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METHODOLOGY

Dealing with spatial misalignment to model 
the relationship between deprivation and life 
expectancy: a model‑based geostatistical 
approach
Olatunji Johnson, Peter Diggle and Emanuele Giorgi* 

Abstract 

Background :  Life expectancy at birth (LEB), one of the main indicators of human longevity, has often been used to 
characterise the health status of a population. Understanding its relationships with the deprivation is key to develop 
policies and evaluate interventions that are aimed at reducing health inequalities. However, methodological chal-
lenges in the analysis of LEB data arise from the fact that different Government agencies often provide spatially 
aggregated information on LEB and the index of multiple deprivation (IMD) at different spatial scales. Our objective is 
to develop a geostatistical framework that, unlike existing methods of inference, allows to carry out spatially continu-
ous prediction while dealing with spatial misalignment of the areal-level data.

Methods :  We developed a model-based geostatistical approach for the joint analysis of LEB and IMD, when these 
are available over different partitions of the study region. We model the spatial correlation in LEB and IMD across the 
areal units using inter-point distances based on a regular grid covering the whole of the study area. The advantages 
and strengths of the new methodology are illustrated through an analysis of LEB and IMD data from the Liverpool 
district council.

Results :  We found that the effect of IMD on LEB is stronger in males than in females, explaining about 63.35% of the 
spatial variation in LEB in the former group and 38.92% in the latter. We also estimate that LEB is about 8.5 years lower 
between the most and least deprived area of Liverpool for men, and 7.1 years for women. Finally, we find that LEB, 
both in males and females, is at least 80% likely to be above the England wide average only in some areas falling in 
the electoral wards of Childwall, Woolton and Church.

Conclusion :  The novel model-based geostatistical framework provides a feasible solution to the spatial misalign-
ment problem. More importantly, the proposed methodology has the following advantages over existing methods 
used model LEB: (1) it can deliver spatially continuous inferences using spatially aggregated data; (2) it can be applied 
to any form of misalignment with information provided at a range of spatial scales, from areal-level to pixel-level.

Keywords:  Deprivation, Life expectancy, Likelihood-based inference, Model-based geostatistics, Spatial 
misalignment, Health inequality
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Background
Over the last decades, access to better healthcare and 
education have led to a surge in human longevity, espe-
cially in high-income countries [1–3]. Life expectancy 
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at birth (LEB), one of the main indicators of human lon-
gevity, has often been used to characterise the health 
status of a population [4]. Measuring deprivation is also 
important in order to describe health inequalities within 
a population and to better understand variation in health 
outcomes [5, 6]. Previous studies have shown that the 
LEB is strongly affected by deprivation [2, 7, 8] and that 
differences in LEB between most and least deprived indi-
viduals are larger among men than women [9, 10].

The main determinants of human longevity can be 
generally classified into social factors, genetic traits, life-
style (e.g. consumption of tobacco, alcohol, dietary hab-
its and physical activity) and environmental factors (e.g. 
overcrowded housing and pollution) [11]. As indices 
of deprivation are constructed by combining variables 
that are also likely determinants of human longevity, the 
reported associations with LEB are thus not surprising. 
However, linear regression models used to quantify the 
association between LEB and deprivation should also 
acknowledge the imperfect nature of the latter by mak-
ing suitable distributional assumptions on the residuals 
of the model. Accounting for spatial correlation is espe-
cially important so as to deliver reliable estimates of LEB. 
More specifically, ignoring spatial correlation can lead to 
unreliable standard errors on the regression coefficients 
that regulate the strength of the association between 
LEB and deprivation; see, for example, Thomson et  al. 
[12] in the context of disease mapping using geostatisti-
cal methods. However, methodological challenges arise 
from the fact that different Government agencies often 
release spatially aggregated information on LEB and 
other socio-demographic variables, including depriva-
tion, at different spatial scales. For example, in the UK, 
the Life Events and Population Sources Division of the 
Office for National Statistics releases information on LEB 
by Middle Super Output Area (MSOA) while the index of 
multiple deprivation (IMD), published by the Ministry of 
Housing, Communities and Local Government, is avail-
able at a higher spatial resolution by Lower Super Output 
Area (LSOA). An example of this is given by Fig. 2 show-
ing maps for male and female LEB and IMD in Liverpool, 
United Kingdom (UK). The rationale for calculating LEB 
at MSOA-level is that reliable estimates of LEB cannot be 
obtained from a population of less than 5000 individuals 
[13] and MSOAs satisfy this requirement, having 7200 
inhabitants on average [14].

