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METHODOLOGY

A log‑Weibull spatial scan statistic for time 
to event data
Iram Usman1 and Rhonda J. Rosychuk2* 

Abstract 

Background:  Spatial scan statistics have been used for the identification of geographic clusters of elevated numbers 
of cases of a condition such as disease outbreaks. These statistics accompanied by the appropriate distribution can 
also identify geographic areas with either longer or shorter time to events. Other authors have proposed the spatial 
scan statistics based on the exponential and Weibull distributions.

Results:  We propose the log-Weibull as an alternative distribution for the spatial scan statistic for time to events data 
and compare and contrast the log-Weibull and Weibull distributions through simulation studies. The effect of type I 
differential censoring and power have been investigated through simulated data. Methods are also illustrated on time 
to specialist visit data for discharged patients presenting to emergency departments for atrial fibrillation and flutter in 
Alberta during 2010–2011. We found northern regions of Alberta had longer times to specialist visit than other areas.

Conclusions:  We proposed the spatial scan statistic for the log-Weibull distribution as a new approach for detecting 
spatial clusters for time to event data. The simulation studies suggest that the test performs well for log-Weibull data.

Keywords:  Spatial scan statistic, Log-Weibull distribution, Time to event, Atrial fibrillation and flutter, Emergency 
department
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Background
The existence of more than presumed numbers of cases 
of a disease condition in a geographic region is referred 
to as a spatial disease cluster. Timely detection of spa-
tial disease clusters enables health authorities to better 
understand the distribution of disease and if possible, 
control disease. A large number of methods have been 
proposed and applied by authors for the identification 
and evaluation of geographical disease clusters and dis-
ease surveillance, and the spatial scan statistics (SSS) is 
one of them.

The SSS, with its possible extensions has been widely 
used as a standardized approach for the last two decades, 
not only in the disease clustering but also in various other 
fields of study like natural disasters [1], forestry [2], astro-
nomical data [3], history [4], and psychology [5]. It was 

first proposed by Kulldorff and Nagarwalla and has the 
capability of identifying spatial clusters of variable sizes 
and locations [6]. The key reasons for the popularity of 
this method include that it identifies the cluster loca-
tion and tests the tendency to cluster [7]. According to 
Costa and Assunção, the latter advantage is considered 
to be more important in terms of health related interven-
tions than global clustering results [7]. The SSS’s based 
on the Bernoulli and Poisson models are frequently used 
for count data for cluster identification and geographical 
disease surveillance [8, 9]. These scan statistics have been 
further extended to other kinds of data such as ordinal 
[11], multinomial [12], continuous [13], and correlated 
count data [14].

Time to event data along with the censoring compo-
nent (e.g., survival data) is one of the important health 
outcomes for which the SSS is of interest [9]. The SSS for 
time to event data is used to determine if there are geo-
graphical clusters with either longer than expected and/
or shorter than expected time to event. The exponential 
[9] and Weibull [10] SSS’s (adjusted for censoring) have 
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already been developed for time to event data. We pro-
pose the log-Weibull as an alternative distribution for 
the SSS for cluster detection of time to event data. The 
log-Weibull distribution has wide applications in extreme 
value theory. Our focus is to establish a new SSS for the 
detection of rare and extreme events.

In the Methods section, we describe the existing 
Weibull SSS and the newly developed SSS based on the 
log-Weibull distribution. The Application section con-
tains the results from the identification of clusters of 
longer times to specialist follow-up after an emergency 
department presentation for atrial fibrillation and flutter 
in Alberta, Canada. Simulation studies are performed to 
investigate power, the effect of right (type I) differential 
censoring, and ability to identify the true cluster by the 
log-Weibull and Weibull spatial scan statistics.

Methods
The SSS identifies the geographic zones from a study 
region that have the strongest indication of representing 
a spatial cluster. It uses data such as administrative health 
data collected for geographical sub-regions, each charac-
terized by a centroid (population or geographic based). 
The SSS imposes a circular searching window of radius 
r on each centroid with its center at the coordinate of a 
centroid [6]. A zone (Z) defined by this circular window is 
comprised of all the individuals in the sub-regions whose 
centroids lie inside the circle [6]. For the purpose of the 
analysis, an upper bound r*   is chosen for the radius of 
the circular window [10]. For each region’s centroid, its 
nearest neighbours covering altogether r * percent of the 
total population are calculated. For any given position of 
the centroid, the radius of the window is expanded con-
tinuously to take any value between 0 and r*  [10]. During 
the expansion, every time a new zone is created with an 
inclusion of a new neighbouring centroid in the circu-
lar window [14]. Zones defined in this way have irregu-
lar geographical boundaries depending on the size and 
shape of those sub-regions, whose centroids lie inside the 
spatial scan window [14].

