventions signify that in addition to replacing the val-
ues of temperatures with the predicted values of the year 2050, a changes in the values of four model parameters (per mosquito biting rate a, the 
vector competence bc, the adult mosquito mortality rate µ, and the probability that mosquito eggs survive to become adult PEA) were conducted
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tendency to overestimate prevalence by R0. The match-
ing between predicted map of R0 and the estimates of 
APfEIR map indicate consistent agreement in the 2 
parameters.

Discussion and conclusion
Climate variables play an important role in the dynamics, 
distribution, and transmission of vector-borne diseases 
such as malaria. Although rainfall is critical in providing 

Fig. 3  Zooming in at country level to illustrate the spatial distribution of malaria transmission inferred by the basic reproduction number R0. It 
shows the changes in the values of R0 computed from the subtraction of the baseline (year 2000) to future scenario (2050) without (a, c) and with 
(b, d) interventions for Cameroon and Kenya respectively. The interventions scenarios were deduced by reducing the magnitude of certain values 
of the model parameters by up to 40% (Cameroon) and 80% (Kenya) respectively
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suitable habitats for mosquitoes to breed, it explains little 
additional variance in malaria transmission; and there-
fore temperature is a key driver that affects the essential 
processes of mosquito biology and parasite life cycle [13]. 
To be more specific, temperature determines transmis-
sion intensity, including mosquito development rate, bit-
ing rate, and survival of the parasite within the mosquito 
[11, 43]. Because of the compatibility and relevance of 
including temperature data into dynamical mathematical 
models, the study here only accounted for temperature as 
the main climatic variable.

Mathematical models are generally an abstraction of 
reality. They have the ability to address the problem in 
form of equations that capture important linkages of 
complex transmission dynamics of the disease, which 
cannot be unraveled using laboratory and ecological 
experiments [44]. The basic reproduction number R0 
determines the threshold values for which, disease mod-
els exhibit changes in their stabilities [45]. The analyses 
presented in [45] highlighted that, R0 can provide a rea-
sonable estimate of the reduction level of malaria trans-
mission intensity and therefore it offers a good measure 
to use as proxy for understanding and analyzing pos-
sible options to eliminate the disease [45]. However, 

the transition from malaria-free to an endemic area is 
generally associated to different types of bifurcations. 
Bifurcation arises when a slight increase/decrease in the 
magnitude of model parameter values triggers a sudden 
topological change in the disease trend. Traditional math-
ematical models often consider one endemic equilibrium 
when R0 > 1, which is translated to a stable disease-free 
equilibrium for R0 < 1 and unstable when R0 > 1 [46]. In 
such context, the bifurcation leading from a disease-free 
equilibrium to an endemic equilibrium is considered for-
ward. Backward bifurcation occurs when the condition 
R0  <  1 cannot be used alone to explain all the required 
disease elimination efforts. In such case, a backward 
bifurcation point should be identified and the thresholds 
of the values of R0 defined for the effective control of the 
disease. A backward bifurcation point co-exists with the 
stable disease-free equilibrium [46–48]. Such phenome-
non has important public health implications because the 
condition of having R0 below unity will no longer be suf-
ficient to guarantee the disease elimination; hence a new 
threshold for the basic reproduction number should be 
estimated and considered as the critical point, in which 
the elimination of the disease can be possible [47, 48]. 
The hypothesis of making m12 =  α m21 helped to esti-
mate the magnitude of the threshold (α) whose slight 
increase in the magnitude of its estimated value produces 
a decrease of R0 and hence create the possibility to obtain 
a globally stable endemic area of malaria. In contrast, the 
disease persists endemically in all cases when R0 > 1. In 
the process of using R0 to estimate the spatial representa-
tion of malaria transmission areas, an increase in the dif-
ference of R0(ΔR) does not necessarily indicate that the 
areas in the map are an endemic zone of the disease. In 
fact, changes of the state of malaria transmission could 
be noticed for values of R0 less than unity.