In the recent paper by [15], the authors investigate 
the association between LEB and IMD in England using 
a linear regression modelling framework. Their analysis 
is carried out at MSOA-level by taking the population-
weighted average IMD based on the LSOAs falling in 
each of the corresponding MSOAs while assuming inde-
pendent and identically distributed Gaussian residuals. 

This modelling approach ignores two important aspects: 
the within-MSOA variation which could result in a 
biased estimate for the regression coefficient associated 
with IMD; the residual spatial correlation in LEB, which 
affects the standard errors of the regression coefficient 
estimates [12]. Furthermore, the technique used by [15] 
can only be reliably applied when spatial units at different 
scales are nested within each other.

The issue of spatial misalignment has been widely 
addressed in the statistical literature; see [16, 17] for an 
overview. Our concern in this paper is with “areal-areal” 
misalignment, i.e. when data are available over mis-
aligned, not necessarily nested, partitions of the same 
study area. A common approach used to address this 
problem is to predict the aggregated values of all the vari-
ables on a common set of spatial units and use the result-
ing predictions to build a regression model; [15] is an 
example of this [18] refers to this strategy as “krige and 
regress”. They show that the estimator of the regression 
coefficient is consistent but the variance estimator can 
be biased. More rigorous approaches have been devel-
oped by joint modelling of the outcome variable and the 
covariates. For example, [19] developed a joint model 
for outcomes observed at pixel-level and covariates at 
areal-level. The spatial correlation is modelled using 
conditionally autoregressive (CAR) models [20] for both 
pixel- and area-level spatial random effects. However, the 
use of CAR models for modelling outcomes aggregated 
over irregular spatial units (as in the case of LSOAs and 
MSOAs) is questionable because the adopted spatial 
structure is tied to the given partition of the study area, 
which is often drawn for administrative convenience. 
Also, [21] showed that when dealing with regions of vary-
ing size and shape, CAR models can induce counter-intu-
itive spatial correlation structure.

In this paper, our objectives are: (1) to develop a model-
based geostatistical approach that allows the joint anal-
ysis of LEB and IMD data when these are available as 
spatially aggregated indices over misaligned partitions of 
the study area; (2) to carry out spatially continuous infer-
ence on LEB using spatially aggregated data. We illustrate 
our modelling approach through the analysis of LEB data 
from the Liverpool district council in the UK. Liverpool 
has been ranked as the most deprived local authority 
area in England in 2004, 2007 and 2010, and as the 4th 
most deprived in 2015 [22]. In 2018, LEB for both men 
and women was lower than the overall average in Eng-
land [23]. Understanding the relationship between dep-
rivation and life expectancy within a single conurbation 
helps to develop policies and evaluate interventions that 
are aimed at reducing health inequalities [24].

To address the aforementioned limitations of exist-
ing methods of inference, we develop a geostatistical 
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framework that avoids the re-aggregation of IMD at 
MSOA-level. Instead, we jointly model LEB and IMD as 
aggregated outcomes of a spatially continuous stochastic 
process. More specifically, we model the spatial correla-
tion across MSOAs for LEB and across LSOAs for IMD 
using inter-point distances based on a regular grid cover-
ing the whole of the study area. One of the main advan-
tages of this approach is that it allows to carry out spatial 
prediction at any desired spatial scale, regardless of the 
format of the analysed data. The methodology presented 
in this paper can also be used to model any spatially 
aggregated health outcome and estimate its association 
with risk factors that may be available at a range of spatial 
scales.