The methodology of the SSS is based on calculating the 
maximum log likelihood ratio (LLR). The SSS partitions 
the geographical area into zones (i.e., areas of potential 
cluster versus the rest of the study region) and the LLR is 
calculated every time when a new zone is created for each 
centroid [8, 10]. The zone maximizing the LLR is called 
the primary (most likely) cluster. Let the primary cluster 
be the zone Ẑ that maximizes the LLR. The hypothesis 
under consideration is:

H0: The disease risk is constant over Ẑ ∪ Ẑc vs. H1: 
There is an elevated risk in Ẑ.

Let G be the whole study region which can be parti-
tioned into Z and Zc mutually exclusive sub-regions, 

where Z indicates a zone designated to be a poten-
tial cluster and Zc is the rest of the study region. Let 
N = nin + nout be the total number of individuals in G , 
where nin and nout are the total individuals inside and 
outside the zone, respectively. The subscripts “in” and 
“out” indicate that the objects are calculated from the 
individuals inside and outside the zone, respectively.

Let the ith individual have a time to event 
Ti, (i = 1, . . . ,N ) or a fixed right censoring time Li . The 
event time Ti is observed if Ti ≤ Li(δi = 1) , and Li is 
observed if Ti > Li(δi = 0) , where δi is the indicator to 
represent if time is censored or not [9]. The observed 
time is defined as ti = min(Ti, Li) . Let R = rin + rout be 
the total number of uncensored observations, where rin 
and rout are the total number of uncensored observa-
tions inside and outside the zones, respectively. These are 
defined as rin =

∑

i∈Z δi and rout =
∑

i∈Zc δi.

Weibull distribution
Bhatt and Tiwari established the SSS based on the 
Weibull distribution. The Weibull model is a nice gener-
alization of the exponential model that includes a shape 
parameter with the existing scale parameter [10]. The 
additional parameter provides the opportunity to the 
Weibull hazard function to take different shapes rather 
than to be a constant. We provide a brief summary of the 
methodology, complete details can be found in the paper 
presented by Bhatt and Tiwari [10]. Let the times to event 
T ′
i s, (i = 1, . . . ,N ) be i.i.d. with the Weibull probabil-

ity density function (PDF) f (Ti) =
1
θ
pT
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i e
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p
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)

 , 
where θ and p are the scale and shape parameters, respec-
tively. Let the time to event for each individual inside the 
zone be distributed as the Weibull distribution with θin 
and pin as the scale and shape parameters, respectively. 
Similarly, assume that the times to event for individuals 
outside the zone are Weibull distributed with θout and 
pout as the scale and shape parameters, respectively. The 
null hypothesis under consideration is H0 : θin = θout 
versus the alternative hypotheses H1 : θin < θout , 
H1 : θin > θout , or H1 : θin �= θout . The alternative hypoth-
eses show that at least one zone is detected with either 
shorter than expected, longer than expected, or simulta-
neously both longer and shorter than expected times to 
events. The likelihood ratio test statistic for the Weibull 
SSS for H1 : θin �= θout is
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For H1 : θin < θout , � is multiplied by 

I
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 , and similarly for H1 : θin > θout , 
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(

rin
∑

i∈Z t
p
i

>
rout

∑

i∈Zc t
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.

Log‑Weibull distribution
The log-Weibull distribution is a specialized case of the 
generalized extreme value distribution. It is often used to 
model the distribution of extreme values, strength, event 
history data such as quick wear-out after reaching a cer-
tain age, and logarithms of times [17]. We assume that 
times to event T ′

i s, (i = 1, . . . ,N ) are independently and 
identically distributed (i.i.d.) with the log-Weibull PDF 

f (Ti) =
1
b
exp

(

Ti−a
b

)

exp
{

− exp
(

Ti−a
b

)}

 , where a and 

b are the location and scale parameters, respectively. The 
survival function for the log-Weibull distribution is 
S(Ti) = exp

{

− exp
(

Ti−a
b

)}

.

