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Abstract 

Background:  GPS tracking is increasingly used in health and aging research to objectively and unobtrusively assess 
individuals’ daily-life mobility. However, mobility is a complex concept and its thorough description based on GPS-
derived mobility indicators remains challenging.

Methods:  With the aim of reflecting the breadth of aspects incorporated in daily mobility, we propose a conceptual 
framework to classify GPS-derived mobility indicators based on their characteristic and analytical properties for appli‑
cation in health and aging research. In order to demonstrate how the classification framework can be applied, existing 
mobility indicators as used in existing studies are classified according to the proposed framework. Then, we propose 
and compute a set of selected mobility indicators based on real-life GPS data of 95 older adults that reflects diverse 
aspects of individuals’ daily mobility. To explore latent dimensions that underlie the mobility indicators, we conduct a 
factor analysis.

Results:  The proposed framework enables a conceptual classification of mobility indicators based on the character-
istic and analytical aspects they reflect. Characteristic aspects inform about the content of the mobility indicator and 
comprise categories related to space, time, movement scope, and attribute. Analytical aspects inform how a mobility 
indicator is aggregated with respect to temporal scale and statistical property. The proposed categories complement 
existing studies that often underrepresent mobility indicators involving timing, temporal distributions, and stop-move 
segmentations of movements. The factor analysis uncovers the following six dimensions required to obtain a com‑
prehensive view of an older adult’s daily mobility: extent of life space, quantity of out-of-home activities, time spent in 
active transport modes, stability of life space, elongation of life space, and timing of mobility.

Conclusion:  This research advocates incorporating GPS-based mobility indicators that reflect the multi-dimensional 
nature of individuals’ daily mobility in future health- and aging-related research. This will foster a better understanding 
of what aspects of mobility are key to healthy aging.

Keywords:  Healthy aging, Conceptual framework, Spatial activity, Mobility indicator, Real-life assessment, Dimensions 
of mobility, Ambulatory assessment, Classification, Multi-dimensional
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Introduction
Promoting healthy aging has become a key research 
endeavor by reason of increasingly aging societies around 
the world [1]. Mobility has been found to be an important 
predictor for individuals’ health and well-being, espe-
cially for older adults [2–6]. Key components of healthy 
aging such as well-being, social participation and active 
living are associated with different aspects of an indi-
vidual’s daily mobility [7, 8]. Mobile individuals are able 
to access resources, which contributes to subjective well-
being by making them feel independent [4, 9, 10]. Trave-
ling using active modes of transport (such as walking or 
cycling) represents active lifestyles and is correlated with 
physical health and well-being [11, 12]. Moreover, the 
number of visited locations has been shown to be associ-
ated with social network size [13].

For the purpose of this work, daily mobility is a con-
cept that describes the everyday spatiotemporal patterns 
of an individual’s movement in their environment [14]. 
Intertwined components of mobility are the spatial struc-
ture, the temporal structure, and the nature of activities 
[15]. Daily mobility is a key determinant for environmen-
tal exposure and access to resources as it defines when, 
where and how people are exposed to different environ-
ments (e.g., physical and social environment) [14, 16–18].

An individual’s daily mobility can be measured in dif-
ferent ways. Traditionally, mobility has been assessed 
subjectively and retrospectively via self-reports asking 
participants about their daily mobility behaviors (e.g., the 
life-space assessment [19] or travel diaries [20]). More 
recently, mobility has also been assessed using interac-
tive map-based questionnaires (e.g., VERITAS tool [7]) 
and an increasing number of studies rely on passive loca-
tion sensing methods—most prominently the Global 
Positioning System (GPS) [21]. Participants are equipped 
with such sensors embedded in either custom-built 
devices or smartphones that track a person’s locations 
in their natural environment in an objective, continuous, 
and unobtrusive manner [22]. GPS data can be used as 
input data to calculate mobility indicators that describe 
an individual’s daily mobility patterns. An indicator is 
defined as a measurable variable thought to be associated 

with a latent dimension (the true thing of interest, but not 
measured or unmeasurable) [23]. In this work, a mobil-
ity indicator is a variable that quantitatively describes 
an aspect of an individual’s daily mobility. For instance, 
commonly used mobility indicators include time out of 
home (TOH), number of trips, or size of life space [2, 24, 
25].

While many health and aging studies rely on only a few 
mobility indicators that illustrate partial facets of an indi-
vidual’s daily mobility [2, 3, 26, 27], it has been increas-
ingly emphasized that mobility is a multi-dimensional 
construct [22, 28–32]. There have been a few attempts to 
categorize mobility indicators [22, 25, 28, 33]. However, 
there is still little work on establishing a classification 
framework that groups and characterizes a wide range 
of GPS-derived mobility indicators according to spatial, 
temporal, and semantic aspects. Even with such a classi-
fication framework, it is still not obvious how differently 
similarly classified mobility indicators behave, and which 
groups of similarly behaving indicators exist. To respond 
to such limitations of existing studies, this paper takes a 
more comprehensive perspective on GPS-derived mobil-
ity and its multiple dimensions and therefore performs 
the following four steps, which also constitute our main 
contributions (Fig. 1):

•	 First, we establish a comprehensive conceptual 
framework, whose categories reflect different aspects 
of mobility and therefore enable categorizing and 
classifying GPS-based mobility indicators commonly 
used in health and aging research (“Classification 
framework for mobility indicators” section).

•	 Second, we employ the proposed framework to clas-
sify GPS-derived mobility indicators used in an 
exemplary set of health/aging studies, hence gaining 
insights into the aspects of mobility that are poten-
tially underrepresented in the literature (“Classifica-
tion of exemplary health and aging studies” section).

•	 Third, we demonstrate how the conceptual frame-
work can be used to generate a comprehensive set of 
mobility indicators (“A comprehensive set of mobility 
indicators” section).

Fig. 1  Workflow of this paper, leading towards a comprehensive set of GPS-based indicators. Squares represent the four sequential steps of the 
workflow
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•	 Fourth, we conduct an exploratory factor analysis 
(EFA) to explore the latent dimensions of the pro-
posed comprehensive set of mobility indicators. To 
do so, we compute the proposed mobility indicators 
based on 1 week of GPS data of a sample of 95 com-
munity-dwelling older adults (“Empirical validation 
of latent mobility dimensions: methods” and “Empiri-
cal validation of latent mobility dimensions: results” 
sections).

This research contributes to healthy aging research 
that involves real-life (spatial) mobility assessment, as it 
reflects the breadth of mobility aspects that are deriv-
able from tracking data. Moreover, enhanced knowledge 
of the latent dimensions of mobility will help research-
ers to gain a more comprehensive view of an individual’s 
mobility and how its different facets differentially relate 
to health outcomes.

Classification framework for mobility indicators
Based on its properties, each mobility indicator can be 
assigned to multiple thematically grouped categories that 
represent characteristic or analytical aspects. Character-
istic aspects represent the actual semantic properties of 
the mobility construct; daily mobility can be described 
in terms of its spatial and/or temporal perspectives and 
can potentially be enriched with further attributes. Ana-
lytical aspects are not essential for the description of the 
content of the mobility construct per se, but rather refer 
to the processing of an indicator in terms of aggregation 
and statistical summary. The exact aggregation and/or 
summary methods used are dependent on the available 
data and the purpose of the study they are used for.

The framework presented in Fig. 2 has been extended 
from the first attempt towards a classification framework 
described in Fillekes et al. [30]. In the following sub-sec-
tions, all categories are explained in detail.