All the analyses presented in this paper have been 
implemented in the R software environment (cran.r-pro-
ject.org) and maps have been generated using the Q-GIS 
software (qgis.org). We provided the proof of the equa-
tions in Additional file  1.  We provide the analysed data 
and the implemented R code in Additional files 2, 3, 4 
and 5.

Methods
Data
Index of multiple deprivation
IMD is a measure of relative deprivation and can thus be 
used to rank neighbourhoods. It combines seven distinct 
domains of deprivation: income; employment; educa-
tion; skills and training; health deprivation and disabil-
ity; crime, barriers to housing and services; and living 
environment. Weighted cumulative models are used to 
compute the IMD score, with weights obtained via the 
maximum likelihood method for factor analysis [25, 26]. 
IMD data are made available either as a scores, deciles or 
ranks. In this study, we used the IMD score released in 
2015, which was based on data collected between 2012 
and 2013 and released by the UK Government.1 Larger 
values of the IMD score can be interpreted as corre-
sponding to a higher level of deprivation of an area rela-
tive to the others [27].

Life expectancy at birth
Our outcome variable is the LEB released by the [28] 
(ONS). The ONS estimates LEB using life tables that are 
constructed by applying the Chiang method [29] to mor-
tality data collected over five consecutive years, starting 
from 2009. This method assumes that the probability of 
dying is constant within a specified set of age intervals 
at−1 and at . The resulting estimator is

where pt is the fraction of the total population that has 
not died in the time interval (at−1, at) , mt is the average 
number of years lived in an interval by an individual who 
passes away in (at−1, at) , dt is the fraction of the total 
population that dies in (at−1, at) between ages at−1 and at 
and T is the number of age intervals. In our case, we have 
T = 19 , (a1, a2) = (0, 1) , (a2, a3) = (1, 4) and for t > 3 , 
at − at−1 = 5.

Life tables are usually constructed separately for males 
and females because of their different mortality pat-
terns [30]. In the next section, we exploit the correlation 
between LEB for the two genders, and their association 
with IMD, in order to obtain more accurate estimates.

Figure  1 shows the boundaries of the electoral wards 
(EWs) in Liverpool district and their names. In com-
menting the results, we shall refer to the different areas of 
the Liverpool district council based on the EWs in Fig. 1.

Modelling framework
Let LEBij denote the life expectancy at birth for males, 
if i = 1 , and females, if i = 2 , at the j-th MSOA, hence-
forth MSOAj , for j = 1, . . . , n . Similarly, we use IMDk 
to denote the IMD score for the k-th LSOA, henceforth 
LSOAk , for k = 1, . . . ,m.

Define U(x) to be a spatially continuous Gaussian pro-
cess, with stationary and isotropic exponential covari-
ance function, i.e.

where τ 2 is the variance and δ is a scale parameter reg-
ulating the rate of decay of the spatial correlation for 
increasing Euclidean distance �x − x′� between any two 
locations x and x′.

We then model the cross-correlation in space between 
LEB and IMD through U(x) as follows. Define the averaged 
spatial processes based on U(x) over LSOAs and MSOAs as 
Uj =

∫

MSOAj
U(x) dx/|MSOAj| and U∗

k
=

∫

LSOAk
U(x) dx/

|LSOAk | , where |A| corresponds to the area in m 2 of a spa-
tial unit A . The proposed joint model for LEBij and IMDk 
takes the form

where the βi parameters quantify the strength of the 
association between LEB and IMD, whilst the αi and γ are 
intercept parameters. Also in (1), the Vk are i.i.d. Gauss-
ian variables with mean zero and variance ν2 , whilst ( T1j , 

LEB =

T
∑

t=1

[(at − at−1)pt +mtdt ]

Cov{U(x), U(x′)} = τ 2 exp{−�x − x′�/δ},

(1)

{

LEBij = αi + βiUj + Tij for i = 1, 2; j = 1, . . . , n
IMDk = γ + U∗

k + Vk for k = 1, . . . ,m
,

1  https​://www.gov.uk/gover​nment​/stati​stics​/engli​sh-indic​es-of-depri​vatio​
n-2015.

http://www.gov.uk/government/statistics/english-indices-of-deprivation-2015
http://www.gov.uk/government/statistics/english-indices-of-deprivation-2015
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T2j ) are i.i.d. bivariate Gaussian variables with mean zero 
and covariance matrix

� =

(

ω2
1 ω12

ω12 ω2
2

)

.