Let the time to event for each individual inside zone Z 
be log-Weibull distributed with ain and bin as the location 
and scale parameters, respectively. Similarly, the time to 
event for each individual outside zone Z(i.e., inside Zc ) 
follows the log-Weibull distribution with aout and bout 
as the location and scale parameters, respectively. The 
null hypothesis H0 : bin = bout for any Z is contrasted 
with one of three alternative hypotheses: H1 : bin < bout , 
H1 : bin > bout , or H1 : bin �= bout . The likelihood func-
tion L(Z) = L(Z, bin, bout) for the log-Weibull SSS can be 
written as:
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Taking the natural log on both sides, we have

For H1 : bin �= bout , for at least one zone Z , the corre-
sponding likelihood ratio statistic is

where Ẑ is the zone maximizing L(Z, bin, bout) under H1 , 
and L̂ is the maximum of L(Z, bin, bout) under H0 . The 
maximum likelihood estimators (MLE’s) of the param-
eters bin, bout , ain, and aout for any arbitrary zone Z can 
be obtained by the following equations,

Thus the MLE’s of the scale parameters bin and bout are
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Similarly, the MLE’s of the location parameters ain and 

aout are obtained by the equations rin =
∑

i∈Z

e

(

ti−âin
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)
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rout =
∑

i∈Zc

e

(
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)

 , respectively.

Under H1 : bin �= bout , the obtained MLE’s provide

Similarly, under H0 : bin = bout,

So, the likelihood ratio statistic for H1 : bin �= bout is

In order to address the alternative hypotheses 
bin < bout and bin > bout , the function � is multiplied by 
I
(

b̂in < b̂out

)

 and I
(

b̂in > b̂out

)

 , respectively.

Permutation test procedure
Since there is no closed analytical form of the distribu-
tion of the test statistic � , a permutation test procedure 
is used to test the statistical inference of the selected 
clusters. The exact distribution of the time to events 
is unknown and it is not possible to generate the simu-
lated data under the null hypothesis. To overcome this 
situation, the observed pairs {(ti, δi), i = 1, 2, . . . ,N } are 
permuted 999 times among the individual geographical 
coordinates of the original study region [9]. For each per-
muted dataset, the log-likelihood is calculated for each 
zone and the most likely cluster preserving the maximum 
log-likelihood in the dataset is saved. A p value is calcu-
lated as the fraction of permutations that are at least as 
extreme as the test statistic from the observed time to 
event data [18]. This permutation step ensures that no 
matter how the observed time to event data are distrib-
uted, this distribution is preserved for each permuted 
dataset. This factor provides valid statistical inference 
since all the permuted datasets are equally distributed 
[9]. Secondary clusters are the significant spatial clusters 
that do not overlap with the primary cluster [9]. These 
clusters are ranked with their corresponding LLR values 
and the associated p values are calculated by comparing 
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the kth (say) highest likelihood in the real dataset with 
the maximum likelihood in the randomly permuted 
datasets [9]. Note that the use of a permutation test pro-
cedure means that there will be variation in the exact p 
values for successive analyses of the same datasets.

Results
Emergency data application
We illustrate the log-Weibull SSS on population based 
administrative data (age ≥ 35) for patients discharged 
from the emergency department (ED) who presented 
with atrial fibrillation and flutter (AFF) in the province of 
Alberta during April 1, 2010, to March 31, 2011. In 2003, 
the province of Alberta was divided into nine adminis-
trative health areas also called Regional Health Authori-
ties (RHAs) [19]. These RHA’s were further partitioned 
into 70 sub-Regional Health Authorities (sRHAs) (Fig. 1, 
numbered 1–70). The sRHAs have diverse population 
sizes ranging from 550 to 140,211 with a median popula-
tion size of 46,075 in 2011 and are the smallest geograph-
ical units available for analysis. For each sRHA’s centroid 
based on population, the latitude and longitude of the 
centroids are provided by Alberta Health [19]. Distances 
between the pairs of sRHA population-based centroids 
are ordered and used to create the nearest neighbours.

The key outcome of interest is the time from ED dis-
charge for AFF to the 1st specialist visit during 365 days 
of the study period. The specialist in this study is con-
sidered as a cardiology (CARD) or internal medicine 
(INMD). A specialist follow-up visit can occur between 
ED end time, to the end of the study. Each discharged 
ED presentation during April 1, 2010, to March 31, 2011, 
with a follow-up visit to the specialist during its ED end 
time, to March 31, 2011 is considered a complete time to 
event outcome. If the patient did not have specialist visit 
by the end of the study (March 31, 2011), the outcome 
is referred to as right (type-I) censored. Each Alberta 
resident making at least one discharged ED presenta-
tion for AFF during the fiscal year is referred to as a case 
(patient).