Characteristic aspects
Characteristic aspects provide information on the actual 
content of a mobility indicator. Mobility indicators are 
classified by one or multiple space and time categories. 
Moreover, they are grouped by one or multiple move-
ment scope categories, each of which potentially can be 
enriched by further attributes.

Space
The group of space categories summarizes indicators 
referring to different characteristics primarily infer-
able from the spatial distribution of the GPS data. The 
category count refers to the number of mobility-related 
events (e.g., the number of visited locations), whereas the 
category extent refers to the spatial size of the mobility-
related activities. Extent can be measured using many dif-
ferent indicators including distance travelled or various 
types of ‘life-space’ indicators (in the spatial sciences also 
referred to as ‘activity-space’ indicators) [2]. Life space 
refers to the area within which a person moved over a 
specific period of time and is approximated using, for 
example, the convex hull or standard deviational ellipse 
based on the entire GPS trajectory [2, 34]. To answer 
health-related questions, it is meaningful to distinguish 
between counts and extent, as they do not necessar-
ily correlate; an urban dweller, for instance, might cover 
a large life space in their day-to-day activities, but still 
might visit only a few locations due to the opportunity-
sparse nature of their residential city. To assess to what 
degree an individual pursues an active lifestyle, which 
is an important healthy aging outcome [32], the latter 
might be more determining. The third category com-
prises mobility indicators referring to the shape/distri-
bution of the location data (e.g., circularity of life space, 
or mono- vs. polycentric life spaces [31]). A polycentric 
life space could be interpreted as a more complex mobil-
ity pattern, which in turn could be related to higher levels 
of cognitive functioning [24].

Time
The categories related to time refer to different aspects 
regarding the temporal dimension of mobility patterns. 
The duration is the temporal aspect most commonly 
described by mobility indicators (e.g., time out of home, 
time spent in different transport modes). Spending time 
out of home or in different types of transport modes 
involves certain levels of physical, cognitive, and/or social 
activities and could therefore be related with an indi-
vidual’s health status [35]. The category timing reflects 
the time of mobility-related events, which possibly 

Fig. 2  Proposed conceptual framework used to classify mobility 
indicators based on their analytical and characteristic aspects, which 
are then grouped into further thematically organized categories
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indicates circadian or weekly patterns (e.g., peak of spa-
tial activities in the morning vs. evening, or during week 
vs. weekend days, respectively). As an example, Shoval 
et al. [36] found that older adults with cognitive impair-
ments would concentrate their out-of-home activities 
more in the morning and would also spread them less 
over the day. Eventually, the category temporal distribu-
tion comprises mobility indicators describing how time 
is distributed over different mobility-related activities. 
An exemplary indicator would be the entropy in visited 
locations. Having a low entropy (i.e., spending most of 
the time in few locations) has been found to be negatively 
correlated with depressive symptom severity [37].

Movement scope
The movement scope informs whether an indicator is based 
on the stops, moves or the mobility patterns engrained in an 
individual’s overall trajectory. Trajectory segmentation into 
stops (i.e., visited locations) and moves (i.e., trips between 
the locations) is an essential step when analyzing GPS data 
[38–40]. This process normally precedes enriching each 
segment with further attributional aspects (e.g., transport 
mode) that are presented in the subsequent attribute cat-
egories (next section). Indicators can then be used to sepa-
rately describe stop or move segments. Stops are typically 
defined by a minimum time duration that an individual 
spent within a maximum radius (typically 30–150 m) [41–
43]. In order to separate short—in a health context insignif-
icant—stops (e.g., traffic light stops that can be seen as part 
of a move) from long significant stops (e.g., shopping, visit-
ing friends, etc.), minimum stop durations between 5 and 
15 min are commonly applied [44]. Stops are an approxima-
tion for the number of activities an individual performs and 
have been found to be positively associated with cognitive 
abilities [22]. Moves can be analyzed with respect to travel 
distances and transport modes used. Mobility indicators 
based on an individual’s exhaustive spatiotemporal foot-
print (i.e., all GPS points independently of the stop-move 
segmentation) are grouped in the category trajectory. In 
movement analysis, a trajectory is defined as a sequence 
of successive positions of a moving object (in our case a 
human being) over a specific period (e.g., a day or a week) 
[45]. Mobility indicators assigned to this group comprise all 
GPS data including locations visited and routes travelled in 
between. Size of life space or time out of home are com-
monly used mobility indicators that would be assigned 
to this last category, as they are indifferent of a preceding 
move-stop differentiation of the trajectory.

Attribute
Some mobility indicators represent more semantic, quali-
tative, or nominal attributes of an individual’s mobil-
ity patterns as a whole or as a particular component (cf. 

movement scope) than the more basic spatiotemporal 
physical characteristics. In health studies, it is very com-
mon to quantify the number and duration of out-of-home 
activities [22]. Also, transport mode, for instance, the 
distinction between active (non-motorized) and passive 
(motorized) modes, has relevance in health research. For 
example the duration of traveling using active transport 
modes is a proxy for transport-related physical activity 
[46, 47]. Depending on the research questions and data 
availability (e.g., additional self-reported information, GIS 
layers etc.) further attributes of an individual’s mobil-
ity may be quantified. Stops may be further semantically 
annotated based on performed activity types (shopping, 
health care, etc.). Trips may be annotated with their pur-
pose or information about social interactions along the 
way [48]. Furthermore, exposure to environments (e.g., 
natural or physical environment) might be derived by 
combining individuals’ location data with different con-
text information. In this paper, however, we focus on 
mobility aspects that are derivable from GPS data only.

Analytical aspects
Each mobility indicator can be classified according to its 
temporal scale and statistical property. Both groups 
of categories relate to properties regarding the level of 
processing. In principle, all mobility indicators could be 
computed to represent all of the temporal scales and sta-
tistical properties presented in the framework. Relevant 
temporal scales and statistical properties used to aggre-
gate the mobility indicators are defined below. The deci-
sion which temporal scales and statistical properties are 
actually used depends on the available data and purpose 
of the particular study that is carried out.

Temporal scale
The following temporal scales can be used to aggregate 
and summarize mobility indicators depending on availa-
ble data and purpose of analysis: global, interval, and epi-
sodic [49]. At the global scale, mobility indicators of each 
individual are aggregated over the entire study period 
(e.g., 1 week, 1 month). Studies based on the global scale 
typically investigate how individuals’ daily mobility pat-
terns relate to their overall health outcomes using cross-
sectional study designs [34]. In health research, a study 
period to assess an individual’s daily mobility behaviors is 
often 1 week [7, 26, 50, 51]; in this case, the global mobil-
ity indicator aggregates 1 week of GPS tracking into a sin-
gle value. As an example, Takemoto et al. [52] computed 
mean daily number of vehicle trips as a global mobility 
indicator (aggregated from 6  days of GPS tracking) and 
found negative association with fear of falling.

At the interval scale, mobility is assessed over multiple 
time periods (i.e., intervals; e.g., daily, hourly) dissected 
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from the entire study period; mobility indicators are then 
aggregated over each interval. Interval-based assessments 
focus on within-person fluctuations in both mobility and 
health outcomes. Specifically, an interval-scale mobility 
indicator (e.g., daily travel distance for every study day) 
enables a longitudinal study design that examines ques-
tions such as associations between health outcomes and 
certain mobility indicators at the within-person level 
[53]. For instance, Kaspar et al. [27] investigated whether 
daily time out of home can predict a person’s daily mood.

