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Abstract 

Background:  Undernutrition among children under 5 years of age continues to be a public health challenge in 
many low- and middle-income countries and can lead to growth stunting. Infectious diseases may also affect child 
growth, however their actual impact on the latter can be difficult to quantify. In this paper, we analyse data from 20 
Demographic and Health Surveys (DHS) conducted in 13 African countries to investigate the relationship between 
malaria and stunting. Our objective is to make inference on the association between malaria incidence during the first 
year of life and height-for-age Z-scores (HAZs).

Methods:  We develop a geostatistical model for HAZs as a function of both measured and unmeasured child-spe-
cific and spatial risk factors. We visualize stunting risk in each of the 20 analysed surveys by mapping the predictive 
probability that HAZ is below − 2. Finally, we carry out a meta-analysis by modelling the estimated effects of malaria 
incidence on HAZ from each DHS as a linear regression on national development indicators from the World Bank.

Results:  A non-spatial univariate linear regression of HAZ on malaria incidence showed a negative association in 18 
out of 20 surveys. However, after adjusting for spatial risk factors and controlling for confounding effects, we found 
a weaker association between HAZ and malaria, with a mix of positive and negative estimates, of which 3 out of 20 
are significantly different from zero at the conventional 5% level. The meta-analysis showed that this variation in the 
estimated effect of malaria incidence on HAZ is significantly associated with the amount of arable land.

Conclusion:  Confounding effects on the association between malaria and stunting vary both by country and over 
time. Geostatistical analysis provides a useful framework that allows to account for unmeasured spatial confounders. 
Establishing whether the association between malaria and stunting is causal would require longitudinal follow-up 
data on individual children.
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Background
Undernutrition underlies 45% of all child deaths among 
children under 5  years [1]. A very low height-for-age, 
usually referred to as stunting, is an important indicator 
that reflects the cumulative effects of undernutrition and 
disease infections [2]. Stunted children are more prone to 
illness and premature death. Stunting among children is 
known to be associated with poor cognitive development 

[3, 4]. Long-term consequences of stunting include lower 
adult economic productivity, higher risks of ill-health 
and, among women with short stature, an increased risk 
of death during delivery [5–8]. Globally, the rate of stunt-
ing in children under 5  years reduced from 32.7% (198 
million) in year 2000 to 23.2% (156 million) in year 2015 
[9]. In Africa however, the rates reduced from 38% in 
2000 to 32% in 2015, representing more limited progress 
than in Asia, Latin America and the Caribbean where 
stunting rates dropped by more than one third over the 
same period [9]. In many low- and middle-income coun-
tries (LMICs), over 50% of 12–23  months old children 
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are stunted [10–12]. In 2014, less than half of all chil-
dren under 5  years lived in LMICs, yet these countries 
accounted for two-thirds of all stunted children globally 
[13]. Although the main risk factor for stunting is inad-
equate nutrition, exposure to infectious diseases may 
also lead to an increase in stunting risk [14, 15]. However, 
there are indirect effects of malaria not fully understood 
[16, 17], and it is unclear if part of the stunting burden 
can be attributed to malaria.