The methodology used in this study does not adjust for 
repeated ED presentations of cases. Hence, independ-
ent patient data is considered by taking only the last ED 
visit out of the multiple visits. The calculations are per-
formed using the R and S-Plus [20, 21]. Each cluster can 
contain only a maximum of r∗ = 10% of the study popu-
lation. The variable scanning windows are created for 
each sRHA to absorb neighbours up to 10% of the total 
population. This upper bound is chosen based on the fea-
sibility of analysis and time restrictions. There are about 
1.95 M adults in the study population, among them the 
discharged subset is comprised of 3039 cases (30% cen-
sored, 54% male) with an average age of 68.04 years. The 
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median time to event for the whole dataset is 81  days 
and the corresponding 95% confidence interval (CI) is 
76–86 days.

The identified primary and secondary clusters are 
shown in Table 1 and Fig. 1. The most likely cluster with 
significantly longer times to events is mainly from R7-R9 

Fig. 1  Alberta map highlighting the primary and secondary clusters for the log-Weibull spatial scan statistic
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RHAs. This cluster is identified with 260 observed num-
ber of cases. The LLR is 710.75 with the associated p 
value (P) of 0.001. This SSS provides two different statisti-
cally significant secondary clusters. The first one is a part 
of R6 and the second cluster is a combination of sRHAs 
from R1 and R3. Median times to event are 177, 51, and 
104 days for inside the primary, secondary (1), and sec-
ondary (2) detected clusters, respectively. The corre-
sponding 95% CI’s are 128–223, 38–75, and 77–150 days. 
For the entire province, collectively excluding the pri-
mary and both secondary clusters, the median event 
time is 78 days and the 95% CI is (71, 84) days. Figure 2 
shows the Kaplan–Meier curves for the detected pri-
mary and secondary clusters and the rest of the province. 
The SSS based on the Weibull distribution has also been 
applied to the same Alberta Health data, and is capable of 
detecting the same primary cluster as of the log-Weibull 
distribution i.e., from R7-R9 RHA’s, with no significant 
secondary cluster.

Simulation studies
Simulation studies are conducted to investigate the 
power of detecting a potential cluster and the effect of 

right differential censoring on cluster detection. All of the 
datasets are analyzed with the log-Weibull and Weibull 
SSS’s. Time to event data are randomly generated for 
500 individuals with five different probability models: 
the exponential, Weibull, log-Normal, gamma, and log-
Weibull. The Alberta geography is used as the geography 
for analysis and the Alberta population is used to create 
the zones for the simulation studies. Like the spatial scan 
analysis of the real administrative data, an upper bound 
of 10% is imposed on the population size.

For all simulated datasets, a true cluster of 25 indi-
viduals is created at a subregion of R201 sRHA, to have 
longer time to events than the rest of the province. This 
subregion was chosen because it was rural and away from 
the detected rural cluster in the real Alberta ED data. 
R201 was assigned the same percentage of individuals as 
of the real dataset (i.e., approximately 5% cases in each 
simulated data). This choice was feasible for simulation 
studies to run in a reasonable amount of time. Right dif-
ferential censoring is added with the ratios of 20%:20%, 
20%:40%, and 40%:20% for inside:outside the true cluster. 
For example, 20%:40% means that 20% censoring is used 
within the true cluster and 40% outside the true cluster.

One thousand simulated datasets are generated from 
the probability models defined above using the differen-
tial censoring settings under the alternative hypotheses of 
the existence of longer than expected time to event clus-
ters. The choice of 1000 simulations is the same as what 
was chosen for the development of the Weibull SSS [10] 
and was computationally timely. For symmetry, param-
eters for each probability model are chosen in such a way 
that they provide a constant mean of 2 outside the true 
cluster and means of 10, 15, and 20 inside the true cluster 
for each censoring ratio. These values were chosen to be 
similar to the inside:outside times to event means ratio 
from real data used in the application.

For each simulated dataset, 999 random permutations 
are performed to get the p values from the permutation 
testing procedure. Let, Z∗,Z(m), and M represent the 
true cluster, the cluster identified in the mth simulations, 
and total number of simulations, respectively. Power is 
calculated as the proportion of datasets out of 1000 hav-
ing p values < 0.05 [9, 10], not necessarily detecting the 
true cluster i.e.,

In order to observe the strength of identification of the 
true cluster by each SSS, three different proportions are 
calculated for mutually exclusive situations from 1000 
randomly generated datasets under each probability 

Power =
1

M

M
∑

m=1

I[Z(m);P(Z(m))<0.05].