At the episodic scale, mobility indicators are aggregated 
by episodes that are defined by an external criterion (e.g., 
weekend day, walking segments, or periods with high 
levels of subjective well-being) [54]. Saeb et  al. [55], for 
example, computed mobility indicators for week- and 
weekend-days separately and found that the latter have 
stronger associations with depressive symptom severity. 
Moreover, indicators such as walking speed [24] reflect 
mobility characteristics of a particular episode—in this 
case a walking segment.

Statistical property
Mobility indicators can be classified according to several 
types of descriptive statistics. In a health context, mobility 
indicators reflecting central tendency (e.g., mean, median), 
maximum (e.g., maximum or 90th percentile), or variabil-
ity (e.g., standard deviation, coefficient of variation) illumi-
nate different perspectives of mobility and have different 
relationships with an individual’s health outcomes [26, 56]. 
While maximum indicators relate to the highest perfor-
mance of the respective construct—which is also referred 
to as capacity—central tendency indicators reveal the 
average behavior or, in other words, give insight into the 
extent to which capacity (in each construct) is exploited 
[57]. Maximum distance from home (as an example for 
a maximum indicator) was related to cognitive function-
ing—more specifically planning and attention [34] and 
memory [58]. Daily average GPS-derived out-of-home 
time (as an exemplary central tendency indicator) was 
found to correlate with physical functioning [59]. Vari-
ability indicators give insight into the regularity/diversity 
of an individual’s mobility-related behaviors [60]. While 
GPS-derived variability indicators have not been used 
often so far, several studies have calculated variability in 
physical activity using inertial sensor data and showed that 
variability indicators are very relevant for health and func-
tioning, but not always as a positive association [56, 61].

Classification of exemplary health and aging 
studies
In order to employ the classification framework intro-
duced above and show what mobility aspects are typi-
cally represented by mobility indicators in health- and 

aging-related studies, we have chosen an exemplary set 
of papers and classified them based on the mobility indi-
cators used according to our classification framework 
(Fig.  2). After a broad but non-systematic, non-exhaus-
tive literature search focusing on health and aging stud-
ies involving GPS-based mobility indicators, we retained 
articles that utilized mobility indicators based exclusively 
on GPS data and where the indicators were related to 
health- and aging-relevant outcomes. Papers comprising 
self-reported questionnaire- or map-based indicators as 
well as exposure-related indicators and studies assess-
ing the feasibility and validity of GPS indicators were 
excluded. Some of the included papers were also found in 
recent systematic reviews on sensor-based assessments 
in health [62–64]. Moreover, the GPS-based mobility 
indicators utilized in the studies analyzed in these review 
papers are very similar to the ones covered by the exem-
plary papers used in this article (cf. Table 2 and in Addi-
tional file 1: Table S1).

The selected studies were classified according to the 
mobility aspects that are covered by at least one of the 
included mobility indicators (Table 1). The detailed clas-
sification, assigning each indicator used per study sepa-
rately to the categories of the proposed framework is 
shown in Additional file 1: Table S1. In Table 1, charac-
teristic aspects represented by each study are shown by 
check marks. Analytical aspects are not included because 
little between-study variability was found with respect 
to the temporal scale and statistical property categories. 
Most of the studies use indicators aggregated to daily 
mean/median or weekly total values which reflect the 
global temporal scale and the statistical property central 
tendency.

Most of the studies are based on a relatively small num-
ber of indicators (often less than 6 indicators). Even the 
studies involving many indicators do not cover all the 
categories we suggest in our framework. For example, 
in the paper by Sanchez et  al. [29] indicators reflecting 
timing or temporal distribution of activities as well as 
indicators characterizing the move scope are not consid-
ered. The most comprehensive set of mobility indicators 
according to our scheme is provided by Saeb et al. [55]. 
The only aspect they do not take into consideration is the 
transport mode.

The most frequently used space-related categories are 
extent (12  studies) and count (9 studies), while duration 
(13 out of 14 studies) is the most frequent time-related 
category. Categories referring to more qualitative aspects 
of space and time, such as shape/distribution, timing and 
temporal distribution are only covered by a minority of 
the investigated studies. With respect to the movement 
scope, most studies include indicators referring to the 
entire trajectory (13 out of 14). Around half of the studies 
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involve indicators that are based on the pre-segmented 
trajectory into stop and move episodes. With respect to 
the attribute-related categories many indicators quan-
tify the amount of out-of-home activities or distinguish 
between active and passive transport mode.

These observations are also confirmed on the level of 
the most frequently used mobility indicators (Table  2). 
Mobility indicators used in ≥ 2 studies are most often 
representing the categories extent, count, duration and 
most cover the movement scope of the entire trajec-
tory. Only a few indicators have been dominantly used, 
many of them reflecting similar combinations of mobil-
ity aspects (e.g., TOH, maximum distance from home, 
standard-deviational ellipse, area of convex hull, or time 
in vehicle).

A comprehensive set of mobility indicators
We propose a set of mobility indicators (see Table  3) 
that—in contrast to the studies presented above—is com-
prehensive in the sense that all characteristic aspects of 
the  above introduced classification framework are cov-
ered. Regarding the analytical aspects, in line with many 

other studies [34, 51, 59], we focus on a global temporal 
scale, i.e., all mobility indicators were summarized to 
one value reflecting the entire study period. Moreover, 
most of the mobility indicators were aggregated to daily 
average values for each participant, which reflects the 
statistical property central tendency. In the selection of 
mobility indicators, we assured that each characteristic 
category was represented by at least two indicators, so 
they could potentially load on a factor in the subsequent 
factor analysis (cf. “Empirical validation of latent mobil-
ity dimensions: methods” section) if they are capturing a 
sufficiently distinct underlying dimension of an individu-
al’s daily mobility.

We included the majority of the most frequently used 
mobility indicators from the literature (see the mobility 
indicators underlined in Table 2 and Table 3) and com-
plemented them with less common indicators or sug-
gested by ourselves in order to ensure covering all the 
characteristic aspects of the classification framework. 
Complementary indicators identified from the literature 
include average trip length [33], entropy [55], location 
variance [55], maximum duration using active transport 

Table 1  Allocation of  exemplary health-/aging-related studies based on  the  GPS-derived mobility indicators used, 
according to the characteristic aspects of the classification framework of Fig. 2
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Harada et al. [35] 1
Kaspar et al. [27] 2
Wahl et al. [65] 2
Blamou�er et al. [66] 3
Cuignet et al. [3] 3
Giannouli et al. [34] 4
Tung et al. [67] 4
Cornwell and Cagney [51] 5
Takemoto et al. [52] 6
We�stein et al. [58] 8
Boissy et al. [68] 10
Saeb et al. [55] 11
Isaacson et al. [33] 11
Sanchez et al. [29] 25
Total # of studies per category 9 12 2 13 1 1 6 9 13 10 6 5

‘Mvt. sc.’ is the abbreviation of ‘Movement scope’. For the detailed classification of the individual indicators Additional file 1: Table S1. Number (#) of indicators refers to 
the total number of GPS-derived mobility indicators that were included in the respective studies
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modes [69], number of unique locations [25], Gravelius 
compactness of convex hull, and major to minor axis of 
standard deviational ellipse [28]. The timing-related as 
well as the indicators representing the category tempo-
ral distribution are proposed by ourselves and—to the 
best of our knowledge—have not been used in any other 
mobility-related health and aging study. The precise defi-
nition of all included mobility is described further below 
(Table 5).