It follows that the covariance between LEBij and IMDk is

(2)

Cov{LEBij, IMDk} =
βiτ

2

|MSOAj||LSOAk|
f(MSOAj, LSOAk; δ),
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Fig. 1  Map of Liverpool district council, UK showing the 30 electoral wards
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where

In order to understand how much of the spatial variation 
in LEB is explained by IMD, we compare the fitted model 
(1) with the special case of no association with IMD, i.e. 
β1 = β2 = 0.

An important feature of the spatial covariance struc-
ture defined by Eq. (2) is that it accounts for the different 
shapes and sizes of the various areal units involved.

Inference: parameter estimation and spatially continuous 
prediction
Let LEBi = (LEBi1, . . . , LEBin) and IMD = (IMD1, . . . , IMDm) 
and denote by θ the vector of model parameters. Also, 
let �LSOA and �MSOA be the spatial covariance matrices 
of the IMD at LSOA- and MSOA-level, respectively. The 
(k , k ′) entry for �LSOA is

where f (LSOAk , LSOAk ′ ; δ) is as specified in Eq. (3). The 
elements of �MSOA are obtained similarly, replacing the 
domains of the integrals that define (4) with those of the 
corresponding MSOAs. Using [·] as a shorthand notation 
for “the density function of the random variable · ,” the 
likelihood function for θ can now be expressed as

where [IMD; θ ] is multivariate Gaussian with mean 
γ�m×1 and covariance �LSOA + ν2Im. Finally, 
[LEB1, LEB2 | IMD; θ ] is a multivariate Gaussian with 
mean

and covariance

where: α = (α1,α2)
⊤ ; ⊕ is the Kronecker product; 

C = (C1,C2)
⊤ with Ci being the cross-covariance 

between LEBi and IMD whose entries are given by Eq. 
(2); finally,

(3)

f (MSOAj , LSOAk; δ)

=

∫

MSOAj

∫

LSOAk

exp

{

−
�xj − xk�

δ

}

dxj dxk .

(4)

(�LSOA)kk ′ =
τ 2

|LSOAk ||LSOAk ′ |
f (LSOAk , LSOAk ′ ; δ)

(5)
L(θ) =[LEB1, LEB2, IMD; θ ]

= [LEB1, LEB2 | IMD; θ ][IMD; θ ],

(6)α ⊕ �n×1 + C⊤�−1
LSOA(IMD − γ�m×1),

(7)�LEB − C⊤�−1
LSOAC ,

�LEB =

(

β2
1�MSOA + w2

1In β1β2�MSOA + w12In

β1β2�MSOA + w12In β2
2�MSOA + w2

2In

)

.

We calculate each of the integrals in (2) and (4) using the 
numerical approximation described in Section 3 of [31]. 
Finally, we estimate θ through maximization of the likeli-
hood function in (5).

To quantify the contribution of IMD in explaining the 
spatial variation in LEB, we use the fraction of the total 
variance explained, given by

with i = 1 for the male population and i = 2 for the 
females, respectively.