Table 1  Spatial scan results for  the  log-Weibull 
distribution

Cluster sRHA Population Cases LLR P

Primary 64 65 68 63 60 67 
66 61

124,094 260 710.75 0.001

Secondary (1) 50 47 49 175,893 249 423.27 0.001

Secondary (2) 2 3 4 1 5 25 99,425 239 394.08 0.001

Fig. 2  Kaplan Meier curves for the detected primary and secondary 
clusters and rest of the province for time to first specialist visit for the 
log-Weibull spatial scan statistic
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model for all censoring situations. These indicators are 
essentially the same as those reported for the exponen-
tial and Weibull based SSS’s [9, 10], and we have adapted 
slightly to reflect the aggregate nature of the data.

These are the proportion of datasets:

1.	 Perfectly identifying the true cluster 
(

PI = 1
M

M
∑

m=1

I[Z∗=Z(m)]

)

;

2.	 Identifying a large cluster including the true cluster 
(

LC = 1
M

M
∑

m=1

I[Z∗⊂Z(m)]

)

 ; and,

3.	 Not identifying the true cluster 
(

NI = 1
M

M
∑

m=1

I[Z∗�Z(m)]

)

.

In addition to the three cluster performance measures 
listed above, a global indicator for performance assess-
ment has been used [22] based on the coefficient devel-
oped by Tanimoto [23, 24]. The Tanimoto coefficient 
(TC) is computed for each simulated data set and meas-
ures the similarity between a simulated and detected 
cluster by using the ratio of the intersecting cluster 
cohort to the union cluster cohort. In order to calculate 
TC, four types of spatial units (SUs) are calculated and 
defined as:

True Positive (TP) = SUs both within Z∗ and Z(m);
False Positive (FP) = SUs only within Z(m);
False Negative (FN) = SUs only within Z∗ ; and,
True Negative (TN) = SUs not within either cluster.

The TC computed for each simulated data set is 
TC = TP

TP+FP+FN  . The geographical region used in this 
simulation study is divided into 70 SUs. When no signifi-
cant cluster is detected i.e., p value is higher than 0.05, we 
get TP = 0, FP = 0, TN = 69, and FN = 1.

The average Tanimoto coefficient (TCa) and the cumu-
lated Tanimoto coefficient (TCc) were used as the statis-
tics of TC. These are defined as 

TCa = 1
M

M
∑

m=1

TPm
(TPm+FPm+FNm)

 and 

TCc =

M
∑

m=1

TPm

M
∑

m=1

(TPm+FPm+FNm)

 . Global performance is 

assessed using TCa and TCc by taking both location accu-
racy and power into account at the same time. Guttmann 
et al. have assessed the superiority of TCc over TCa based 
on their functional properties and variability, and 
observed that TCc has more power of capturing low 
accuracy in cluster location [22].

Using the log-Weibull SSS (Table 2, Figs. 3 and 4), the 
results show that the values of power vary from 0.326 
to 0.721 for the 20%:20% censoring, from 0.148 to 0.941 
for the 20%:40% censoring situation, and range from 
0.350 to 0.737 for the 40%:20% censoring case. Overall, 
the maximum power is seen when the data are generated 
under the Weibull distribution and the minimum power 
is observed for the datasets distributed with the gamma 
and exponential probability models.  

The proportions of datasets perfectly identifying the 
true cluster fluctuate for the log-Weibull SSS. They are 
between 0.000 and 0.310 for the 20%:20% case, range 
from 0.000 to 0.186 for the 20%:40% censoring ratio, and 
are between 0.000 and 0.264 for the 40%:20% censor-
ing setting, respectively. Under the large cluster iden-
tification cohort for the log-Weibull distribution, there 
are high proportions of the true cluster detected. These 
proportions range from 0.000 to 1.000 for all three dif-
ferential censoring situations. Overall, the maximum 
proportion of perfect identification is achieved for the 
datasets generated from the log-Weibull distribution. 
The datasets from the exponential distribution have the 
highest proportions of large cluster identification includ-
ing the true cluster among all five probability models. A 
few decreases are found in the power and the strength 
of identification of the true cluster for each model, when 
comparing the 20%:20% to the 20%:40% and 40%:20% 
censoring cases.

For the log-Weibull SSS, the values of TCa range from 
0.060 to 0.448 for all three censoring situations. The TCc 
values lie between 0.189 and 0.491 with very less variabil-
ity among the five probability models used to generate 
the data.