Empirical validation of latent mobility dimensions: 
methods
In order to explore the latent dimensions of the set of 
chosen mobility indicators, we computed these indicators 
using GPS data from the ‘Mobility study’ of the German 
Sport University Cologne and subsequently conducted an 
exploratory factor analysis (EFA).

Participant recruitment
The recruitment strategy and the study admission criteria 
are described in detail elsewhere [26]. In summary, com-
munity-dwelling older adults were recruited primarily by 
handing out information brochures and holding presen-
tations about the study in local senior citizen gatherings. 
In total, 192 persons meeting the criteria for participa-
tion in the study were recruited. Study admission crite-
ria were age older than 60 years, no serious diseases that 
could interfere with functional mobility, and the ability 
to stand up from a chair independently. All participants 
signed an informed consent form agreeing to participate 
in the study.

Ambulatory assessment
Mobility performance in real life was assessed over 
approximately 1  week by means of smartphone 

Table 2  Mobility indicators used in  at  least 2 studies of  the  14 studies listed in Table  1 according to  the  classification 
framework
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#
of

oc
cu

rr
en

ce
s

Space Time Mvt. sc. Attribute

Co
un

t

Ex
te

nt

Sh
ap

e/
di

st
r.

Du
ra

t io
n

Ti
m

in
g

Te
m

p.
di

s t
r.

St
o p

M
ov

e

Tr
aj

ec
to

ry

O
ut

o f
h o

m
e

Tr
an

sp
or

tm
od

e

Fu
rt

he
ra

tt
rib

ut
e

Number of loca�ons [29, 33, 55, 58, 65, 68] 6
Time out of home (TOH) [27, 33, 35, 58, 67] 5
Mean/median distance from home [29, 34, 51, 58, 67] 5
Time on foot [33, 52, 58, 66, 68] 5
Maximum distance from home [29, 34, 58, 68] 4
Distance on foot [27, 52, 58, 68] 4
Area of standard devia�onal ellipse [3, 29, 51] 3
Area of convex hull [29, 34, 67] 3
Number of trips on foot [33, 52, 58] 3
Time in vehicle [52, 66, 68] 3
Number of trips in vehicle [33, 52] 2
Distance in vehicle [52, 68] 2
Time in trips [3, 68] 2
Number of trips [3, 55] 2
Total distance [34, 55] 2
Walking speed [33, 58] 2
Perimeter of convex hull [29, 67] 2
Minimum span ellipse area [66, 68] 2
Time at home [55, 68] 2
Total # of indicators per category 4 9 0 5 0 0 1 9 9 3 7 1

Indicators underlined above were included in the suggested set of mobility indicators presented in the subsequent Table 3. This table was derived from the detailed 
classification of the individual indicators per study in Additional file 1: Table S1
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technology. Each participant was given a smartphone 
(Samsung Galaxy SIII™), which they were asked to carry 
with them all day. Collection of GPS data was run in the 
background so that the only required interaction of the 
participants with the smartphone was to charge it at night. 
Data recording took place between the first appoint-
ment, in which participants received the smartphone 
and the second appointment, in which they returned it. 
The aim was to record the participants’ real-life mobility 
for 7 days. However, it was not always possible to organ-
ize the appointments exactly 7 days apart. As a result, the 
total registration time ranged from 6 to 9 days.

GPS data processing and computation of mobility 
indicators
All processing and analyses of the GPS data were car-
ried out in R (v. 3.4.4/3.5.2 [70]). Specifically, we used the 
R packages plyr, dplyr, reshape, sp, dbscan, data.table, 

aspace, geosphere, circular rgdal, and raster for data 
manipulation; ggplot2, maptools, knitr for graphs and 
visualizations; and Hmisc, PerformanceAnalytics, nFac-
tors and corrplot for the statistical analyses.

GPS data processing
GPS data processing consisted of the following four 
steps: exclusion of outliers; splitting into daily trajecto-
ries; segmentation into stops and moves; annotation of 
moves based on transport mode; and annotation of stops 
as home/out of home and unique/multiply visited.

First, outliers were excluded by removing GPS fixes (an 
individual location point defined by its coordinates and 
an associated timestamp) with speed above 330  km/h, 
which corresponds to the maximum speed of high-speed 
trains in Germany. The weekly GPS trajectories were split 
into daily segments at 3 AM, similar as in Schneider et al. 

Table 3  Proposed set of mobility indicators according to the classification framework of Fig. 2

Mobility indicator Characteristic aspects
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MaxDist Maximum distance to home
CHull Area of convex hull
SDE Area of standard devia�onal ellipse
LocVar Loca�on variance
LengthPerTrip Average trip length
DurPTM Dura�on in PTM
DurATM Dura�on in ATM
MaxDurATM Dura�on of longest ATM trip
NumLoc Number of loca�ons
NumUniqLoc Number of unique loca�ons
TOH Time out of home
Entropy Entropy in loca�ons
GravCompact Gravelius compactness of cHull
Maj2MinAxis Major to minor axis of SDE
RevisitedLS % revisited area of daily life space
AvgRevisitedLS Avg. % overlapping daily life space 
SDDirMaxDist Direc�on of max. distance fix
TimeMaxDist Time of day at max. distance to home
TimeFirstMove Time of day first move
TimePeriodAc�ve Period of day with most OH ac�vi�es
Total # of indicators per category 2 5 4 4 3 5 4 6 II 4 3 0

Underlined indicators are amongst the frequently used ones according to Table 2. Abbreviations: passive transport mode (PTM); active transport mode (ATM), 
standard deviational ellipse (SDE), convex hull (cHull), out of home (OH). The computation of the indicators is described in Table 5
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[71], assuming that participants would go to bed latest at 
3 AM and therefore no uniform activities would acciden-
tally be split in two.

Second, GPS points were segmented into move and stop 
segments using the algorithm suggested in Montoliu et al. 
[72]. A stop was defined as a geographic region (< 150 m) 
in which a participant stayed for at least 5 min and was 
represented by the position of the median latitude and 
median longitude of the included GPS fixes, and by the 
timestamps when the participant arrived and left the stop, 
respectively. If two consecutive location fixes within the 
same stop had more than one hour time difference due to 
a potential data gap, they were designated as two separate 
stops. If they did not lie within the same stop, the latter fix 
was labeled as jump. GPS fixes in between the identified 
stops that are longer than 3 min were designated as move 
segments, similar as in Vanwolleghem et al. [73]. Consec-
utive stops interrupted by short segments (i.e., ≤ 3  min) 
not identified as stops were merged in a second step, if the 
distance between stops was smaller than 150  m and the 
time interval shorter than one hour.

Third, segmented moves were classified into segments 
traveled with active (non-motorized) and passive (motor-
ized) transport modes (ATM and PTM, respectively). Like 
in Carlson et al. [42] and Vanwolleghem et al. [73], move 
segments with 90th percentile speed ≥ 25 km/h were clas-
sified as passive, segments below this threshold as active.

Fourth, segmented stops were classified into home and 
out-of-home (OH) locations. Similar to Loebach and Gilli-
land [75], we used a buffer of 150 m around home to define 
GPS fixes or identified stop points as OH fixes or stops, 
respectively. Finally, we identified and marked stops visited 
multiple times (referring to the same location cluster). We 
used density-based clustering for this purpose, with an epsi-
lon radius of 60 m and minimum number of stops of two.

Inclusion criteria
Study days were considered as valid using the following 
criteria:

•	 Regarding the daily minimum temporal GPS wear 
time to count as valid day, we tested three commonly 
used thresholds: 8 h [50, 66], 9 h [73, 74], and 10 h 
[35, 75].