Malaria is still a public health threat, although the 
ongoing global fight against it has resulted in 50% 
decrease in the infection prevalence and 40% decrease 
in the clinical incidence in the endemic region of Africa 
between 2000 and 2015 [18]. In 2015, there were an esti-
mated 214 million malaria cases and 438 thousand deaths 
from malaria worldwide, of which 88% occurred in sub-
Saharan Africa and 70% in children under the age of 5 
years, with 10% of all deaths in children under the age of 
5 years due to malaria [19]. In 2017, similar global esti-
mates were reported: 216 million malaria cases and 445 
thousand malaria deaths, of which 91% occurred in sub-
Saharan Africa, with most of the deaths still occuring 
in children under 5  years [20]. The association between 
malaria and stunting is unclear and still a matter of 
debate, with studies showing contrasting results. For 
example, maternal malaria has been found to impact on 
child growth [21], with infants born to women who expe-
rienced malaria during pregnancy having an increased 
risk of impaired height and weight gain [22–25]. The risk 
of stunting has been found to increase for every malaria 
episode [26]. On the other hand, some studies suggest 
that stunting may modulate susceptibility to malaria, 
especially during the first 2 years of life [27, 28]. Whilst 
some studies suggest that stunted children may be at 
higher risk of developing malaria episodes [29], others 
report that stunting may have a protective effect against 
malaria [30, 31]. In other studies, instead, no association 
is found [32, 33]. More recently, Fink et al. [34] found a 
significant effect of malaria exposure on cognitive devel-
opment and socio-emotional development, but not on 
height, for which they report an estimated effect of about 
3.000 and associated 95% confidence interval (− 11.350, 
4.606).

The height-for-age Z-score (HAZ) measures the devia-
tion from heights based on the World Health Organi-
zation (WHO) growth standards [35, 36] and are 
comparable across ages and gender. Values of HAZ below 
−  2 are used as an indicator of stunted growth. In this 
paper, we analyse data from 20 Demographic and Health 
Surveys (DHS) conducted in Senegal, Mozambique, 
Ghana, Burkina Faso, Zambia, Malawi, Rwanda, Cote 
d’Ivoire, Burundi, Liberia, Namibia, Togo and Tanzania 
to pursue the following objectives: (1) to investigate the 

association between malaria and HAZ by developing a 
geostatistical framework that accounts for both meas-
ured and unmeasured risk factors for stunting; (2) to 
understand how such association varies across the Afri-
can countries considered in this study; (3) to map the risk 
of stunting. We also discuss the limitations of this study 
and provide a detailed description on how the proposed 
modelling framework could be further extended to a lon-
gitudinal setting. To the best of our knowledge, this is the 
first study that investigates the association between the 
geographical distribution of malaria and HAZ using a 
model-based geostatistical approach.

Methods
Data
DHS are nationally representative household surveys that 
are generally repeated every 5  years and provide infor-
mation on a range of health and population indicators, 
including anthropometric information. The DHS meth-
odology is usually based on a stratified two-stage cluster 
design. At the first stage, enumeration areas are drawn 
from census files. At the second stage, for each enumera-
tion area selected, samples of households are drawn from 
an updated list of households to form groups of house-
holds known as sampling clusters. The GPS location of 
the center of each sampling cluster is taken as the cluster 
location. Each child is allocated to a spatially-referenced 
sampling cluster. We analyse data from 20 DHS con-
ducted between 2003 and 2014 [37]. Table  1 shows the 
number of clusters and individuals for each survey. The 
average number of children per cluster varies from one 
survey to another, with the highest value of about 21.7 in 
Burkia Faso in 2003 and the lowest of about 5.7 in Malawi 
in 2010.

The variables used in the analysis are the following.
Child-specific variables Data on a child’s height, age 

and gender, family’s wealth index and mother’s educa-
tion level were obtained from the DHS for all sampled 
children aged less than 5 years. Families’ wealth indices 
are constructed using principal component analysis on 
household’s ownership of television, radio, watch, vehi-
cles and agricultural land, type and number of animals 
owned, bank account, materials used for housing con-
struction, type of water access and sanitation facilities 
[38].

Urban extent indicator We use information on urban 
extents, available as raster data at a spatial resolution of 1 
km by 1 km, from the Global Rural-Urban Mapping Pro-
ject [39]. This variable is a binary indicator that classifies 
each spatial grid cell as urban or rural, based on a combi-
nation of population counts, settlement points, and pres-
ence of night-time lights.
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Estimated malaria incidence rates We use raster data 
on estimated Plasmodium falciparum incidence as 
obtained from a Bayesian spatio-temporal model imple-
mented by the Malaria Atlas Project [18]. The data are 
available at a temporal resolution of 1 year, from 2000 to 
2015, and a spatial resolution of 0.05° × 0.05°. More spe-
cifically, the estimated Plasmodium falciparum malaria 
incidence at pixel-level is the predicted average clini-
cal incidence rate per child per year in the age cohorts 
0–5  years. A clinical malaria episode is an attributable 
febrile episode with a body temperature in excess of 
37.5  °C. Multiple bouts of symptoms occurring within a 
30-day period are counted as a single episode.

