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Abstract

Background: Spatial scan statistics have been used for the identification of geographic clusters of elevated numbers
of cases of a condition such as disease outbreaks. These statistics accompanied by the appropriate distribution can
also identify geographic areas with either longer or shorter time to events. Other authors have proposed the spatial
scan statistics based on the exponential and Weibull distributions.

Results: We propose the log-Weibull as an alternative distribution for the spatial scan statistic for time to events data
and compare and contrast the log-Weibull and Weibull distributions through simulation studies. The effect of type |
differential censoring and power have been investigated through simulated data. Methods are also illustrated on time
to specialist visit data for discharged patients presenting to emergency departments for atrial fibrillation and flutter in
Alberta during 2010-2011. We found northern regions of Alberta had longer times to specialist visit than other areas.

Conclusions: We proposed the spatial scan statistic for the log-Weibull distribution as a new approach for detecting
spatial clusters for time to event data. The simulation studies suggest that the test performs well for log-Weibull data.

department

Keywords: Spatial scan statistic, Log-Weibull distribution, Time to event, Atrial fibrillation and flutter, Emergency

Background

The existence of more than presumed numbers of cases
of a disease condition in a geographic region is referred
to as a spatial disease cluster. Timely detection of spa-
tial disease clusters enables health authorities to better
understand the distribution of disease and if possible,
control disease. A large number of methods have been
proposed and applied by authors for the identification
and evaluation of geographical disease clusters and dis-
ease surveillance, and the spatial scan statistics (SSS) is
one of them.

The SSS, with its possible extensions has been widely
used as a standardized approach for the last two decades,
not only in the disease clustering but also in various other
fields of study like natural disasters [1], forestry [2], astro-
nomical data [3], history [4], and psychology [5]. It was
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first proposed by Kulldorff and Nagarwalla and has the
capability of identifying spatial clusters of variable sizes
and locations [6]. The key reasons for the popularity of
this method include that it identifies the cluster loca-
tion and tests the tendency to cluster [7]. According to
Costa and Assuncdo, the latter advantage is considered
to be more important in terms of health related interven-
tions than global clustering results [7]. The SSS’s based
on the Bernoulli and Poisson models are frequently used
for count data for cluster identification and geographical
disease surveillance [8, 9]. These scan statistics have been
further extended to other kinds of data such as ordinal
[11], multinomial [12], continuous [13], and correlated
count data [14].

Time to event data along with the censoring compo-
nent (e.g., survival data) is one of the important health
outcomes for which the SSS is of interest [9]. The SSS for
time to event data is used to determine if there are geo-
graphical clusters with either longer than expected and/
or shorter than expected time to event. The exponential
[9] and Weibull [10] SSS’s (adjusted for censoring) have
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already been developed for time to event data. We pro-
pose the log-Weibull as an alternative distribution for
the SSS for cluster detection of time to event data. The
log-Weibull distribution has wide applications in extreme
value theory. Our focus is to establish a new SSS for the
detection of rare and extreme events.

In the Methods section, we describe the existing
Weibull SSS and the newly developed SSS based on the
log-Weibull distribution. The Application section con-
tains the results from the identification of clusters of
longer times to specialist follow-up after an emergency
department presentation for atrial fibrillation and flutter
in Alberta, Canada. Simulation studies are performed to
investigate power, the effect of right (type I) differential
censoring, and ability to identify the true cluster by the
log-Weibull and Weibull spatial scan statistics.

Methods

The SSS identifies the geographic zones from a study
region that have the strongest indication of representing
a spatial cluster. It uses data such as administrative health
data collected for geographical sub-regions, each charac-
terized by a centroid (population or geographic based).
The SSS imposes a circular searching window of radius
r on each centroid with its center at the coordinate of a
centroid [6]. A zone (Z) defined by this circular window is
comprised of all the individuals in the sub-regions whose
centroids lie inside the circle [6]. For the purpose of the
analysis, an upper bound r* is chosen for the radius of
the circular window [10]. For each region’s centroid, its
nearest neighbours covering altogether r * percent of the
total population are calculated. For any given position of
the centroid, the radius of the window is expanded con-
tinuously to take any value between 0 and r* [10]. During
the expansion, every time a new zone is created with an
inclusion of a new neighbouring centroid in the circu-
lar window [14]. Zones defined in this way have irregu-
lar geographical boundaries depending on the size and
shape of those sub-regions, whose centroids lie inside the
spatial scan window [14].