Temperature was used to parameterize the expres-
sion of R0 in patches environment for understanding 
the dynamics of malaria transmission and later gen-
erate maps for the disease risk areas in Africa. Biting 
rate, vector competence, adult mortality rate, parasite 
development rate, eggs laid per adult female per day, 
egg-to-adult survival probability, and mosquito develop-
ment rate were expressed as dependent on temperature, 
hence the parameters help to include a climatic variable 
into the expression of R0 [13]. Combining these ther-
mal responses constrained from high to low limits into 
a spatial distribution of temperature values yielded maps 
showing areas of potential transmission of malaria. The 
obtained maps of R0 agree to a certain level with exist-
ing malaria risk maps of Africa obtained from an experi-
mental study such as the MARA maps [42]. The present 
results further agree with the spatial distribution map of 
P. falciparum malaria endemic areas in Africa [49]. The 

Table 2  Summary for validation of the map comparing the 
APfEIR with the predicted value R0 by site [43]

Site Latitude Longitude APfEIR R0

Cotonou-Centre 6.35 2.43 39.06 8.28

Koubri 12.15 − 1.38 441.6 6.81

Gisenga − 4.44 29.67 251.7 5.54

Mutengene, Molyko, Likoko, 
Vasingi

4.08 9.3 160 8.61

Kulila − 4.17 12.43 397.9 7.39

Kinshasa, rural area − 4.47 15.31 620.5 8.64

Alloukoukro 7.8 − 5.08 231.5 8.37

Abheet 29.42 30.83 1.8 3.19

Magdalena Mora 3.73 8.8 598.14 8.08

Franceville, Akou suburb − 1.63 13.45 81.8 8.29

Madina 13.52 − 15.25 177 7.24

Kassena Nankana District 10.76 − 1.44 418 6.71

Kenyawegi − 0.92 34.67 259.9 8.69

Yakepa, close (< 3 km) 7.56 − 8.55 3.65 7.87

Ambodifotatra & Lonkintsy − 16.98 49.86 92 8.05

Bamako, Sotuba sub 12.65 − 7.93 3.59 7.60

Matola − 25.95 32.45 52.85 6.46

Lagos, Lemu suburb 6.47 3.37 48 8.01

Barkedji 15.28 − 14.87 114 6.15

Kpetema 8.13 − 11.5 240.9 8.67

Asar 13.75 35.25 0.59 5.89

Kasiga − 4.82 38.23 620.5 8.00
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model predicted numerous regions with R0 greater than 
unity because of the clumping effects of spatial mod-
els [50]. The accuracy of our model is enshrined in the 
capacity of reproducing almost all known regions at 
risk of malaria, which were the same as that identified 
by various other models [42]. The estimates of the basic 
reproduction number magnitudes for randomly selected 
points in Africa compared to APfEIR further confirmed 
the accuracy of the approach used. But the variations 
between APfEIR and the values of R0 in endemic areas 
were substantial due to the short-range heterogeneity 
used in the computation of R0 compared to the patchy 
distribution of the field datasets. Usually, APfEIR are 
computed with data obtained from disparate health 
units within the region to characterize the point location, 
whereas the values of R0 is estimated based on the exact 
values of the temperature at point location represented 
by its geographical coordinates.

In literature, several studies have used different 
approaches to tackle problems similar to the current 
study. For instance, Craig et  al. [42] have proposed a 
“fuzzy logic” model for the distribution of stable malaria 
transmission in sub-Saharan Africa. However, the model 
development required detailed information, not always 
available in all localities of Africa. The study in [49] inter-
polated the probabilities of P. falciparum entomological 
inoculation rate (PfEIR), P. falciparum basic reproduc-
tive number (PfR), and P. falciparum parasite rate (PfPR) 
to generate the map for each quantity, which were 
then combined to yield the malaria transmission map. 
Although the outcome was realistic, the method did not 
include the dynamics of malaria vectors and parasites. 
Other studies [28, 29] used CLIMEX model, a platform 
designed to infer species responses to environmental 
conditions and climatic parameters to produce potential 
distributional maps of disease occurrence. The authors 
only focused on A. gambiae and A. arabiensis distribu-
tions to infer malaria transmission, with no consideration 
of the parasites. Overall, malaria parasite transmission 
intensity is spatially heterogeneous and this heterogeneity 
has important implications for risks and age patterns of 
progression from malaria infection to disease, infirmity, 
morbidity, and death [51]. The present study is among 
the very first investigations that define the limits of con-
temporary malaria transmission, using the basic repro-
duction number derived from a dynamical mathematical 
model. The authors in [14] used a similar approach but 
limited the study to expected changes in transmission at 
the Republic of Tanzania. In addition, the models used by 
Parham and Michael [14] failed to predict accurately the 
optimal value of temperature for malaria transmission, 
thus producing maps with false high magnitude areas of 
malaria transmission. Studies using approaches similar to 

what is presented here were applied to map bluetongue 
virus in the Netherlands [52]; to develop a temperature-
driven map of the emerging tick vector of Lyme disease 
Ixodes scapularis in Canada [53], and to assess the effect 
of climate change in the risk of Chagas disease transmis-
sion in Colombia [54].