For the Weibull SSS (Table 3, Figs. 5 and 6), the over-
all results for the power and all the proportions’ perfor-
mances of the datasets are less variable than the results 
of the log-Weibull SSS. The power values of detecting 
a potential cluster are between 0.256 and 0.971 for the 
20%:20% censoring setting, range from 0.230 to 0.999 for 
the 20%:40% censoring ratio, and are between 0.355 and 
0.981 for the 40%:20% case. The proportions of perfectly 
detecting a true cluster are high for all three censoring 
situations across all of the datasets as compared to the 
log-Weibull distribution, being least for the exponential 
model. The non-zero proportions of datasets generated 
under five probability distributions who do not identify 
the true cluster are between 0.000 and 0.997. The power 
values increase as the difference between the means of 
inside and outside the cluster increase and similar effects 
are seen for the strength of detection of the true cluster.

For the Weibull SSS, the values of TCa and TCc range 
from 0.090 to 0.478 and 0.226 to 0.489, respectively. 
This study shows that the Weibull SSS has more similar 
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Table 2  Simulation study results for the log-Weibull spatial scan statistic

Five probability models each with three different means inside true cluster are used under three right censoring cases: a = 20%:20%, b = 20%:40%, c = 40%:20% 
outside cluster: mean = 2; variance = 4(Exponential), 0.188(Weibull), 2(log-Normal), 1(Gamma), and 5(log-Weibull). IC inside cluster, M mean, V variance, PI perfect 
Identification, LC large cluster identification, TCa average Tanimoto coefficient, TCc cumulated Tanimoto coefficient

Data distribution IC Power PI LC TCa TCc

M V a b c a b c a b c a b c a b c

Exponential 10 100.0 0.388 0.148 0.350 0.042 0.001 0.000 0.958 0.999 0.714 0.155 0.060 0.153 0.304 0.189 0.386

15 225.0 0.395 0.383 0.381 0.000 0.003 0.000 1.000 0.997 1.000 0.158 0.160 0.156 0.307 0.308 0.308

20 400.0 0.403 0.609 0.385 0.002 0.000 0.002 0.998 1.000 0.998 0.166 0.248 0.157 0.312 0.356 0.306

Weibull 10 4.0 0.554 0.913 0.522 0.310 0.128 0.127 0.014 0.041 0.127 0.252 0.435 0.248 0.444 0.489 0.452

15 10.0 0.554 0.934 0.513 0.069 0.124 0.158 0.049 0.045 0.030 0.270 0.445 0.247 0.461 0.490 0.455

20 7.0 0.559 0.941 0.573 0.122 0.148 0.020 0.039 0.001 0.089 0.274 0.448 0.283 0.462 0.491 0.468

Log-Normal 10 4.0 0.471 0.364 0.408 0.099 0.005 0.024 0.272 0.064 0.052 0.225 0.185 0.204 0.426 0.442 0.449

15 10.0 0.397 0.398 0.404 0.046 0.017 0.051 0.026 0.034 0.026 0.203 0.205 0.202 0.449 0.451 0.448

20 17.0 0.373 0.452 0.391 0.022 0.025 0.049 0.015 0.066 0.000 0.189 0.231 0.196 0.445 0.458 0.447

Gamma 10 5.0 0.400 0.425 0.432 0.005 0.025 0.050 0.027 0.134 0.021 0.207 0.216 0.217 0.446 0.453 0.448

15 7.5 0.349 0.486 0.378 0.019 0.051 0.138 0.071 0.243 0.000 0.176 0.244 0.186 0.429 0.459 0.431

20 10.0 0.326 0.525 0.380 0.025 0.076 0.118 0.118 0.326 0.035 0.163 0.253 0.186 0.416 0.454 0.430

Log-Weibull 10 5.5 0.641 0.357 0.682 0.199 0.123 0.238 0.029 0.490 0.714 0.299 0.160 0.286 0.460 0.397 0.429

15 6.0 0.721 0.344 0.705 0.103 0.186 0.209 0.062 0.760 0.744 0.347 0.152 0.298 0.474 0.389 0.436

20 6.5 0.670 0.323 0.737 0.138 0.186 0.264 0.518 0.762 0.688 0.302 0.141 0.307 0.446 0.384 0.434
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(c) Censoring inside:outside cluster = 40%:20%

Fig. 3  Power and strength of the log-Weibull spatial scan statistic for cluster detection under right differential censoring. Datasets are generated 
using five probability models with outside cluster mean = 2. PI perfect identification, LC large cluster (including true cluster), NI no identification, 
Exp exponential, Weib Weibull, LN log-normal, Gam Gamma, LW log-Weibull
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results for the spatial cluster detection based on power, 
proportions of cluster detection and global detection 
test regardless of the probability model used for the data 

generation, whereas the performance of the log-Weibull 
SSS is best when the datasets are generated from the log-
Weibull distribution.
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Fig. 4  Average and cumulated Tanimoto coefficients of the log-Weibull spatial scan statistic for cluster detection under right differential censoring. 
Datasets are generated using five probability models with outside cluster mean = 2