The methodology of the SSS is based on calculating the
maximum log likelihood ratio (LLR). The SSS partitions
the geographical area into zones (i.e., areas of potential
cluster versus the rest of the study region) and the LLR is
calculated every time when a new zone is created for each
centroid [8, 10]. The zone maximizing the LLR is called
the primary (most likely) cluster. Let the primary cluster
be the zone Z that maximizes the LLR. The hypothesis
under consideration is:

H,: The disease risk is constant over Z U Z¢ vs. H;:
There is an elevated risk in Z.

Let G be the whole study region which can be parti-
tioned into Z and Z¢ mutually exclusive sub-regions,
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where Z indicates a zone designated to be a poten-
tial cluster and Z¢ is the rest of the study region. Let
N = nj, + nyye be the total number of individuals in G,
where #n;, and n,,; are the total individuals inside and
outside the zone, respectively. The subscripts “in” and
“out” indicate that the objects are calculated from the
individuals inside and outside the zone, respectively.

Let the ith individual have a time to event
T;, i=1,...,N) or a fixed right censoring time L;. The
event time T; is observed if T; < L;(§; = 1), and L; is
observed if T; > L;(8; = 0), where §; is the indicator to
represent if time is censored or not [9]. The observed
time is defined as t; = min(Tj, L;). Let R = ry;, + rous be
the total number of uncensored observations, where r;;,
and r,,; are the total number of uncensored observa-
tions inside and outside the zones, respectively. These are
defined asriy = >, 8iand rous = > ;e 8

Weibull distribution

Bhatt and Tiwari established the SSS based on the
Weibull distribution. The Weibull model is a nice gener-
alization of the exponential model that includes a shape
parameter with the existing scale parameter [10]. The
additional parameter provides the opportunity to the
Weibull hazard function to take different shapes rather
than to be a constant. We provide a brief summary of the
methodology, complete details can be found in the paper
presented by Bhatt and Tiwari [10]. Let the times to event
T/s, i=1,...,N) be iid. with the Weibull probabil-

ity density function (PDF) f(T;) = %pTi(p_l)e<7Tf/€),
where 6 and p are the scale and shape parameters, respec-
tively. Let the time to event for each individual inside the
zone be distributed as the Weibull distribution with 6;;,
and pjy, as the scale and shape parameters, respectively.
Similarly, assume that the times to event for individuals
outside the zone are Weibull distributed with 6,,; and
Pout as the scale and shape parameters, respectively. The
null hypothesis under consideration is Hy : 6;; = Ogys
versus the alternative hypotheses Hj : 0i; < Oput,
Hj : 6iy > Ooys, or Hy : iy # Opy¢. The alternative hypoth-
eses show that at least one zone is detected with either
shorter than expected, longer than expected, or simulta-
neously both longer and shorter than expected times to
events. The likelihood ratio test statistic for the Weibull
SSS for Hj : 0 # Opyy is

R
R
< ZisG tzp >
7z < o >rin < - > Tout *
ZieZ t‘:’m EieZC tf’out
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For Hi : 0i < Oout, A is multiplied by

, and similarly for Hi : 6i, > Oous,

Tin
ZieZ tzp ZiEZ” tzp

Tout

it is multiplied by / <Zzez > S n )

Log-Weibull distribution

The log-Weibull distribution is a specialized case of the
generalized extreme value distribution. It is often used to
model the distribution of extreme values, strength, event
history data such as quick wear-out after reaching a cer-
tain age, and logarithms of times [17]. We assume that
times to event Tl./s, (i=1,...,N) are independently and
identically distributed (i.i.d.) with the log-Weibull PDF

f(T) = bexp( )exp{—exp(T‘;“)},whereaand

b are the location and scale parameters, respectively. The
survival function for the log-Weibull distribution is

S(T)) =exp{ Tiza

—exp (

Let the time to event for each individual inside zone Z
be log-Weibull distributed with a;, and b;;, as the location
and scale parameters, respectively. Similarly, the time to
event for each individual outside zone Z(i.e., inside Z°)
follows the log-Weibull distribution with aoy,; and by
as the location and scale parameters, respectively. The
null hypothesis Hy : bi;, = boy: for any Z is contrasted
with one of three alternative hypotheses: Hy : by, < Dout,