Model formulation and spatial prediction
Accounting for spatial effects is crucial in order to deliver 
valid inferences on the regression coefficients [40]. 
Model-based geostatistics allows us to incorporate both 
explained and unexplained (residual) spatial variation 
in HAZ and to predict the risk of stunting throughout a 
geographical area of interest.

Let Yij denote the HAZ for the j th sampled child at the 
cluster location xi. We distinguish between two sources 
of variation in HAZ: between-cluster variation, induced 
by spatially varying risk factors; and within-cluster vari-
ation due to child-specific characteristics. Each of these 
components depends on both measured and unmeasured 

risk factors. In order to account for the latter, we define 
a hierarchical linear model as follows. Let S(xi) denote 
a stationary Gaussian process and Ui represent mutually 
independent zero-mean Gaussian variables with com-
mon variance τ 2. We assume that, conditionally on S(xi) 
and Ui, the Yij are Gaussian variables with means µj(xi) 
and variance ω2, where

In (1), n is the number of cluster locations and mi is the 
number of individuals at cluster location xi. In (1) we 
also distinguish between three types of explanatory vari-
ables: eij, a vector of child-specific explanatory variables, 
including sex, family’s wealth index and mother’s educa-
tion level; d(xi), a spatial indicator variable which takes 
values 1, if location xi is classified as urban and 0 if rural; 
Mij, the estimated malaria incidence at location xi during 
the first year of life of the j-th child. The parameters γ, β 
and δ are the regression parameters associated with each 
of the three types of explanatory variables, whilst f (A) is 
a cubic spline function of age, A, with knots at 12 and 24 
months.

Our objective is to make inference on the parameter 
δ , which quantifies the effect of malaria incidence in the 

(1)

µj(xi) = e⊤ij γ + d(xi)β + δMij

+ f (Aij)+ Ui + S(xi), for i = 1, . . . , n

j = 1, . . . ,mi.

Table 1  Sample size summaries for  the analysed DHS data indicating the country, year of  survey, number of  children, 
number of sampled clusters, and average number of children per cluster

Country Year No. of children No. of clusters Average no. of children per cluster

Senegal 2005 2710 355 7.6

Senegal 2011 3694 384 9.6

Mozambique 2011 9595 609 15.8

Ghana 2003 3010 393 7.7

Ghana 2008 2350 393 6.0

Ghana 2014 2671 410 6.5

Burkina Faso 2003 8581 396 21.7

Burkina Faso 2010 6290 540 11.6

Zambia 2007 5243 317 16.5

Zambia 2014 4635 303 15.3

Malawi 2004 6238 386 16.2

Malawi 2010 4623 811 5.7

Rwanda 2005 3692 455 8.1

Cote d’Ivoire 2007 3305 288 11.5

Burundi 2010 3449 376 9.2

Liberia 2007 4197 270 15.5

Liberia 2013 3206 319 10.1

Namibia 2007 3669 484 7.6

Togo 2014 3209 328 9.8

Tanzania 2010 6581 453 14.5
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first year of life on HAZ. Our assumption is that malaria 
has a lagged effect on height and, therefore, we use the 
incidence of malaria during the first year of life to deter-
mine the strength of this association. In the remainder of 
the paper, we shall refer to the parameter δ and the varia-
ble Mij in (1) as the effect of malaria on HAZ and malaria 
incidence, respectively.

In (1), the unstructured random effect Ui conflates two 
sources of residual variation: spatial variation on a scale 
smaller than the minimum observed distance between 
clusters; and unexplained unstructured variation at clus-
ter level.