Table 3  Simulation study results for the Weibull spatial scan statistic

Five probability models each with three different means inside true cluster are used under three right censoring cases: a = 20%:20%, b = 20%:40%, c = 40%:20% 
outside cluster: mean = 2; variance = 4(Exponential), 0.188(Weibull), 2(log-Normal), 1(Gamma), and 5(log-Weibull). IC inside cluster, M mean, V variance, PI perfect 
identification, LC large cluster, identification TCa average Tanimoto coefficient, TCc cumulated Tanimoto coefficient

Data distribution IC Power PI LC TCa TCc

M V a b c a b c a b c a b c a b c

Exponential 10 100.0 0.954 0.962 0.871 0.052 0.076 0.015 0.345 0.320 0.175 0.456 0.449 0.427 0.483 0.479 0.487

15 225.0 0.838 0.894 0.881 0.001 0.094 0.011 0.494 0.547 0.276 0.403 0.403 0.431 0.476 0.462 0.485

20 400.0 0.971 0.781 0.981 0.001 0.094 0.014 0.562 0.682 0.306 0.465 0.346 0.478 0.481 0.446 0.489

Weibull 10 4.0 0.732 0.701 0.755 0.538 0.961 0.976 0.000 0.006 0.000 0.306 0.240 0.258 0.461 0.327 0.329

15 10.0 0.697 0.973 0.704 0.869 0.317 0.993 0.131 0.672 0.000 0.243 0.378 0.238 0.308 0.407 0.303

20 7.0 0.806 0.993 0.715 0.652 0.879 0.966 0.172 0.121 0.034 0.304 0.340 0.245 0.418 0.349 0.307

Log-Normal 10 4.0 0.672 0.726 0.427 0.074 0.176 0.027 0.248 0.824 0.156 0.315 0.283 0.211 0.458 0.363 0.459

15 10.0 0.721 0.971 0.599 0.000 0.221 0.043 1.000 0.779 0.957 0.290 0.374 0.240 0.372 0.388 0.352

20 17.0 0.256 0.999 0.835 0.164 0.287 0.309 0.836 0.713 0.691 0.105 0.380 0.320 0.248 0.387 0.371

Gamma 10 5.0 0.373 0.230 0.355 0.048 0.263 0.062 0.584 0.737 0.214 0.163 0.090 0.171 0.398 0.226 0.440

15 7.5 0.401 0.517 0.405 0.181 0.000 0.018 0.819 1.000 0.664 0.158 0.210 0.175 0.300 0.339 0.403

20 10.0 0.443 0.713 0.406 0.173 0.000 0.093 0.826 1.000 0.906 0.176 0.289 0.161 0.312 0.371 0.306

Log-Weibull 10 5.5 0.672 0.298 0.654 0.282 0.059 0.022 0.054 0.553 0.091 0.308 0.138 0.323 0.458 0.385 0.472

15 6.0 0.717 0.344 0.688 0.005 0.192 0.000 0.031 0.754 0.080 0.360 0.150 0.343 0.482 0.387 0.478

20 6.5 0.668 0.309 0.716 0.138 0.185 0.001 0.518 0.764 0.002 0.297 0.135 0.362 0.443 0.377 0.484
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(c) Censoring inside:outside cluster = 40%:20%

Fig. 5  Power and strength of the Weibull spatial scan statistic for cluster detection under right differential censoring. Datasets are generated 
using five probability models with outside cluster mean = 2. PI perfect identification, LC large cluster (including true cluster), NI no identification, 
Exp exponential, Weib Weibull, LN log-normal, Gam Gamma, LW log-Weibull
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Fig. 6  Average and cumulated Tanimoto coefficients of the Weibull spatial scan statistic for cluster detection under right differential censoring. 
Datasets are generated using five probability models with outside cluster mean = 2
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Discussion
The spatial scan statistic (SSS) is a widely used statistical 
technique for the identification of the spatial clusters of 
different data types by using various probability distribu-
tions. In the context of time to event data, the SSS has the 
ability to detect geographical clusters of cases with either 
longer and/or shorter than expected event times. These 
clusters can be adjusted for censoring, if the appropriate 
probability model is used.