2 biy > boyt, or Hy : biy, 7% boye. The likelihood func-
tlon L(Z) = L(Z, bin, boyt) for the log-Weibull SSS can be

written as:
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Taking the natural log on both sides, we have

t‘ — .
InL(Z) = —rin I bin — Tout Inboue + > 8; (b“)
icZ n
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For Hj : bjy, # boy, for at least one zone Z, the corre-
sponding likelihood ratio statistic is

MAXZ byt L(Z, bin, bout) L (Z)

LZ, bimbowt) I

L =

maXZ,bin:th

where Z is the zone maximizing L(Z, bjy, boy:) under Hy,
and L is the maximum of L(Z, b, boy:) under Hy. The
maximum likelihood estimators (MLE’s) of the param-
eters by, boyt, ain, and da,y: for any arbitrary zone Z can
be obtained by the following equations,

0 lnL(Z) Tin
_— = - — E Si(t; —
9b;y, bir (ti — ain)
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Thus the MLE’s of the scale parameters b;,, and by,,; are

and
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Similarly, the MLE’s of the location parameters a;, and

ti—ain
aoye are obtained by the equations r;; = > e\ %n /and
ieZ
(tif&zmt )
Four = y e\ Pout / respectively.

i€z

Under Hj : bjy; # boys, the obtained MLE’s provide

(2] = (ha) " () e B (BB o

Similarly, under Hy : b;;, = boys,

(5 5)
L= (bg) e \iG b e k.
So, the likelihood ratio statistic for Hy : bj, # by is

maxyz (

) (i) o B ()5 (52))
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In order to address the alternative hypotheses
biy < boyr and by, > by, the function A is multiplied by

A=

I(bin < l;o,ﬂ) and I ( by, > bou[), respectively.

Permutation test procedure

Since there is no closed analytical form of the distribu-
tion of the test statistic 4, a permutation test procedure
is used to test the statistical inference of the selected
clusters. The exact distribution of the time to events
is unknown and it is not possible to generate the simu-
lated data under the null hypothesis. To overcome this
situation, the observed pairs {(¢;,8;),i = 1,2,...,N} are
permuted 999 times among the individual geographical
coordinates of the original study region [9]. For each per-
muted dataset, the log-likelihood is calculated for each
zone and the most likely cluster preserving the maximum
log-likelihood in the dataset is saved. A p value is calcu-
lated as the fraction of permutations that are at least as
extreme as the test statistic from the observed time to
event data [18]. This permutation step ensures that no
matter how the observed time to event data are distrib-
uted, this distribution is preserved for each permuted
dataset. This factor provides valid statistical inference
since all the permuted datasets are equally distributed
[9]. Secondary clusters are the significant spatial clusters
that do not overlap with the primary cluster [9]. These
clusters are ranked with their corresponding LLR values
and the associated p values are calculated by comparing
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the kth (say) highest likelihood in the real dataset with
the maximum likelihood in the randomly permuted
datasets [9]. Note that the use of a permutation test pro-
cedure means that there will be variation in the exact p
values for successive analyses of the same datasets.

Results

Emergency data application

We illustrate the log-Weibull SSS on population based
administrative data (age > 35) for patients discharged
from the emergency department (ED) who presented
with atrial fibrillation and flutter (AFF) in the province of
Alberta during April 1, 2010, to March 31, 2011. In 2003,
the province of Alberta was divided into nine adminis-
trative health areas also called Regional Health Authori-
ties (RHAs) [19]. These RHA’s were further partitioned
into 70 sub-Regional Health Authorities (sRHAs) (Fig. 1,
numbered 1-70). The sRHAs have diverse population
sizes ranging from 550 to 140,211 with a median popula-
tion size of 46,075 in 2011 and are the smallest geograph-
ical units available for analysis. For each sSRHA’s centroid
based on population, the latitude and longitude of the
centroids are provided by Alberta Health [19]. Distances
between the pairs of sSRHA population-based centroids
are ordered and used to create the nearest neighbours.