The spatially structured residuals S(x) are modelled as 
a zero-mean stationary and isotropic Gaussian process 
with variance σ 2 and exponential correlation function 
given by

where u is the Euclidean distance between any two loca-
tions. The scale parameter φ regulates the rate at which 
the spatial correlation decays with increasing distance u.

We map the risk of stunting for male children, 24 
months old, using the predictive probability that HAZ 
is below − 2 over a 0.05° × 0.05° grid. We integrate out 
the effect of maternal education and wealth index using 
the following Monte Carlo approach. We generate 10,000 
samples from the joint distribution of these two variables 
and, conditionally on these, we then simulate values of 
HAZ. The stunting risk is then computed by taking the 
proportion of simulated HAZ samples that are below − 2.

More details on the computational implementation and 
on the mapping of stunting risk are given in Additional 
file 1.

Model validation
To check the validity of the adopted spatial correlation 
structure for the data, we carry out the following Monte 
Carlo procedure. We simulate 1000 empirical variograms 
under the fitted model and then use these to compute 95% 
confidence intervals at any given spatial distance of the var-
iogram. If the empirical variogram obtained from the data 
falls within the 95% tolerance bandwidth, we conclude that 
the adopted spatial correlation function is compatible with 
the data. If, instead, that falls outside the 95% tolerance 
bandwidth, then the data show evidence against the fitted 
model. More details are provided in Additional file 1.

Understanding the variation in the effect of malaria 
on HAZ
We carry out a meta-analysis in order to understand 
the variation in the estimates of the parameter of inter-
est δ, from all the 20 DHS. Let δ̂k and sk denote the maxi-
mum likelihood estimate of δ and its standard error, 

(2)ρ(u;φ) = exp(−u/φ),

respectively, for k = 1, . . . , 20. We then model δ̂k using a 
weighted least squares fit to the regression model

where vk is a World Bank African development indicator 
[41] associated with the country and year of the k-th sur-
vey, and the Zk are independent Gaussian variables with 
mean zero and variance s2k. We select eleven development 
indicators belonging to the categories of “Agriculture 
and rural development”, “Climate change”, “Economy and 
growth”, “Education” and “Environment”. A full list of the 
indicators is given in Additional file 2.

Results
Non‑spatial analysis
Figure 1 shows box-plots of HAZ by categories of family’s 
wealth indices and mother’s education level for all sur-
veys combined. We assign integer scores 1–5 to the five 
levels of family wealth from very poor to very wealthy; 
and scores 1–6 to the six levels of mothers education, 
from no education to higher education. As expected, the 
box-plots show that the median HAZ tends to increase 
with increasing levels of wealth and education.

We then investigate the marginal association between 
malaria incidence and HAZ. Figure 2 shows the observed 
HAZ against malaria incidence, where the solid line is 
obtained from the least squares fit of a univariate linear 
model. The dashed horizontal lines indicate HAZ levels of 
2, 0 and −  2. The dashed vertical lines separate M into 
terciles. We see that Malaria incidence takes a maximum 
value of about 1.5 for all surveys, except Namibia in 2007, 
where this is about 0.7. We also note that for the surveys 

(3)δ̂k = α0 + α1vk + Zk ,
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Fig. 2  Scatterplots of height-for-age Z-scores (HAZ) against expected malaria incidence in the first year of life (M). The solid line shows the univari-
ate linear model with malaria incidence as the predictor of HAZ. The dashed horizontal lines show HAZ levels of 2, 0 and − 2, whilst the dashed 
horizontal lines separates M into terciles
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in Senegal in 2005, Mozambique in 2011, Ghana in 2003–
2008–2014 and Zambia in 2007, the variation in M is 
evenly distributed, whereas it is more skewed for Senegal 
in 2011, Burkina Faso in 2003–2010, Malawi in 2004 and 
Namibia in 2007. Except for Rwanda in 2005, Zambia in 
2014 and Malawi in 2010, in all the remaining 17 surveys 
we observe that HAZ decreases with increasing values 
of M. Figure 3 shows the least squares estimates and the 
corresponding 95% confidence intervals. The estimated 
regression coefficients are negative in 18 surveys, of which 
16 are significantly different from zero at 5% level.