We carry out spatial prediction over a regular grid at 
a spatial resolution of 250 by 250 m, covering the whole 
of the Liverpool council area. Let {x1, . . . , xq} be the 
set of points forming the grid, with q = 1787 , and let 
LEBi(xh) = αi + βiU(xh) be the unobserved value of LEB 
at xh , for h = 1, . . . , q . Now, write LEB∗ = (LEB1(x1), . . . ,

LEB1(xq), LEB2(x1), . . . , LEB2(xq))
⊤ ; the predictive dis-

tribution for LEB∗ , i.e. its conditional distribution given 
the data, is multivariate Gaussian with mean

and covariance matrix

In (10), the (h, h′)-th element of �LEB∗ is given by 
(�LEB∗)hh′ = τ 2 exp{−�xh − xh′ �/δ} . Also,

where Di is the n× q matrix whose h-th column is (d1(xh), 
. . . , dn(xh)) , and dj(xh) = β2

i τ
2
∫

MSOAj
exp {−�xh − x�/δ} dx.

Using the above results, we can then draw samples for 
LEB∗ and obtain any predictive summary of interest. For 
example, to identify areas in the Liverpool council dis-
trict that are highly likely to fall below a threshold l, we 
map the non-exceedance probabilities (NEPs)

In the results shown in the next section, we set l to be 
England-wide average years for males ( l = 79.2 years) 
and females ( l = 82.9 years). Values of NEP close to 1 
indicate that LEB is highly likely to lie below l. Con-
versely, values close to 0 indicate locations whose LEB is 
highly likely to be above l. Finally, locations with values 
around 0.5 are equally likely to be below or above l, thus 
corresponding to the scenario with highest uncertainty.

Our results have been made publicly available at the 
following link http://fhm-chica​s-apps.lancs​.ac.uk/shiny​/

(8)
Var{βiUj}

Var{LEBij}
=

β2
i τ

2

β2
i τ

2 + ω2
i

,

(9)α ⊕ �q×1 + D⊤�−1
LEB(LEB− α ⊕ �n×1),

(10)�LEB∗ − D⊤�−1
LEBD.

D =

(

D1

D2

)

(11)NEPi(x) = Pr(LEBi(x) < l | LEB1, LEB2, IMD).

http://fhm-chicas-apps.lancs.ac.uk/shiny/users/johnsono/LEBLiverpool/
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users​/johns​ono/LEBLi​verpo​ol/, where interactive maps 
for NEPs can be generated from our model for any cho-
sen threshold l.

Model validation: testing for residual spatial correlation
One of the main assumptions of the fitted bivariate model 
(1) is that all the spatial variation in LEB is captured by 
the IMD. To validate this assumption, we proceed as fol-
lows. We first estimate the Tij as

where α̂i and β̂i are the maximum likelihood estimates 
and Ûj is the predictive mean of Uj . For each MSOA, we 
then extract the centroid associated with each of the T̂ij . 
For both males ( i = 1 ) and females ( i = 2 ), we then com-
pute the empirical variogram given by

where U = [u0,u1] is the set of all pairs of all pairs of cen-
troids that no less than u0 and no more than u1 distant 
apart, and |U | is the number of pairs within the set. In the 
current analysis, we construct the empirical variogram 
by segmenting the interval [0,  10] (km) into 12 equally 
spaced intervals.

In order to test whether the observed γ̂i(U) is compat-
ible with assumption of no residual spatial correlation, 
we use the following Monte Carlo approach to construct 
95% tolerance intervals around γ̂i(U) : 

1.	 Permute the order of Tij , while holding the centroid 
of the MSOAs fixed;

2.	 Compute the empirical variogram γ̂i(U) for the per-
muted Tij;

3.	 Repeat step 1 and 2 for a large number of times, say 
B;

4.	 Use the resulting B empirical variograms to generate 
95% tolerance intervals at each of the predefined dis-
tance bins.

If γ̂i(U) lies within the 95% tolerance intervals, we con-
clude that the assumption that the IMD fully captures 
the spatial variation in LEB is supported by the data. If, 
instead, γ̂i(U) falls outside the 95% tolerance intervals, we 
conclude that the data show evidence against the fitted 
model in (1).