The key outcome of interest is the time from ED dis-
charge for AFF to the 1st specialist visit during 365 days
of the study period. The specialist in this study is con-
sidered as a cardiology (CARD) or internal medicine
(INMD). A specialist follow-up visit can occur between
ED end time, to the end of the study. Each discharged
ED presentation during April 1, 2010, to March 31, 2011,
with a follow-up visit to the specialist during its ED end
time, to March 31, 2011 is considered a complete time to
event outcome. If the patient did not have specialist visit
by the end of the study (March 31, 2011), the outcome
is referred to as right (type-I) censored. Each Alberta
resident making at least one discharged ED presenta-
tion for AFF during the fiscal year is referred to as a case
(patient).

The methodology used in this study does not adjust for
repeated ED presentations of cases. Hence, independ-
ent patient data is considered by taking only the last ED
visit out of the multiple visits. The calculations are per-
formed using the R and S-Plus [20, 21]. Each cluster can
contain only a maximum of r* = 10% of the study popu-
lation. The variable scanning windows are created for
each sRHA to absorb neighbours up to 10% of the total
population. This upper bound is chosen based on the fea-
sibility of analysis and time restrictions. There are about
1.95 M adults in the study population, among them the
discharged subset is comprised of 3039 cases (30% cen-
sored, 54% male) with an average age of 68.04 years. The
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Fig. 1 Alberta map highlighting the primary and secondary clusters for the log-Weibull spatial scan statistic

median time to event for the whole dataset is 81 days
and the corresponding 95% confidence interval (CI) is

76—86 days.

The identified primary and secondary clusters are
shown in Table 1 and Fig. 1. The most likely cluster with
significantly longer times to events is mainly from R7-R9
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Table 1 Spatial scan results for the log-Weibull

distribution

Cluster sRHA Population Cases LLR P

Primary 64 65 68 63 60 67 124,094 260 710.75 0.001
6661

Secondary (1) 5047 49 175,893 249 42327 0.001

Secondary (2) 2341525 99,425 239 39408 0.001

1.0

0.8
L

0.6

04

Probability of Time to Event

0.2

—— Primary
Secondary(2)

= Rest
Secondary(1)

0.0

0 1(;0 230 3(|)0 400
Time to Event

Fig. 2 Kaplan Meier curves for the detected primary and secondary

clusters and rest of the province for time to first specialist visit for the

log-Weibull spatial scan statistic

RHAs. This cluster is identified with 260 observed num-
ber of cases. The LLR is 710.75 with the associated p
value (P) of 0.001. This SSS provides two different statisti-
cally significant secondary clusters. The first one is a part
of R6 and the second cluster is a combination of sSRHAs
from R1 and R3. Median times to event are 177, 51, and
104 days for inside the primary, secondary (1), and sec-
ondary (2) detected clusters, respectively. The corre-
sponding 95% CI’s are 128—-223, 38-75, and 77-150 days.
For the entire province, collectively excluding the pri-
mary and both secondary clusters, the median event
time is 78 days and the 95% CI is (71, 84) days. Figure 2
shows the Kaplan—Meier curves for the detected pri-
mary and secondary clusters and the rest of the province.
The SSS based on the Weibull distribution has also been
applied to the same Alberta Health data, and is capable of
detecting the same primary cluster as of the log-Weibull
distribution i.e., from R7-R9 RHA’s, with no significant
secondary cluster.

Simulation studies
Simulation studies are conducted to investigate the
power of detecting a potential cluster and the effect of
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right differential censoring on cluster detection. All of the
datasets are analyzed with the log-Weibull and Weibull
SSS’s. Time to event data are randomly generated for
500 individuals with five different probability models:
the exponential, Weibull, log-Normal, gamma, and log-
Weibull. The Alberta geography is used as the geography
for analysis and the Alberta population is used to create
the zones for the simulation studies. Like the spatial scan
analysis of the real administrative data, an upper bound
of 10% is imposed on the population size.