•	 A day was excluded if no stop was identified [25].
•	 Finally, days including visits to the lab where the 

appointments for receiving/returning the smart-
phone took place, were excluded (i.e., no GPS fixes 
tolerated within 200  m of the lab on the first/last 
study day).

Following criteria were applied for participants to be 
included in the final analyses:

•	 Only those participants who had corresponding 
address-based and GPS-based home addresses (i.e., 
distance of less than 170  m between them) were 
included. GPS-based home location was computed 
by using density-based clustering based on the first 
morning and last evening fix of every valid day, iden-
tifying clusters with a minimum number of three 
fixes within an epsilon distance of 60 m, which cor-
responds to the average positional error in bad GPS 
reception condition [76]. The cluster closest to the 
address-based home was chosen as GPS-based home 
location. For further computation, we replaced the 
address-based home with the GPS-based home, in 
case the latter reflected more precisely the GPS fixes, 
i.e., more than 1% more fixes within a 60-m-buffer of 
the GPS-based than the address-based home.

•	 To represent typical daily mobility, we tested a mini-
mum number of required study days of 3 [75], 4 [74], 
and 5 [66].

•	 One of the included days had to be a weekend day 
and the remainder of days had to be weekdays in 
order to achieve a representative view of an individu-
al’s mobility over the course of an entire week, as the 
level of mobility has been found to be unequally dis-
tributed between week- and weekend-days [27, 77].

•	 At least 3 days (one weekend day, two weekdays) out 
of the valid days had to be days on which at least one 
move segment was registered.

•	 Three participants who reported non-habitual move-
ment during the registration period in the post-study 
questionnaire were excluded.

Table  4 shows the resulting number of included par-
ticipants fulfilling all the inclusion criteria and the fol-
lowing five input data conditions: 3 days/8 h, 4 days/8 h, 
4 days/9 h, 4 days/10 h, and 5 days/10 h. Minimum dura-
tion of daily registration period was based on duration 
between first and last fixes of a study day independent of 
potential gaps in GPS data throughout the day (e.g., due 
to missing satellite signal). Such gaps are not necessar-
ily problematic in measuring daily mobility because GPS 

Table 4  Number of participants meeting the aforementioned 
input data requirements, for  different combinations 
of  minimum number of  valid days and  minimum daily 
duration of registration period

‘N/A’ means that this condition was not tested

n = days/x = hours 8 h 9 h 10 h

3 d 95 N/A N/A

4 d 85 80 74

5 d N/A N/A 51
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signal loss mostly occurs in buildings and often such data 
loss is independent from the spatial extent of daily activi-
ties (e.g., the maximum distance from home). Moreover, 
for some indicators (e.g. time out of home) missing data 
can be interpolated with little risk for errors as detailed in 
the subsequent section.

Computation of mobility indicators
We computed the proposed set of daily indicators 
(Table  3) describing diverse aspects of an individual’s 
daily mobility. The definitions of the daily indicators 
and the aggregation to weekly indicators for a randomly 
selected subset of days consisting of 1 weekend day and 2, 
3, or 4 weekdays, depending on the inclusion criteria are 
given in Table 5. For indicators that are only meaningful 
if there was some out-of-home activity throughout a day 
(e.g., timing-related indicators), we randomly selected 
3 days, two out of the valid weekdays and one out of the 

valid weekend days, provided at least one move existed 
for each selected day (marked by ‘M’ in day selection; 
Table  5). In order to see whether the random selection 
of study days had an impact on the results, we computed 
10 runs for each of the combinations of inclusion criteria 
listed in Table 4.

Statistical analyses
What is the minimal set of mobility indicators that com-
prehensively reflect an individual’s daily mobility? One 
solution is to use only one indicator from each group of 
indicators that behave similarly. An exploratory factor 
analysis (EFA) [78, 79] is known to uncover latent groups 
of input variables (here: mobility indicators). In this man-
ner, we can compress the comprehensive set of mobil-
ity indicators further into the minimal set of indicators 
required to represent the diverse aspects of an individu-
al’s daily mobility derivable from GPS data.

Table 5  Description of the computation of the mobility indicators

‘Day selection’ refers to whether among the valid days a fixed number of days were selected completely at random (R) or only if days included at least one move (M). 
All daily indicators were summarized to weekly aggregates using the median, except for SDDirMaxDist, where the circular SD was used, and TimePeriodActive using 
the mean

Mobility indicator Day 
selection

Definition of daily mobility indicator

MaxDist R Length of straight line connecting the home with the GPS fix furthest away from home

CHull R Area of convex hull enclosing all GPS fixes

SDE R Ellipse defined at one 1 SD containing approximately 68% of GPS fixes within the ellipse’s boundary

LengthPerTrip M Average length of a move

LocVar R Combined variance of X and Y coordinates [55]

DurPTM R Time spent in passive transport modes

TOH R Duration between all OH fixes, interpolating for up to 60-min gaps between consecutive GPS fixes if both fixes are 
OH

Entropy R Entropy computed as in Saeb et al. [55]. Entropy measures how a participant’s time was distributed over the different 
stop locations: the higher the entropy, the more regularly time is distributed and/or the higher the number of 
unique locations

NumLoc R Number of OH locations visited

NumUniqLoc M Stops visited multiple times (referring to the same location cluster) during the included study days are only counted 
once

DurATM R Time spent in active transport modes

MaxDurATM R Duration of longest continuous trip using active transport modes

RevisitedLS M Percentage of the daily convex hull that has overlap with any convex hulls of the other included study days

AvgRevisitedLS M Average percentage overlap of the daily convex hull with the convex hulls of the other included study days

SDDirMaxDist M Direction of most distant point from home. Weekly aggregation is done by circular SD: the larger the circular standard 
deviation, the more variability in day-to-day orientation of life space

GravCompact M K = P/(2
√
πA) (where P = perimeter of convex hull and A = area of convex hull. The higher the more elongated is 

the life space

Maj2MinAxis M Ratio between major and minor axis of standard deviational ellipse

TimeMaxDist M Time of day starting at 3 AM [min] when most distant location from home is reached

TimeFirstMove M Time of day starting at 3 AM [min] of the first move (approximation of first OH activity) of a day

TimePeriodActive M Assignment of OH activities (moves and OH stops) based on start time to the classes morning (6 AM–12 noon), after‑
noon (12 noon–6 PM), or evening (6 PM–11 PM). A day is coded as 1 (morning day) if morning activities > evening 
activities; as 3 (evening day) if evening activities > morning activities; 2 (neutral timing day) in all other cases
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We used the maximum likelihood factor analysis func-
tion (factnatal) from the stats package in R [70] with the 
orthogonal rotation method varimax. Statistical infer-
ence is improved if the variables are normally distributed. 
For non-normally distributed mobility indicators, we 
applied log and square-root transformation, respectively, 
based on their effectiveness to achieve a normal distribu-
tion or at least reduce skewness.

Given that there is no commonly accepted standard for 
GPS wear time [75] and in order to assess a potential effect 
of GPS data quality on the obtained results, EFAs for each 
of the aforementioned 5 input data conditions (in Table 4) 
were iteratively conducted 10 times (thereby varying the 
random sampling of study days) (50 runs in total). EFA 
requires designating the number of latent factors of input 
variables as an input parameter. To determine the optimal 
number of latent factors for each of 50 EFAs, we adopted 
four visual/non-visual estimation methods provided by 
the nScree function of the R package nFactors [80]: Kaiser 
rule, parallel analysis, optimal coordinates, and acceleration 
factor. The mode of the suggested numbers of optimal fac-
tors from four methods was used; if two modes appeared, 
the median of the numbers was used. We visualized EFA 
results collectively by using a pair matrix. The pair matrix 
sums up EFA results by counting the number of co-appear-
ances of each pair of input mobility indicators in the same 
latent factor over multiple runs.