Figure 4 shows HAZ curves as functions of age, within 
each of the terciles groups of M, as indicated in Fig.  2. 
The fitted curves reflect the typical age-related pat-
tern of HAZ in LMICs: after a decrease in HAZ during 
the first 2 years of life, child-growth slowly recovers but 
never reaches zero. This phenomenon, known as “growth 
faltering”, has been widely observed; see, for example, 
[11, 12, 42, 43]. We also observe that in Burkina Faso in 
2003, Ghana in 2008, Malawi in 2004–2010 and Rwanda 
in 2005, HAZ curves by terciles groups of M are partly 
overlapping, whereas in the remaining 15 surveys, chil-
dren in the first tercile of M have the highest levels of 
HAZ and children in the third tercile with the lowest 
levels of HAZ, irrespective of age. We also notice that 
in Burkina Faso in 2003, Burundi in 2010, Rwanda in 
2005, Cote d’Ivoire in 2007 and Malawi in 2004, where 
median HAZ curves fall below the − 2 threshold at about 
24 months of age, the curves still remain below the − 2 
threshold in later years.

Geostatistical analysis
Figure  5 shows estimates, with associated 95% confi-
dence intervals, of the malaria parameter δ from the fit-
ted geostatistical model in (1). The point estimate of δ 
is negative in 7 surveys with Ghana in 2014 and Liberia 
in 2007 being significant at the 5% level. Positive values 

are estimated for the remaining 13 surveys, with only 
Namibia in 2007 being significant. We note that, after 
accounting for residual spatial variation and measured 
potential confounders, the magnitude of the association 
between malaria incidence and HAZs is smaller than for 
the marginal association shown in Fig. 3.

Point estimates of the covariance parameters of (1) 
with associated standard errors are reported in Addi-
tional file  3. We see that, for each survey, the variance 
corresponding to the child-specific variation is consist-
ently larger than both the variance of the spatial process 
and the nugget variance.

The results from the model validation (Additional 
file 4) show that the fitted geostatistical models are com-
patible with the data for each of the 20 surveys analysed. 
We also point out that, although the variograms based on 
the residuals from the standard linear regression are rela-
tively flat, we still find evidence of non-negligible residual 
spatial variation in HAZ as indicated by the interval esti-
mates of the parameter of the scale of the spatial correla-
tion in Additional file 3.

Mapping of stunting risk
In Fig.  6, we report the predictive maps of stunting risk 
for Ghana, Burkina Faso and Mozambique for boys, aged 
24 months. In Ghana in 2003–2008–2014, the maps show a 
remarkable decrease in stunting over time, that is observed 
almost everywhere within the country. Similarly, in Burkina 
Faso, we observe a decrease in stunting risk from 2003 to 
2010. Mozambique in 2011 shows high spatial heterogene-
ity in stunting risk, with values ranging from 0.1 to 0.9. Risk 
maps for the remaining surveys are shown in Additional 
file  5. In these maps, we observe overall higher levels of 
stunting risk in Burundi in 2010 and Malawi in 2004, and 
lower levels in Senegal in 2008 and Togo in 2014.

Variation in the effect of malaria on HAZ
The amount of arable land (defined as percentage of land 
under temporary crops, meadows for mowing or for pas-
ture, market or kitchen gardens, and land temporarily fal-
low) in the country and year of survey is the only World 
Bank indicator to be significant at 5% level, with a p-value 
of about 0.013, explaining 26% of the total variation in 
the estimated effects of malaria incidence on HAZ. More 
specifically, we estimate that an increase of 1% in arable 
land leads to a 0.008 increase in the value of the esti-
mated malaria effect, on average. See Additional file 2 for 
more detailed results from the meta analysis.