For all simulated datasets, a true cluster of 25 indi-
viduals is created at a subregion of R201 sRHA, to have
longer time to events than the rest of the province. This
subregion was chosen because it was rural and away from
the detected rural cluster in the real Alberta ED data.
R201 was assigned the same percentage of individuals as
of the real dataset (i.e., approximately 5% cases in each
simulated data). This choice was feasible for simulation
studies to run in a reasonable amount of time. Right dif-
ferential censoring is added with the ratios of 20%:20%,
20%:40%, and 40%:20% for inside:outside the true cluster.
For example, 20%:40% means that 20% censoring is used
within the true cluster and 40% outside the true cluster.

One thousand simulated datasets are generated from
the probability models defined above using the differen-
tial censoring settings under the alternative hypotheses of
the existence of longer than expected time to event clus-
ters. The choice of 1000 simulations is the same as what
was chosen for the development of the Weibull SSS [10]
and was computationally timely. For symmetry, param-
eters for each probability model are chosen in such a way
that they provide a constant mean of 2 outside the true
cluster and means of 10, 15, and 20 inside the true cluster
for each censoring ratio. These values were chosen to be
similar to the inside:outside times to event means ratio
from real data used in the application.

For each simulated dataset, 999 random permutations
are performed to get the p values from the permutation
testing procedure. Let, Z*,Z", and M represent the
true cluster, the cluster identified in the mth simulations,
and total number of simulations, respectively. Power is
calculated as the proportion of datasets out of 1000 hav-
ing p values<0.05 [9, 10], not necessarily detecting the
true cluster i.e.,

M
1
Power = ]\7 2:11[2(m);p(z(m))<0.05]‘
m=

In order to observe the strength of identification of the
true cluster by each SSS, three different proportions are
calculated for mutually exclusive situations from 1000
randomly generated datasets under each probability



Usman and Rosychuk Int J Health Geogr (2018) 17:20

model for all censoring situations. These indicators are
essentially the same as those reported for the exponen-
tial and Weibull based SSS’s [9, 10], and we have adapted
slightly to reflect the aggregate nature of the data.

These are the proportion of datasets:
cluster

1. Perfectly identifyinp> the true

L M
PI = M Z I[Z*:Z(m)] i
m=1
2. Identifying 2 large cluster including the true cluster
LC = % Z I[Z*Cz(m)] ;and,
m=1

3. Not ic}l\?ntifying the true cluster

(NI = % Z_ll[z*gz(m)])

In addition to the three cluster performance measures
listed above, a global indicator for performance assess-
ment has been used [22] based on the coefficient devel-
oped by Tanimoto [23, 24]. The Tanimoto coefficient
(TC) is computed for each simulated data set and meas-
ures the similarity between a simulated and detected
cluster by using the ratio of the intersecting cluster
cohort to the union cluster cohort. In order to calculate
TC, four types of spatial units (SUs) are calculated and
defined as:

True Positive (TP) = SUs both within Z* and Z;
False Positive (FP) = SUs only within Z);

False Negative (FN) = SUs only within Z*; and,
True Negative (TN) = SUs not within either cluster.

The TC computed for each simulated data set is
TC = ﬁ The geographical region used in this
simulation study is divided into 70 SUs. When no signifi-
cant cluster is detected i.e., p value is higher than 0.05, we
get TP=0, FP=0, TN=69, and FN=1.

The average Tanimoto coefficient (TC,) and the cumu-
lated Tanimoto coefficient (TC_) were used as the statis-

tics of u TC. These are defined as
_ 1 TP,,
TCa= 3 Zl (TP Py TEN,) and
m=
M
S TP,
TC, = 57— Global  performance is
S (TP +EPy+ENy,)

m=1

assessed using TC, and TC_ by taking both location accu-
racy and power into account at the same time. Guttmann
et al. have assessed the superiority of TC_ over TC, based
on their functional properties and variability, and
observed that TC_. has more power of capturing low
accuracy in cluster location [22].
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Using the log-Weibull SSS (Table 2, Figs. 3 and 4), the
results show that the values of power vary from 0.326
to 0.721 for the 20%:20% censoring, from 0.148 to 0.941
for the 20%:40% censoring situation, and range from
0.350 to 0.737 for the 40%:20% censoring case. Overall,
the maximum power is seen when the data are generated
under the Weibull distribution and the minimum power
is observed for the datasets distributed with the gamma
and exponential probability models.