For the data condition 3 days/8 h, the cases-to-param-
eter (N:k) ratio with 4.75:1 (N = 95 participants, k = 20 
variables) is below the ideal size-to-parameter ratio of 20, 
however, still above the minimal three observations per 
estimated parameter [79]. In order to assess the suitabil-
ity of the input data for factor analysis, we performed the 
Kaiser–Meyer–Okin (KMO) Measure of Sampling Ade-
quacy and Bartlett’s Test of Sphericity, which, in particu-
lar, are recommended when the N:k ratio is below 5:1. The 
obtained KMO index (which can range between 0 and 1) 
is 0.78 for the exemplary individual run of EFA presented 
subsequently in Table 7 and thus considerably higher than 
the minimum recommended 0.50; Bartlett’s test is sig-
nificant on the level p = 0.05 [79]. Both tests thus indicate 
that the input data is suitable for factor analysis.

Empirical validation of latent mobility dimensions: 
results
As we found the resulting factors to be fairly stable 
across the five input data conditions, we decided to 
present in this section solely the result for the condi-
tion with the least strict requirements on data validity 
(n = 3 days/x = 8 h) to maximize the number of included 
participants. The pair-matrix tables for the remainder of 
the data conditions are presented in the Additional file 1: 
Figures S2–S6.

Included participants
For the selected input data condition, 95 out of the origi-
nal 192 participants were included (Table 4). The overall 
attrition rate with 50.5% was rather high but comparable 
with other studies conducting GPS data collection over 
similar observation periods, e.g., 44% in [75], 48% in [50], 
and around 50% in [46]. Technical problems (storage, 
battery issues, mobile phone settings etc.) and participant 
compliance (not charging devices) are common issues 
that may lead to high attrition rates in studies based on 
real-life datasets. In contrast to technical problems that 
are expected to occur independent of participant char-
acteristics, high attrition rates are a limitation for GPS-
based studies due to a potential ‘selection bias’ [21, 81, 
82]. Poor data quality might be caused by low participant 
compliance or certain mobility patterns (staying a lot 
indoors) that are related to low socio-economic status. 
However, a selectivity analysis, showed that in terms of 
socio-demographics the participants that were excluded 
due to inadequate data (n = 97) did not show any statis-
tically significant differences to the included participants 
(n = 95) (p < 0.1 for gender, age, BMI, and education).

The 95 participants with valid GPS data had on aver-
age valid data for at least 8 h on 5.7 days. Mean age was 
70.5  years (range 61–99), and 52% were female. Body 
mass index (BMI) was 24.7 ± 3.7, the majority of the par-
ticipants (88 out of 95) suffered from at least one chronic 
disease, which is representative of this age group’s health 
status [83]. Most of the participants were pensioners but 
they varied in terms of their education level. Table 6 pre-
sents descriptive statistics for a selection of GPS-derived 
mobility indicators of the included participants.

Factor analysis
Table 7 presents the results of the EFA for a selected run 
for the input data condition 3 days/8 h, yielding a solu-
tion of 6 latent factors (identified as the optimal number 
of factors based on 3 out of 4 statistical tests). Across all 

Table 6  Mean, median, and  standard deviation (SD) 
for  a  selected set of  the  median daily mobility indicators 
per  participant, aggregated over  the  entire study 
population (n = 95)

Variable Mean Median SD

Time out of home (TOH) [min] 174.0 157.0 114.1

Maximum distance to home (MaxDist) [km] 12.2 3.8 39.3

Area of convex hull (CHull) [km2] 74.5 3.8 617.5

Number of OH locations (NumLoc) 2.6 2.0 1.6

Duration in active TM (DurATM) [min] 42.5 33.9 42.8

Duration in passive TM (DurPTM) [min] 25.3 7.1 40.1

Percentage revisited life space (RevisitedLS) 0.5 0.5 0.3
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different runs and input data conditions the 6-factor solu-
tion was clearly the one most often suggested by the four 
statistical tests (see Additional file 1: Figure S1). The pre-
sented solution in Table 7 explains 68% of the overall var-
iance. The p-value for the hypothesis that the model fits 
the data perfectly is 0.14 and H0 consequently cannot be 
rejected. We have labeled the factors based on the mobil-
ity indicators that load on them as follows: 1 = extent 
of life space; 2 = quantity OH activities; 3 = time spent 
in ATM; 4 = stability of life space; 5 = elongation of life 
space; and 6 = timing of mobility.

In order to assess the stability of the results across the 
10 different runs, the pair matrix visualization in Fig.  3 
shows how often each pair of variables appears together 
in the same factor(s) for each run. The summary matrix 
visualizations of the remaining input data conditions can 
be found in the Additional file 1: Figures S2–S6. The EFA 
matrix shows that most of the mobility indicators seem to 
consistently co-appear throughout the different runs. For 
example, DurATM and MaxDurATM co-appears in all 10 
runs of EFA. Not all mobility indicators are consistently 

assigned to the same factor, however. Indicators such as 
TOH, entropy, NumLoc, NumUniqLoc sometimes load 
on the extent of life space and/or the quantity of OH 
activities, respectively, suggesting that these two factors 
may be partially correlated.

Table  8 illustrates all the categories to which the 
mobility indicators that load on a factor have been 
assigned (based on the solution presented in Table  7). 
It shows that the different factors reflect different com-
binations of categories of the suggested framework. 
The first factor seems to consist of a mixture of fac-
tors reflecting the size of life space, variables describ-
ing spatial distribution, as well as time spent in passive 
transport modes. The second factor is about num-
ber, duration, or temporal distribution of OH activi-
ties (broadly the quantity of time that is spent out of 
home). Factor 3 seems to be composed only of variables 
reflecting quantities of traveling using active modes of 
transport. The stability of life space assesses the degree 
of overlap in the day-to-day spatial footprint. Factor 5 
reflects the elongation of life space: the larger the factor 

Table 7  Factor loadings for the set of mobility indicators listed in Table 5 to uncover latent mobility dimensions (for one 
out of the 10 EFA runs for the data condition 3 days/8 h)

Extraction method: Maximum-likelihood factor analysis. Rotation method: varimax. Transformations: aoriginal, blog transformed, csquare-root transformed. Variables’ 
factor loadings are displayed for the factor that they correlated most with. Test of the hypothesis that 6 factors are sufficient cannot be rejected (p-value is 0.137). The 
six factors capture over 68% of the variance originally observed between the 20 variables

Variable Factor

1
Extent of life 
space

2
Quantity OH 
activities

3
Time spent 
in ATM

4
Stability of life 
space

5
Elongation of life 
space

6
Timing 
of mobility

% explained variation 22% 12% 11% 9% 8% 7%

MaxDistb 0.87

CHullb 0.94

SDEb 0.93

LengthPerTripb 0.70

LocVara 0.79

DurPTMb 0.48

TOHc 0.64

Entropyb 0.76

NumLocb 0.83

NumUniqLocb 0.37

DurATMc 0.96

MaxDurATMc 0.96

RevisitedLSa 0.95

AvgRevisitedLSc 0.74

SDDirMaxDista − 0.40

GravCompactb 0.93

Maj2MinAxisb 0.72

TimeMaxDistc 0.74

TimeFirstMovec 0.65

TimePeriodActivec 0.51
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the more elongated an individual’s life space. Factor 6, 
finally, informs about how late in the evening an indi-
vidual is active out of home.