The link between climate change and vector-borne dis-
eases such as malaria is well established [55]. Although 
other studies highlighted the importance of climate 
change on the burden of malaria in Africa [56, 57], few 
researches have considered temperature as a paramount 
climatic factor and used it to predict future changes in 
malaria transmission. Our findings showed that changes 
in the magnitude of temperatures are likely to create a 
shift in the distribution of malaria-endemic areas than to 
expand its geographic ranges. This finding concurs with 
the results reported in [57]. A similar observation was 
also reported in studies by [28, 29]. It is important to note 
that, in cases where temperature extremes set boundaries 
on the vectors distributions, climate change might alter 
the range (in altitude or latitude) of favorable environ-
mental conditions for the malaria vectors and the para-
sites. We noted that the greatest effect of climate change 
on malaria is likely to be observed at a temperature equal 
to 25  °C, corresponding to the favorable conditions for 
disease transmission. The optimum temperature value 
for malaria transmission has been estimated based on 
the vectors and parasites biological characteristics. With 
species evolution and under certain circumstances, the 
vectors and parasites could undergo some genetic modi-
fications in order to adapt to current environments with 
different optimum temperatures. With this hypothesis, 
the range for the shift of malaria transmission/endemic 
areas will be less than predicted. In addition to the direct 
influence of temperature on the biology of vectors and 
parasites, changing precipitation patterns could also 
have short- and long-term effects on vector development 
[17]. A recent analysis of global mean surface precipita-
tion over the period 1901–1995 indicates that precipita-
tion trends vary across Africa. Precipitation appears to be 
increasing in east Africa but decreasing in western and 
northern part of the continent [17]. These are common 
observations that if actualized, may reduce the level of 
certainty on our findings.

The study reported in [20] assessed the contribution of 
different malaria interventions and revealed a consider-
able fall in malaria burden in sub-Saharan Africa begin-
ning to the year 1980. The decline of malaria burden is 
partly due to a number of vector control tools [insecti-
cide-treated nets (ITNs), indoor/aerial spraying and 
other], which have been developed and extensively used. 
Improvement in diagnosis and treatment has also con-
tributed to the decline of the malaria burden. However, 
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the hypothesis supporting the introduction of interven-
tions here emphasized more on the vector control aspect, 
which is justified by selecting model parameters (mos-
quito biting rate, vector competence, adult mosquito 
mortality rate, and the probability that mosquito eggs 
survive to become adult) that directly affect malaria vec-
tors for manipulations. Depending on the disease ecol-
ogy and the policies of the government in each country, 
the control of malaria often uses multiple intervention 
measures packaged in an integrated vector management 
strategy. With the developed model, it was found that if 
the rate of interventions continues as present, a consid-
erable reduction of malaria transmission is likely to hap-
pen by the year 2050 in Africa. However, focusing at an 
individual country such as Cameroon, in which the latest 
report is dated 2004 [41]; our findings only revealed a lit-
tle decline in the prevalence of malaria. Such an outcome 
may be attributed to the lack of adoption and failure 
to implement the Abuja plan of action [40, 41] and the 
low number of projects and research activities directed 
towards reducing malaria burden as compared to other 
regions of Africa. On the contrary the application of 
intervention measures has substantially contributed to 
the reduction of the burden of malaria in several areas of 
Kenya, with up to 70% decline in malaria morbidity. An 
identical projection was obtained by the current study. 
Moreover, it is important to acknowledge that the exist-
ence of diverse malaria environments in Africa, each 
requiring focal intervention packages to achieve success 
in disease control. Herein, interventions were applied 
identically for each country creating a possibility of bias 
in the overall results.

In summary, by applying the basic reproduction num-
ber R0 derived from a dynamical model in patches envi-
ronment, the map of malaria transmission intensity was 
obtained. The findings in this research could constitute 
a realistic basis for understanding the interactions and 
complexities between the disease (malaria), its vectors 
and the parasites. Including interventions in the analysis 
allowed to measure the level at which, continued efforts 
made by different governments in Africa have so far con-
tributed to the reduction of the malaria burden. Consid-
erable, complementary and concurrent efforts are still 
needed in the drive towards malaria eradication, espe-
cially in the context of climate change.
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