The proportions of datasets perfectly identifying the
true cluster fluctuate for the log-Weibull SSS. They are
between 0.000 and 0.310 for the 20%:20% case, range
from 0.000 to 0.186 for the 20%:40% censoring ratio, and
are between 0.000 and 0.264 for the 40%:20% censor-
ing setting, respectively. Under the large cluster iden-
tification cohort for the log-Weibull distribution, there
are high proportions of the true cluster detected. These
proportions range from 0.000 to 1.000 for all three dif-
ferential censoring situations. Overall, the maximum
proportion of perfect identification is achieved for the
datasets generated from the log-Weibull distribution.
The datasets from the exponential distribution have the
highest proportions of large cluster identification includ-
ing the true cluster among all five probability models. A
few decreases are found in the power and the strength
of identification of the true cluster for each model, when
comparing the 20%:20% to the 20%:40% and 40%:20%
censoring cases.

For the log-Weibull SSS, the values of TC, range from
0.060 to 0.448 for all three censoring situations. The TC_
values lie between 0.189 and 0.491 with very less variabil-
ity among the five probability models used to generate
the data.

For the Weibull SSS (Table 3, Figs. 5 and 6), the over-
all results for the power and all the proportions’ perfor-
mances of the datasets are less variable than the results
of the log-Weibull SSS. The power values of detecting
a potential cluster are between 0.256 and 0.971 for the
20%:20% censoring setting, range from 0.230 to 0.999 for
the 20%:40% censoring ratio, and are between 0.355 and
0.981 for the 40%:20% case. The proportions of perfectly
detecting a true cluster are high for all three censoring
situations across all of the datasets as compared to the
log-Weibull distribution, being least for the exponential
model. The non-zero proportions of datasets generated
under five probability distributions who do not identify
the true cluster are between 0.000 and 0.997. The power
values increase as the difference between the means of
inside and outside the cluster increase and similar effects
are seen for the strength of detection of the true cluster.

For the Weibull SSS, the values of TC, and TC_ range
from 0.090 to 0.478 and 0.226 to 0.489, respectively.
This study shows that the Weibull SSS has more similar
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Table 2 Simulation study results for the log-Weibull spatial scan statistic

Data distribution IC Power PI LC TC, TC,

M Vv a b C a b C a b C a b C a b C

Exponential 10 1000 0388 0.148 0350 0042 0001 0000 0958 0999 0714 0.155 0060 0.153 0304 0.189 0.386
15 2250 0395 0383 0381 0000 0003 0000 1.000 0997 1000 0158 0.160 0.156 0307 0.308 0.308
20 4000 0403 0609 0385 0002 0000 0002 0998 1.000 0998 0.166 0248 0.157 0312 0356 0306
Weibull 10 40 0554 0913 0522 0310 0.128 0.127 0014 0041 0127 0252 0435 0248 0444 0489 0452
15 100 0554 0934 0513 0069 0.124 0158 0049 0045 0030 0270 0445 0247 0461 0490 0455
20 70 0559 0941 0573 0122 0148 0020 0039 0001 0089 0274 0448 0283 0462 0491 0468
Log-Normal 10 40 0471 0364 0408 0099 0005 0024 0272 0064 0052 0225 0185 0204 0426 0442 0449
15 100 0397 0398 0404 0046 0017 0051 0026 0034 0026 0203 0205 0202 0449 0451 0448
20 170 0373 0452 0391 0022 0025 0049 0015 0066 0000 0189 0231 0.19 0445 0458 0447
Gamma 10 50 0400 0425 0432 0005 0025 0050 0027 0.134 0021 0207 0216 0217 0446 0453 0448
15 75 0349 0486 0378 0019 0051 0138 0071 0243 0000 0.176 0244 0.186 0429 0459 0431
20 100 0326 0525 0380 0025 0076 0.118 0118 0326 0035 0.163 0253 0.186 0416 0454 0430
Log-Weibull 10 55 0641 0357 0682 0199 0123 0238 0029 0490 0.714 0299 0.160 0286 0460 0397 0429
15 6.0 0721 0344 0705 0103 0186 0209 0062 0760 0.744 0347 0.152 0298 0474 0389 0436
20 6.5 0670 0323 0737 0138 0.186 0264 0518 0762 0688 0302 0.141 0307 0446 0384 0434