Assessment of the coverage probabilities for the regression 
parameters and the spatial predictions
In this section, we outline a simulation study which we 
carry out in order to assess the reliability of the confi-
dence intervals generated for the regression coefficients 

LEBij − α̂i − β̂iÛj for i = 1, 2; j = 1, . . . , n

(12)γ̂i(U) =
1

2|U |

∑

(j,k)∈U

(T̂ij − T̂i′j)
2,

βi , the spatially continuous predictions and the MSOA-
level predictions for LEB. This is especially important in 
our case as we carry out spatial predictions by plugging-
in the maximum likelihood estimates, hence ignoring 
parameter uncertainty.

We then simulate B = 10, 000 data sets under the bivar-
iate the model in (1) using the administrative boundaries 
of Liverpool and proceed through the following iterative 
steps: 

1.	 Simulate the spatially continuous process U(x) over a 
150 × 150 metres grid.

2.	 Simulate the spatially continuous surface for IMD 
and LEB on the same regular grid.

3.	 Average the LEB over the MSOAs boundaries and 
the IMD over the LSOAs boundaries.

4.	 Fit the model in (1) and compute confidence intervals 
of coverage α for β1 and β2.

5.	 Compute the prediction intervals of coverage α 
for the LEB at MSOA-level and over the 150 × 150 
metres grid.

In this simulation we set the true value of the parameters 
to the point estimate reported for Model 1 in Table  1. 
We let the coverage probability α vary over the set 
{5i/100 : i = 1, 2, . . . , 19} . Using the resulting 10,000 con-
fidence intervals in step 4 and prediction intervals in step 
5, we compute the fraction of times that the true values 

Table 1  Point estimates and 95% confidence intervals (CI) 
for the three model parameters

Parameter Model 1 Model2

Estimate CI 95% Estimate CI 95%

α1 75.466 (75.596, 76.135) 75.131 (74.990, 
75.272)

α2 81.120 (80.883, 81.357) 81.375 (80.927, 
81.823)

β1 − 0.154 (− 0.180, 
−0.128)

– –

β2 − 0.129 (− 0.167, 
−0.091)

– –

logω2
1

1.810 (1.494, 2.126) 3.036 (2.955, 3.117)

logω2
2

2.581 (2.272, 2.890) 3.160 (3.033, 3.287)

logω12 1.671 (1.257, 2.086) 2.871 (2.768, 2.974)

γ 39.221 (28.242, 50.200) 39.190 (28.073, 
50.306)

log τ 2 6.226 (3.611, 8.841) 6.232 (5.678, 6.586)

log δ 7.336 (6.845, 7.827) 7.349 (6.318, 7.846)

log ν2 2.586 (2.244, 2.927) 2.589 (2.064, 2.932)

Log-likeli-
hood

− 1429.491 − 1465.432

http://fhm-chicas-apps.lancs.ac.uk/shiny/users/johnsono/LEBLiverpool/
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fall within those intervals in order to obtain the actual 
coverage.

Results
Table  1 shows the point and interval estimates for the 
model with (Model 1) and without (Model 2) IMD. The 
likelihood-ratio test for the null hypothesis β1 = β2 = 0 
yields a p-value smaller than 0.001, hence indicating that 
Model 1 is a better fit to data. We find that the fraction 
of total variance explained (see Eq.  8)) is about 38.92% 
for females and 63.52% for males, respectively. We esti-
mate that the range of the spatial correlation, defined as 
the distance beyond which the correlation is below 0.05, 
is approximately 4.6 km. The correlation in LEB between 
males and females, given by ratio ω12/(ω1ω2) , is 0.59 with 
associated 95% confidence interval (0.31, 0.90).