We have proposed the SSS for the log-Weibull distri-
bution as a new approach for detecting spatial clusters 
for time to event data. The log-Weibull distribution has 
wide applications in extreme value theory for modeling 
extreme and rare events. The new log-Weibull method 
and the Weibull SSS are applied to administrative data 
from Alberta Health consisting of time from ED dis-
charge for an AFF presentation to 1st specialist visit 
within 365  days in Alberta during 2010–2011. Results 
from the SSS show that the primary cluster is detected at 
the Peace Country, Northern Lights, and Aspen regional 
Health Authorities. The most likely cluster is comprised 
of rural areas in northern Alberta which have sparse or 
low population and have further distances to major met-
ropolitan centres. The results suggest that people living in 
these northern rural areas may not have regular or quick 
access to the follow-up care to a specialist after an ED 
presentation. Our results are in agreement with the rec-
ognized issue of health care access for rural residents and 
strategies such as mobile services, telehealth, and rotat-
ing specialists have been suggested and/or implemented 
[25]. While we recognize that the censoring might be 
quite early for the patients with an ED visit in late 2011 
and the methods may be effected by short follow-up, the 
effects would be across all areas of the province and we 
feel that the results are likely linked to real clustering and 
are plausible given the recognized issue of health care 
access.

The simulation studies indicate that the power of 
detecting the potential cluster is higher for the 20%:20% 
censoring ratio as compared to the 20%:40% and 40%:20% 
settings. This comparison is also true in the context of 
identification of a true cluster. When either the Weibull 
or log-Weibull distributions is used for the SSS, the effect 
of the right differential censoring on power and detection 
of the true cluster is similar. For both of the probability 
models used under the SSS’s, as the difference between 
means of time to event data increase inside and outside 
the true cluster, the power and proportion of detection 
of the true cluster also increase. It can be observed from 
the overall results of both SSS’s that the Weibull SSS has 
good power for detecting a potential cluster for the data-
sets distributed with any of the five probability models 
used in this study. However, overall the log-Weibull SSS’s 

performance is satisfactory for the data distributed as the 
log-Weibull. For the identification of the true cluster, the 
Weibull SSS shows less variability on the simulated data-
sets than the log-Weibull SSS. The log-Weibull SSS shows 
the most power to detect a true cluster for the datasets 
generated from the log-Weibull distribution. When vari-
ous differential censoring situations are considered, the 
global performance indicators for the log-Weibull SSS 
do not vary widely. Conversely, when there was less cen-
soring inside the cluster than outside the cluster, the 
log-Weibull SSS had highly variable performance that 
depended on the underlying data distribution.

The results based on the global indicator for perfor-
mance assessment also support the above conclusions, 
identifying that the Weibull SSS detects the true clus-
ter with more power and location accuracy both at the 
same time, whereas the log-Weibull SSS shows high sig-
nificant cluster detection accuracy for the datasets gen-
erated from log-Weibull probability distribution. It is 
also observed that the log-Weibull distribution has a 
good ability to detect a broader cluster including the true 
cluster instead of identifying exact true cluster. It is sug-
gested that the log-Weibull SSS can be used to detect a 
spatial cluster for the time to event data distributed as 
log-Weibull. Based on the simulation study results for 
both SSSs, the log-Weibull SSS proved to be less effective 
than the Weibull SSS when the dataset is generated from 
the exponential distribution. When the underlying data 
distribution is not exponential, the log-Weibull SSS has 
slightly reduced performance than the Weibull SSS; how-
ever, the log-Weibull SSS had similar performance across 
different underlying data distributions, especially when 
the censoring ratio is higher inside the true cluster than 
outside the true cluster.

There are many opportunities for future work. For 
example, the proposed methodology based on the SSS for 
the log-Weibull distribution does not adjust for impor-
tant factors such as age and gender. In future, such covar-
iates can be adjusted in the analysis of the identification 
of potential clusters for time to event data. Furthermore, 
the new developed method can only be performed on a 
purely spatial setting. The space–time scan statistic has 
been developed by other authors in both retrospective 
[15] and prospective [16] ways. In the future, the SSS 
based on the log-Weibull distribution can be extended 
to the space–time setting, and similar simulation stud-
ies can be performed to investigate power of detection of 
space–time clusters.

Conclusions
We have proposed a new SSS using the log-Weibull dis-
tribution. The new method has been applied to special-
ist follow-up data in Alberta, and the SSS’s have been 
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compared and contrasted for time to event data gener-
ated from simulations. The simulation studies suggest 
that the SSS based on the log-Weibull distribution per-
forms well for log-Weibull data. The log-Weibull distribu-
tion, being a specialized case of the generalized extreme 
value distribution, has a wide application in extreme 
value theory for modeling extreme and rare events.
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