Discussion
Mobility indicator classification framework
The current paper presents a framework to classify GPS-
derived mobility indicators according to a comprehensive 
set of distinct aspects of mobility (Fig.  2). We focused 
on mobility indicators derivable from GPS data because 
this is the current standard location sensing technology 
[21]. However, it is possible to apply the framework for 
indicators derived from other geolocation data sources 
including map-based self-reported data [17] or passively 
collected mobile phone network-based data, such as 
those stored for billing purposes [84].

The framework shows the breadth of aspects that can 
be derived from GPS-data and exhibits how mobility 
indicators can reflect different combinations of charac-
teristic and analytical aspects. The explicit categorization 
of mobility indicators allows to conceptually understand 
which aspects of mobility are represented. By classifying 
existing papers that used GPS-derived mobility indica-
tors according to the proposed framework, we found that 
more quantitative indicators reflecting count, extent and 
duration clearly are most often used, while indicators 
describing more qualitative spatial and temporal aspects 
(such as shape/distribution, timing and temporal distri-
bution) are under-represented (Table  1). Additionally, 
most of the publications include indicators reflecting the 
entire trajectory while only half of them included indi-
cators characterizing the movement scope of stops and 

Fig. 3  EFA summary matrix for the 10 runs of random day selection, using the inclusion criteria 3 days with at least 8 h registration period per 
participant. The counts indicate how often each pair of mobility indicators appears together in a factor with a minimum factor loading threshold of 
0.4. The mobility indicators are ordered in the same way as in Table 7
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moves separately, which was already observed by Chaix 
et al. [15].

A few studies have attempted to classify mobility indi-
cators based on a priori hypotheses [22, 28, 29, 33]. How-
ever, they focused only on limited groups of indicators 
and do not allow for the categorization of a broad set 
of indicators. Brusilovskiy et  al. [25] grouped mobility 
indicators into three themes: community participation 
(total number of locations), geographic scope of mobility 
(area), and temporal scope of mobility (TOH). The cat-
egorization of Wettstein et  al. [22, 58] is similar, except 
for aggregating temporal scope and community partici-
pation to one class—global mobility (TOH, number of 
locations)—which in our opinion should be separated as 
they most probably are not related (loading on two differ-
ent factors in our EFA). Similar to Brusilovskiy et al. [25] 
they also suggest a walking-related category (number of 
walking trips, etc.). The categories used in the mentioned 
studies [22, 25, 58] are equivalent to the following catego-
ries of our classification framework: count, size, duration, 
and transport mode.

A novelty of our classification framework is the distinc-
tion of mobility indicators describing stop- and move-
episodes, or alternatively the entire trajectory. Moreover, 
our classification scheme allows for a classification of 
indicators related to shape, timing and temporal distri-
bution of an individual’s mobility patterns. Finally, our 
classification framework is the first to include analytical 
categories that make explicit the temporal scale that an 
indicator reflects; and it emphasizes the different infor-
mation transmitted by indicators reflecting the different 
statistical properties central tendency, variability and 
maximum. An extension of the proposed framework 
might include a characteristic category ‘space–time’, 

including indicators reflecting speed and acceleration, 
highlighting further distinct aspects of mobility derivable 
from GPS. Walking speed, for example, has been found to 
be a major indicator of health of older adults [85]. How-
ever, the proposed framework was developed to classify 
mobility indicators that are directly inferable from GPS 
data. GPS is well suited to investigate an individual’s 
multi-modal transport patterns—which is inherently 
referring to different travel speeds of different transport 
modes [86]. This aspect is represented by the attribute 
category transport mode. Only when zooming further 
into different transport modes (such as walking), will 
space–time related categories (such as speed) become 
interesting to describe a further dimension of individu-
als’ mobility behaviors. However, such indicators (e.g., 
walking speed or cadence) typically require higher data 
quality in order to be assessed reliably, which is possible 
using camera, pressure sensor or inertial sensor data in 
controlled, lab-based settings though recently such gait 
assessments have become possible also in real life using 
inertial measurement units (IMU) [87].

With respect to transport modes, the most meaning-
ful and most investigated distinction in health and aging 
research seems to be the distinction between active and 
passive transport modes as this distinction is required 
to infer the amount of transport-related physical activity 
of an individual [46, 47]. Another characteristic of trans-
port mode worth investigating in a healthy aging context 
would entail the distinction between private and public 
transport modes. We intentionally limited the frame-
work to aspects derivable from GPS data only and did 
not include an explicit categorization of further seman-
tic aspects related to an individual’s motives and habits 
such as trip purpose, experiences along the journey, or 

Table 8  Factors assigned to the categories of the classification framework (Fig. 2) based on categorization of the mobility 
indicators that have their highest loadings on the corresponding factor
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company along the travel. However, integrating measure-
ments of social networks and interactions with mobility 
could be a further way to extend the proposed frame-
work, as social and spatial processes are strongly related 
[88]. This could be done by combining GPS data with fur-
ther data sources including self-reports or audio data in 
order to get insight regarding with and to whom people 
are traveling [7, 89]. Furthermore, indicators integrating 
GPS-data with environmental characteristics (e.g., green 
space, walkability, pollution) to derive exposure measure-
ment are interesting and could be considered as further 
extensions of the proposed framework. Moreover, future 
studies might extend the framework by combining the 
exclusively spatial perspective on mobility of this paper 
with physical activity indicators, such as active time, sed-
entary time, and number of steps using IMU sensors to 
obtain a view of an individual’s daily movement-related 
patterns beyond the out-of-home spatial activities, 
including in-home activities [68, 90].

Underlying dimensions of daily mobility
In order to verify whether indicators reflecting differ-
ent categories of the classification framework effectively 
reflect different aspects of an individual’s daily mobility, 
we applied an exploratory factor analysis on a set of 20 
mobility indicators (Table 5) that reflect a comprehensive 
view of daily mobility according to our framework. The 
factor analysis revealed the following six factors describ-
ing the underlying structure of daily mobility: extent of 
life space, quantity OH activities, time spent in ATM, 
stability of life space, elongation of life space, and timing 
of mobility. A sensitivity analysis showed that the iden-
tified dimensions are fairly consistent for different input 
data requirements (number of included days and mini-
mum hours per day) and across 10 runs to randomize 
the selection of included study days (Additional file  1: 
Figures S2–S6).

Some instability in the factor structure was found 
between the first two factors. For example, location vari-
ance appears in factors related to extent of life space as 
well as quantity of OH activities. The first factor gener-
ally represents more extent-related mobility indicators 
(which seem to be associated with the amount of trave-
ling using PTM) and is therefore associated with vari-
ables reflecting the movement scope move or trajectory. 
The second factor depicts the quantity of OH activities, 
which seems to be associated with temporal distribution 
and overall duration of time spent out of home. Conse-
quently, this factor draws mainly upon variables related 
to stops or the entire trajectory. Mobility indicators such 
as entropy and spatial variance assigned to the category 
temporal distribution were not sufficiently discriminating 
to form a separate factor, but got intermingled with the 

first and second factor. However, the variables related to 
temporal distribution in the sense of stability of life space 
(RevisitedLS, AvgRevisitedLS, SDDirMaxDist) are clearly 
reflecting a separate dimension of mobility. This is a fac-
tor that could have been assigned to the statistical scope 
variability. The factor ‘time spent in active transport 
modes’ unifies purely indicators reflecting the degree 
to which individuals use active transport modes in their 
daily mobility. Finally, ’elongation of life space’ as well as 
’timing of mobility’ are two distinct characteristics of an 
individual’s mobility.