Figure 2 (upper and middle panel) shows the estimated 
surface of LEB at MSOA-level for females and males. As 
expected, female LEB is consistently higher than that for 
males, as also reflected in the spatially continuous predic-
tions of Fig. 3. In contrasting the maps of Fig. 2 with those 
of Fig. 3, we notice that spatially continuous predictions 
provide useful insights into the variation in LEB within 
MSOAs that is otherwise hidden by the aggregated esti-
mates at MSOA-level. To demonstrate this, we selected 
the MSOA with the lowest and largest estimated value in 
LEB for both males and females; these MSOAs are identi-
fied identified by the white (largest LEB) and green (low-
est LEB) boundaries in upper and middle panels of Fig. 2. 
More specifically, for males, the lowest estimated value in 
LEB at MSOA-level is about 70.2 years and the largest is 
85.2 years, whilst for females these are respectively 73.5 
years and 89.6 years. In the maps of Fig. 4, we then draw 
the contour lines for these same values in LEB. These 
reveal the actual extent of the areas where LEB reaches 
its highest and lowest values, that cannot be possibly dis-
cerned from Fig. 2: the white contour lines encompass a 
relatively small at the intersection of Childwall, Woolton 
and Church; the green contour lines, instead, delineate a 
wide area consisting of three disjoint sub-regions in the 
north-west and north-east of Liverpool.

Fig. 2  Maps of the estimated female (upper panel) and male (middle 
panel) life expectancy at birth (LEB) and index of multiple deprivation 
(IMD) (lower panel). Middle Super Output Area (MSOA) with 
boundaries coloured in green correspond to the lowest estimated 
LEB, whilst those in white to the highest. For males, the lowest 
estimated LEB is 70.2 years and the highest is 85.2 years; for females, 
the lowest is 73.5 years and the highest is 89.6 years

▸
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Fig. 3  Spatially continuous prediction maps of female (upper panel) and male (lower panel) life expectancy at birth (LEB) in Liverpool, UK. In the 
upper panel, the white contour lines are for a LEB of 89.6 years and the green contour lines for a LEB of 73.5 yers; in the lower panel, the white 
contour lines correspond to 70.2 years and the green contour lines to 85.2 years
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Fig. 4  Maps of the non-exceedance probability of female (upper panel) and male (lower panel) life expectancy at birth (LEB), with threshold 82.9 
and 79.2 (average LEB in England, UK), respectively in Liverpool, UK
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Figure  4 shows the non-exceedance probability maps 
of female and male LEB, with thresholds of 82.9 years 
and 79.2 years, respectively. These two values also cor-
respond to the national average LEB in England for the 

two genders. For females, we find that LEB is at least 
80% likely to be below 82.9 years in the areas of Kirkdale, 
Kensington and Fairfield and Princes Park; for males, a 
wider area is instead identified, comprising those same 

Fig. 5  Plots of the observed variograms (points) and the 95% tolerance bandwidth (dashed lines) generated under the assumption of absence of 
residual spatial correlation
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EWs with the addition of Fazakerley, Norris Green, Club-
moor, County, Anfield, Everton, Tuebrook and Stoney-
croft, Picton, Central, St Michaels and Speke-Garston. 
On the other hand, areas that are at least 80% to be 
above the England-wide averages are are found in the 
EWs of Childwall, Woolton and Church for both males 
and females. In the EWs of West Derby and Mossley Hill 
the model is most uncertain as these are equally likely to 
have a LEB above or below the chosen thresholds for the 
both males and females.

Figure 5 the results for the variogram-based validation 
procedure. Since the observed variograms for both males 
and females lie within the 95% band, we interpret this as 

evidence that the data do not show any additional resid-
ual spatial correlation. This leads us to conclude that the 
IMD was able to explain most of the spatial variation in 
LEB.

Figure 6 shows the scatter plots of the actual coverage, 
obtained from the simulation study, against the nominal 
coverage. For the spatial predictions, the actual cover-
age is averaged over all the MSOAs and over the regular 
grid, respectively. The plots show a strong concordance 
between actual and nominal coverage levels. We then 
conclude that the interval estimates for the regression 
coefficients and the spatial predictions generated by 

Fig. 6  Scatter plots of the actual against the nominal coverage for the confidence intervals generated for β1 and β2 (upper panels), and for the 
spatially continuous and MSOA-level predictions of LEB (lower panels). The red lines in each panel correspond to the identity line
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the fitted model are in fact reliable when using plug-in 
estimates.