Five probability models each with three different means inside true cluster are used under three right censoring cases: a=20%:20%, b = 20%:40%, ¢ =40%:20%
outside cluster: mean = 2; variance = 4(Exponential), 0.188(Weibull), 2(log-Normal), 1(Gamma), and 5(log-Weibull). ICinside cluster, Mmean, Vvariance, Pl perfect
Identification, LClarge cluster identification, TC,average Tanimoto coefficient, TC_cumulated Tanimoto coefficient
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Fig. 4 Average and cumulated Tanimoto coefficients of the log-Weibull spatial scan statistic for cluster detection under right differential censoring.
Datasets are generated using five probability models with outside cluster mean=2

Table 3 Simulation study results for the Weibull spatial scan statistic

Data distribution IC Power PI LC TC, TC,

M Vv a b C a b C a b C a b C a b C

Exponential 10 1000 0954 0962 0871 0052 0076 0015 0345 0320 0.175 0456 0449 0427 0483 0479 0487
15 2250 0838 0894 0881 0001 0094 0011 0494 0547 0276 0403 0403 0431 0476 0462 0485
20 4000 0971 0.781 0981 0001 0094 0014 0562 0682 0306 0465 0346 0478 0481 0446 0489
Weibull 10 40 0732 0701 0755 0538 0961 0976 0.000 0.006 0000 0306 0240 0258 0461 0327 0329
15 100 0697 0973 0704 0869 0317 0993 0131 0672 0000 0243 0378 0238 0308 0407 0303
20 70 0806 0993 0715 0652 0879 0966 0.172 0.121 0034 0304 0340 0245 0418 0349 0307
Log-Normal 10 40 0672 0726 0427 0074 0176 0027 0248 0824 0.156 0315 0283 0211 0458 0363 0459
15 100 0721 0971 0599 0000 0221 0043 1000 0.779 0957 0290 0374 0240 0372 0388 0352
20 170 0256 0999 0835 0.164 0287 0309 0836 0713 0691 0.105 0380 0320 0248 0387 0371
Gamma 10 50 0373 0230 0355 0048 0263 0062 0584 0737 0214 0163 009 0.171 0398 0226 0440
15 75 0401 0517 0405 0.181 0000 0018 0819 1000 0664 0.158 0210 0.175 0300 0339 0403
20 100 0443 0713 0406 0173 0000 0093 0826 1000 0906 0.176 0289 0.161 0312 0371 0306
Log-Weibull 10 55 0672 0298 0654 0282 0059 0022 0054 0553 0091 0308 0.138 0323 0458 0385 0472
15 6.0 0717 0344 0688 0005 0192 0000 0031 0.754 0080 0360 0.150 0343 0482 0387 0478
20 6.5 0668 0309 0716 0138 0.185 0001 0518 0.764 0.002 0297 0135 0362 0443 0377 0484

Five probability models each with three different means inside true cluster are used under three right censoring cases: a=20%:20%, b = 20%:40%, ¢ =40%:20%
outside cluster: mean = 2; variance = 4(Exponential), 0.188(Weibull), 2(log-Normal), 1(Gamma), and 5(log-Weibull). ICinside cluster, Mmean, Vvariance, Pl perfect
identification, LClarge cluster, identification TC,average Tanimoto coefficient, TC. cumulated Tanimoto coefficient

results for the spatial cluster detection based on power, generation, whereas the performance of the log-Weibull
proportions of cluster detection and global detection  SSS is best when the datasets are generated from the log-
test regardless of the probability model used for the data ~ Weibull distribution.
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Datasets are generated using five probability models with outside cluster mean=2
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Discussion

The spatial scan statistic (SSS) is a widely used statistical
technique for the identification of the spatial clusters of
different data types by using various probability distribu-
tions. In the context of time to event data, the SSS has the
ability to detect geographical clusters of cases with either
longer and/or shorter than expected event times. These
clusters can be adjusted for censoring, if the appropriate
probability model is used.