Our findings from the EFA are partially consistent with 
the few previous studies that have identified the main 
dimensions of mobility across multiple indicators based 
on dimension reduction techniques [28, 29, 58]. The 
dimension extent of the life space is consistently found 
in all the identified approaches (size, action range). Also 
elongation of life space was identified as a characteristic 
dimension in Sanchez et al. [29] (referred to as circular-
ity) and Perchoux et al. [28]. Quantity of OH activities is 
reflected by what Perchoux et al. [28] labeled volume of 
activities and Wettstein et al. [58] labeled global out-of-
home mobility. The dimension time spent in ATM coin-
cides with the dimension coined walking-based mobility 
by Wettstein and colleagues [58]. Perchoux et al. [28] and 
Sanchez et  al. [29] both identified a further dimension 
related to time spent in residential neighborhoods and 
specialization (diversity of activity types), both charac-
teristics that were not represented by our set of mobility 
indicators as they require additional semantic informa-
tion on top of GPS data. Truly novel are our two iden-
tified factors timing and stability of life space, which are 
composed of mobility indicators that, to the best of our 
knowledge, have not been reported elsewhere so far. In 
addition, the factor analysis revealed that many of the 
most frequently used mobility indicators (see Table  2) 
are reflecting similar properties of the daily mobility. For 
instance, TOH, maximum distance from home, standard-
deviational ellipse, area of convex hull, time in vehicle are 
all associated with Factor 1.

The indicators we included mostly reflected the average 
performance (central tendency) perspective of mobility. If 
we had a longer observation period (e.g., a month) and 
more participants (to have statistically reliable results for 
a larger number of variables), it would be interesting to 
include more indicators representing aspects of maxi-
mum performance of a participant (e.g., fastest walking 
speed) or more indicators representing variability (e.g., 
variability in the number of locations visited). Such indi-
cators could be informed by psychology, in which meas-
ures are more established that capture intra-individual 
variability as an important characteristic that differenti-
ates individuals [60]. Moreover, it would be interesting 
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to test and try to replicate findings for different age 
populations.

Implications of this work on health and aging studies
For a holistic view of daily mobility at old age one should 
ideally assess all identified latent dimensions (results 
of EFA), as they represent different aspects of mobility. 
This covers the research gap identified by recent studies 
(e.g., [91]) which, although recognizing the merits and 
vast potential of GPS-based mobility assessments, also 
observe that the disadvantage of such GPS studies is that 
it is still unclear what meaningful GPS-derived mobility 
indicators are. In order to represent daily mobility with 
a minimum set of indicators covering all the identified 
latent dimensions, we propose a set of representative 
indicators based on the degree of association with the 
respective factors (Table 9).

Future research should aim to identify which dimensions 
of mobility are important for which outcomes of healthy 
aging (e.g., active living, independence, social participa-
tion). Although the general focus of this paper is on older 
adults, the proposed framework could be applied to other 
patient groups that are known to show decreased mobil-
ity after a diagnosis or onset of disease (e.g., neurological 
patients). We expect that depending on the target group 
and the research questions addressed, not all mobility 
dimensions will be equally important. Extent of life space, 
for example, could be relevant for the early prediction of 
cognitive decline, since early-stage dementia patients usu-
ally move a lot, however, mostly restricted to their homes 
[67, 92] due to impaired navigational ability, spatial anxi-
ety etc. Quantity of OH activities might be more relevant 
to assess in people with depressive symptoms since a low 
number OH activities could be associated with a lower 
number of social activities [13]. Time spent in active trans-
port modes contributes to overall physical activity levels 
[93, 94] and thus physical health, which should be the focus 
for sedentary older adults. As mentioned earlier (“Ana-
lytical aspects” section), GPS-based variability measures 

have barely been considered in the health and aging lit-
erature. Therefore, it remains to be tested whether stabil-
ity in life space is positively (in the sense of being constant 
in behaviors) or negatively (in the sense of less diversity in 
behaviors) associated with health-beneficial behaviors and 
health outcomes. Elongation of life space could be seen as 
an indicator reflecting the environment an individual is liv-
ing in: indicators reflecting higher compactness might be 
correlated with more urban, dense areas. And finally, tim-
ing of mobility could again be related to cognitive health. 
We hypothesize that cognitively healthy individuals would 
have a more stable circadian rhythm compared to cogni-
tively impaired people. Last but not least, potential future 
research should examine how different scores along the 
identified mobility dimensions between individuals are 
related to aforementioned potential differential health out-
comes accounting for other factors shaping individual’s 
mobility patterns such as the characteristics of the environ-
ment that people are exposed to [15, 48].

Conclusions
GPS tracking is increasingly used in health and aging 
research to accurately and objectively assess individu-
als’ mobility in their daily lives. Mobility, however, is a 
complex concept and it is challenging to characterize it 
both thoroughly and at the same time also parsimoni-
ously with indicators derived from GPS data.

This paper presents a framework that allows the 
classification of GPS-based mobility indicators com-
monly used in literature based on several characteris-
tic and analytical aspects of mobility. Characteristic 
aspects inform about to the actual semantic properties 
of a mobility indicator: Is it related to space or time? 
Which movement scope is concerned and is it enriched 
with further attributes? Analytical aspects describe 
how mobility indicators are aggregated and summa-
rized for individuals. The classification scheme aims to 
demonstrate the breadth of aspects that can be derived 
from GPS data and to make explicit which aspects are 

Table 9  A minimum set of indicators representing all identified factors

Representative indicators consist of the indicators that were most associated with the corresponding factors

Mobility dimension Representative indicator

Factor no. Factor label

1 Extent of life space Area of convex hull

2 Quantity OH activities Number of OH locations

3 Time spent in ATM Duration in ATM

4 Stability of life space Percentage revisited area of daily life space

5 Elongation of life space Gravelius compactness of convex hull

6 Timing of mobility Time of day at max. distance to home
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assessed by mobility indicators involved in health and 
aging studies.

Classifying existing papers that used GPS-derived 
mobility indicators in health and aging research 
according to the proposed framework, we found that 
indicators relating to shape/distribution, timing and 
temporal distribution of mobility are underrepresented. 
Consequently we suggest a set of 20 mobility indicators 
composed of indicators frequently used in the litera-
ture, as well as new indicators regarding stability and 
timing in mobility patterns, with the aim of presenting 
a comprehensive view of an individual’s daily mobility. 
Factor analysis based on the 20 suggested mobility indi-
cators confirms that mobility is multi-dimensional and 
is representable by the six factors: extent of life space, 
quantity OH activities, time spent in ATM, stability of 
life space, elongation of life space, and timing of mobil-
ity. Many of the identified factors reflect categories of 
the suggested classification framework and are, except 
for the two dimensions timing of mobility and stability 
of life space, consistent with the dimensions suggested 
in previous studies. The framework can be applied for 
a better understanding of how the different dimensions 
of mobility relate to healthy aging. This will have impli-
cations for clinical practice, informing the development 
of interventions aiming to enhance daily mobility in old 
age.

Additional file

Additional file 1. Additional tables and figures presenting (1) detailed 
classification of exemplary health and aging studies according to the 
proposed classification framework; (2) summary of identified optimal 
number of factors for exploratory factor analyses; (3) summary matrices for 
exploratory factor analyses for the different input data conditions.
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