Discussion
The objective of our study was to model and quantify 
the association between malaria and HAZs in children 
aged less than 5 years. Using DHS data from 20 surveys 
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Fig. 4  Estimated trajectories of height-for-age Z-scores (HAZ) as a function of age, stratified by malaria incidence (M). Each panel shows three 
curves. Each curve is a piecewise cubic spline with knots at 12 and 24 months and corresponds to a tercile group of M. The solid, dotted and 
dashed curves respectively correspond to the first, second and third terciles of M, as indicated in Fig. 2. The horizontal lines are the HAZ levels of 0 
and − 2
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in 13 African countries between 2003 and 2014, we have 
developed a geostatistical framework to model HAZ as 
a function of both child-specific and spatial risk factors. 
As a proxy for malaria exposure, we used estimates of 
malaria incidence in the first year of life from the Malaria 
Atlas Project. A non-spatial univariate linear regression 
showed a negative effect of malaria incidence on HAZs. 
However, after controlling for confounding and residual 
spatial effects, the estimated effect of malaria on HAZ 
was weaker and not significant in 17 out of the 20 surveys 
considered.

One of the main challenges in modelling the asso-
ciation between malaria and HAZ is the need to take 
account of confounding effects. Among these, socio-
economic status has been shown to be one of the most 
important [44–47]. Education is another important fac-
tor that affects both malaria exposure and risk of stunt-
ing [34, 48, 49]. Higher levels of education are associated 
with improved knowledge and practice about the appro-
priate strategies for the prevention and treatment of 
malaria [50], and about healthy practices in breastfeeding 
and child nutrition [51]. Our results are consistent with 
these findings in all of the 20 surveys here analysed.

We observed that in surveys where HAZ curves fall 
below the −  2 threshold in early childhood, the curves 
never really rise above the −  2 threshold in later years. 
This finding suggests that recovery to standard growth 
after 2  years of age may be more difficult when the 
decrease in HAZ in early childhood is severe. This is 
consistent with the findings from [52] who showed that 
recovery from stunting is associated with the severity 
of stunting in early years. Other factors that have been 
found to favour recovery from low HAZ are good nutri-
tion [53] and higher levels of mother’s education [54].

In our analysis, we found a mix of positive and nega-
tive point estimates of the association between malaria 
incidence and HAZ among the different surveys. How-
ever, findings from previous studies have shown contrast-
ing results, with some reporting statistically significant 
negative associations between malaria and stunting [26, 
29, 55, 56], and others reporting positive associations 
[30, 31]. To understand such variation in the magnitude 
and direction of the estimated parameters that quan-
tify the malaria effect, we carried out a meta-analysis 
by considering several indicators of national develop-
ment from the World Bank. Among these, the amount of 
arable land was the only one to show a significant asso-
ciation. Arable land might in fact modulate the associa-
tion between malaria and HAZ, with a larger surface of 
arable land leading to a fall in poverty and malnutrition, 
especially in rural areas [57], but also to a larger number 
of breeding sites for mosquitoes [58]. This suggests that 
geo-political differences among countries should also be 
considered, since the implementation of policies aiming 
to reduce malnutrition can also impact on the epidemi-
ology of malaria. Arable land could be indeed associated 
with agricultural, economic and environmental factors 
that are common to both malaria and stunting [59, 60].

We have quantified stunting risk by mapping the pre-
dictive probability that HAZ is below a threshold of 
− 2. For countries with repeated surveys, our risk maps 
showed reductions over time in the risk of stunting. The 
main factors that might be driving such reductions are 
improvements in health environments through increas-
ing access to safe water and sanitation, improvements 
in the quality of caring practices for children through 
increasing women’s education and promoting gender 
equality, including women’s empowerment; and increase 
in food security by ensuring adequate availability of food 
at the national level and sufficient nutritional quality of 
that food [59, 61, 62]. Our risk maps showed remarkable 
spatial heterogeneity in the risk of stunting, identifying 
geographic areas with high risk that could be considered 
for a more targeted intervention.