We have proposed the SSS for the log-Weibull distri-
bution as a new approach for detecting spatial clusters
for time to event data. The log-Weibull distribution has
wide applications in extreme value theory for modeling
extreme and rare events. The new log-Weibull method
and the Weibull SSS are applied to administrative data
from Alberta Health consisting of time from ED dis-
charge for an AFF presentation to 1st specialist visit
within 365 days in Alberta during 2010-2011. Results
from the SSS show that the primary cluster is detected at
the Peace Country, Northern Lights, and Aspen regional
Health Authorities. The most likely cluster is comprised
of rural areas in northern Alberta which have sparse or
low population and have further distances to major met-
ropolitan centres. The results suggest that people living in
these northern rural areas may not have regular or quick
access to the follow-up care to a specialist after an ED
presentation. Our results are in agreement with the rec-
ognized issue of health care access for rural residents and
strategies such as mobile services, telehealth, and rotat-
ing specialists have been suggested and/or implemented
[25]. While we recognize that the censoring might be
quite early for the patients with an ED visit in late 2011
and the methods may be effected by short follow-up, the
effects would be across all areas of the province and we
feel that the results are likely linked to real clustering and
are plausible given the recognized issue of health care
access.

The simulation studies indicate that the power of
detecting the potential cluster is higher for the 20%:20%
censoring ratio as compared to the 20%:40% and 40%:20%
settings. This comparison is also true in the context of
identification of a true cluster. When either the Weibull
or log-Weibull distributions is used for the SSS, the effect
of the right differential censoring on power and detection
of the true cluster is similar. For both of the probability
models used under the SSS’s, as the difference between
means of time to event data increase inside and outside
the true cluster, the power and proportion of detection
of the true cluster also increase. It can be observed from
the overall results of both SSS’s that the Weibull SSS has
good power for detecting a potential cluster for the data-
sets distributed with any of the five probability models
used in this study. However, overall the log-Weibull SSS’s
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performance is satisfactory for the data distributed as the
log-Weibull. For the identification of the true cluster, the
Weibull SSS shows less variability on the simulated data-
sets than the log-Weibull SSS. The log-Weibull SSS shows
the most power to detect a true cluster for the datasets
generated from the log-Weibull distribution. When vari-
ous differential censoring situations are considered, the
global performance indicators for the log-Weibull SSS
do not vary widely. Conversely, when there was less cen-
soring inside the cluster than outside the cluster, the
log-Weibull SSS had highly variable performance that
depended on the underlying data distribution.

The results based on the global indicator for perfor-
mance assessment also support the above conclusions,
identifying that the Weibull SSS detects the true clus-
ter with more power and location accuracy both at the
same time, whereas the log-Weibull SSS shows high sig-
nificant cluster detection accuracy for the datasets gen-
erated from log-Weibull probability distribution. It is
also observed that the log-Weibull distribution has a
good ability to detect a broader cluster including the true
cluster instead of identifying exact true cluster. It is sug-
gested that the log-Weibull SSS can be used to detect a
spatial cluster for the time to event data distributed as
log-Weibull. Based on the simulation study results for
both SSSs, the log-Weibull SSS proved to be less effective
than the Weibull SSS when the dataset is generated from
the exponential distribution. When the underlying data
distribution is not exponential, the log-Weibull SSS has
slightly reduced performance than the Weibull SSS; how-
ever, the log-Weibull SSS had similar performance across
different underlying data distributions, especially when
the censoring ratio is higher inside the true cluster than
outside the true cluster.

There are many opportunities for future work. For
example, the proposed methodology based on the SSS for
the log-Weibull distribution does not adjust for impor-
tant factors such as age and gender. In future, such covar-
iates can be adjusted in the analysis of the identification
of potential clusters for time to event data. Furthermore,
the new developed method can only be performed on a
purely spatial setting. The space—time scan statistic has
been developed by other authors in both retrospective
[15] and prospective [16] ways. In the future, the SSS
based on the log-Weibull distribution can be extended
to the space—time setting, and similar simulation stud-
ies can be performed to investigate power of detection of
space—time clusters.

Conclusions

We have proposed a new SSS using the log-Weibull dis-
tribution. The new method has been applied to special-
ist follow-up data in Alberta, and the SSS’s have been
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compared and contrasted for time to event data gener-
ated from simulations. The simulation studies suggest
that the SSS based on the log-Weibull distribution per-
forms well for log-Weibull data. The log-Weibull distribu-
tion, being a specialized case of the generalized extreme
value distribution, has a wide application in extreme
value theory for modeling extreme and rare events.
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