Discussion
We have developed a model-based geostatistical 
approach that allows to model the relationship between 
life expectancy and the index of multiple deprivation 
when these are provided over misaligned partitions 
of the study area. Unlike existing methods of analysis 
(e.g. [15]), one of the main advantages of our approach 
is that it allows to combine information from multiple 
data sources without coarsening their resolution to a 
common spatial scale. The underpinning principle of 
our modelling framework is that spatially aggregated 
data should be treated as the realization of an aggre-
gated spatially continuous stochastic process. This 
approach is strongly linked to that of [32] who pro-
pose the use of an integrated log-Gaussian Cox pro-
cess to model disease counts at areal-level. As result 
of this, the proposed modelling paradigm allows to 
carry out spatially continuous inference which would 
be otherwise infeasible if the spatial models were tied 
to the specific data-format at which LEB and IMD are 
provided. Conditionally autoregressive models [20] are 
one of the most commonly used approaches to analyse 
areal-level data that suffer from this limitation [19, 33].

Our novel methodology has highlighted the impor-
tance of dealing with variation in LEB occurring within 
areal units. In our application, the use of spatially con-
tinuous predictions was especially useful in order to 
visualize patterns in LEB that were hidden by the aggre-
gated estimates. Furthermore, the use of non-exceed-
ance probabilities also provides a way of measuring 
uncertainty in relation to a predefined threshold in LEB 
in order to identify areas that need urgent intervention.

One of the limitations of the model defined by Eq. (1), 
is that all the spatial variation in LEB and IMD is mod-
elled through a single spatial process U(x). The model 
could then be made more flexible through the introduc-
tion of a second spatial process, say W(x), into the first 
line of Eq. (1), i.e.

where Wj = |MSOAj|
−1

∫

MSOAj
W (x) dx . In this model, 

the Wj would allow to account for unexplained spatial 
variation in LEB that is unrelated to IMD. However, in 
our attempt to fit such a model, we incurred in identifia-
bility issues as the estimated spatial scale for the process 
W(x) was well below the extent of the smallest MSOA. 
This also suggests that most of the large scale spatial vari-
ation in LEB is in fact well captured by the IMD and that 
unexplained variation occurring on a smaller spatial scale 

LEBij = αi + βiUj +Wj + Tij , for i = 1, 2; j = 1, . . . , n

is instead accounted for by the unstructured component 
of the model Tij.

Although our application to mapping LEB in Liver-
pool only dealt with areal misalignment, our methodol-
ogy is more widely applicable to almost any scenarios 
of spatial misalignment. Consider, for example, the case 
where a second spatially varying factor associated with 
LEB is available in raster format over a regular grid, say 
{x̃1, . . . , x̃q} , covering the whole of the Liverpool council 
area. Let V (x̃k) denote the value of such a variable at the 
grid location x̃k , for k = 1, . . . , q . Model (1) could then 
be extended by replacing the first line with

where Vj = |MSOAj|
−1

∫

MSOAj
V (x) dx . Assuming a high 

enough spatial resolution of the raster file for V(x), this 
integral could then be approximated by taking a sample 
average over the grid locations falling within MSOAj . If, 
instead, the grid is too coarse, spatial variation in V(x) 
within pixels can be accounted for by building a geosta-
tistical model in a similar fashion as for the IMD in the 
second line of Eq. (1).

Conclusion
We have developed a novel joint geostatsitical approach to 
model the relationship between life expectancy at birth and 
the index of multiple deprivation while dealing with the 
issue of spatial misalignment. Unlike existing spatial meth-
ods based on conditional autoregressive models, one of the 
main strengths of the proposed modelling framework is the 
ability to carry out spatially continuous predictions regard-
less of the format of the data. Furthermore, it is also more 
widely applicable to more complex data scenarios where 
information is provided at a range of spatial scales, from 
pixel-level to areal-level.
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