It has been widely observed that HAZ undergoes a 
rapid decrease in the first 24 months and an increase 
thereafter [11, 12, 42]. For this reason we used cubic 
splines with knots at 12 and 24 months in order to better 
capture the non-linear trajectory that we observed across 
the 5 years of age.

Limitations of the study
The main limitation of our study is that the informa-
tion available to us on malaria and HAZ is cross-sec-
tional, rather than longitudinal, in nature. This prevents 
us from establishing whether our observed associations 
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Fig. 6  Predicted stunting risk maps for Ghana, Burkina Faso and Mozambique. The colour scale ranges from green to red with red areas being high 
risk areas and green areas being low risk areas
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can be given a causal interpretation. A second limitation 
is that we have no information on the uncertainty asso-
ciated with the estimates of malaria incidence. We have 
assumed the first year of life to be the most important 
in determining the strength of the association between 
malaria and child growth. To investigate whether expo-
sure to malaria in other years of childhood could also 
have an impact on growth would require the fitting of a 
distributed lag-model.

In Additional file 6, we give methodological details on 
how to account for uncertainty in malaria incidence in a 
cross-sectional geostatistical setting.

To assess the cumulative effect of malaria on child-
growth at different developmental stages, we would need 
longitudinal, individual-level data on children’s actual 
malaria status over the first 5 years of life. We would then 
extend our current methodology as follows.

Novel extensions to longitudinal geostatistical data
To simplify the notation and without loss of generality, we 
assume that all the sampled children have identical follow 
up times. Then, let Yijt and Wijt denote the HAZ and num-
ber of malaria episodes for the j-th child at location xi and 
time t, respectively. Also, let S̃(x, t) denote a latent spatio-
temporal Gaussian process. Given S̃(x, t), we model the 
Wijt as a set of mutually independent Poisson variables 
with mean Mijt such that

where ẽijt are child-specific explanatory variables that 
might vary over time. We then assume that Yijt, condition-
ally on Mijt, a spatio-temporal Gaussian process S(x,  t) 
and random effects Uit and Vij, are independent Gaussian 
variables with mean

In (4), Uit is unstructured unexplained variation at loca-
tion xi and time t, Vij is unexplained child-specific varia-
tion and the lagged parameters δt−h, for h = 0, . . . , t = 1, 
represents the effect of malaria incidence during the h-th 
year of life on HAZ. To make the model more parsimoni-
ous, the parameters δt−h can be constrained using a para-
metric specification, i.e. δt−h = g(t − h; θ) where g(·; θ) is 
a known function indexed by the vector of parameters θ.

This modelling framework would allow us to better 
understand the cumulative effect of malaria on HAZ at 
different developmental stages by overcoming the current 
limitation of our study where we assume that δt−h = 0 for 
0 ≤ h ≤ t − 2.

log{Mijt} = ẽ⊤ijt γ̃ + d̃(xi)
⊤β̃ + S̃(xi, t),

(4)

µj(xi, t) = e⊤ijtγ + d(xi, t)β +

t−1∑

h=0

δt−hMij(t−h)

+ f (Aijt)+ Vij + S(xi, t)+ Uit

Conclusion
Geostatistical methods provide a useful framework to 
account for spatially structured confounding effects that 
modulate the association between malaria and HAZ. This 
study also highlights that one of the main challenges in 
modelling this association is that confounding effects 
vary by country, as well as in time. This can change both 
the direction and magnitude of the effect of malaria on 
HAZ, making a generalization on the effect of malaria 
on HAZ almost impossible using only currently avail-
able data. Establishing whether the association between 
malaria and stunting is causal would require longitudinal 
follow-up data on individual children.
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