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Abstract

Environmental exposures are increasingly investigated as possible drivers of health behaviours and disease outcomes.
So-called exposome studies that aim to identify and better understand the effects of exposures on behaviours and
disease risk across the life course require high-quality environmental exposure data. The Netherlands has a great
variety of environmental data available, including high spatial and often temporal resolution information on urban
infrastructure, physico-chemical exposures, presence and availability of community services, and others. Until recently,
these environmental data were scattered and measured at varying spatial scales, impeding linkage to individual-level
(cohort) data as they were not operationalised as personal exposures, that is, the exposure to a certain environmental
characteristic specific for a person. Within the Geoscience and hEalth Cohort COnsortium (GECCO) and with support
of the Global Geo Health Data Center (GGHDC), a platform has been set up in The Netherlands where environmental
variables are centralised, operationalised as personal exposures, and used to enrich 23 cohort studies and provided to
researchers upon request. We here present and detail a series of personal exposure data sets that are available within

disease, Prevention, Data science

GECCO to date, covering personal exposures of all residents of The Netherlands (currently about 17 M) over the full
land surface of the country, and discuss challenges and opportunities for its use now and in the near future.

Keywords: Exposome, Exposure, Upstream determinants, Big data, Environment, Cohorts, Non-communicable

Background

The exposome encompasses the life course exposures
from lifestyle behaviours and from the environment
[1]. The three broad exposome categories (i.e. ‘internal,
‘specific external’ and ‘general external’) receive grow-
ing attention in epidemiological research with respect
to its relationship with a variety of chronic diseases [2—
4]. Environmental characteristics such as noise and air
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pollution, urban heat islands, walkability of neighbour-
hoods, living in an ‘obesogenic’ built environment may all
influence disease risk directly, or indirectly via unhealthy
dietary behaviours and physical inactivity. Given that
many of the environmental factors are potentially modifi-
able, this provides a huge potential for prevention. Mul-
tidisciplinary and longitudinal research combining high
quality individual-level data with environmental-level
exposure data is urgently needed to identify and better
understand their complex relations with each other and
how they drive disease risk across the life course [5].

In The Netherlands, high quality and longitudinal data
at the individual level as well as the environmental level
exist. Various cohorts across The Netherlands contain
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longitudinal individual-level data on lifestyle behaviours
and disease outcomes. The Netherlands also has a great
variety of environmental data available, including high
spatial and often temporal resolution information on
urban infrastructure, physico-chemical exposures, pres-
ence and availability of community services, climate, and
others. Until recently, these environmental data were
scattered and available at varying spatial scales. Moreo-
ver, they were not operationalised as ‘personal expo-
sures’ linkable to individual-level health data. Personal
exposure encompasses the exposure to a certain envi-
ronmental characteristic specific for a person. At popu-
lation level it is not feasible to measure actual exposures
‘on the body’ by using sensors or other instruments.
Rather, personal exposures can be estimated by averag-
ing (or summing up, or otherwise aggregate) environ-
mental attributes in a spatial and temporal context of an
individual, mostly modelled over a specific distance zone
(‘buffers’ or administrative neighbourhoods, or other
geographic unit). Hereby it is assumed that people are
more exposed to environmental attributes within a cer-
tain environment (e.g., home and/or work), depending on
their socio-demographic characteristics and the exposure
of interest. For instance, for older people, walkability of
their neighbourhood would be assessed over an area rel-
atively close to the home address as they generally have
limited mobility, while noise pollution may be more rel-
evant even at local address level and especially overnight.

Within the Geoscience and hEalth Cohort COnsortium
(GECCO) and with support of the Global Geo Health
Data Center (GGHDC), a platform has been provided
for researchers to gain streamlined access to a wide range
of personal exposure data. For this purpose, in a step-
wise approach, environmental data are processed into
personal environmental exposures, and environmen-
tal indices are developed such as walkability and driv-
ability. These environmental exposures are available for
researchers to use, and in the near future these data will
be linked to the 631,000+ participants of 23 renowned
and on-going large-scale Dutch cohorts that are cur-
rently affiliated to GECCO. This enables researchers from
multiple disciplines to address a wide variety of research
questions on environmental determinants of lifestyle
behaviours and chronic disease risk.

GECCO started small, and has over the last years
grown from enriching few cohorts with a good number
of environmental exposures [6] to a solid infrastructure
that contains 100+ environmental exposures at high
resolution across various domains. While information
on the individual-level cohort data are described else-
where [7], we here present and detail a series of personal
exposure data sets that are available within GECCO,
covering exposures of all residents of The Netherlands
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(currently > 17 M) over the full land surface of The Neth-
erlands, an area of about 33,680 km?. We also reflect on
the challenges and opportunities for its expansion and
use now and in the near future.

Data collection, handling and quality control
Prioritisation of data collection

Prior to the geodata collection and acquisition a litera-
ture scan was carried out in combination with a survey
within the wider GECCO consortium. This was done to
prioritize what environmental data to collect and pro-
cess, so that foreseen users are better catered and a large
variety of exposome studies could be carried out using
the data. The literature scan included the assessment of
key reviews on environmental determinants of chronic
disease risk (e.g., [8-12]). The survey was themati-
cally organised around 6 different spatial environment
categories:

Physical activity environment
Transport/mobility environment
Environmental pollution

Food and retail environment
Socio-economic environment
Safety, aesthetics, air temperature.

A

For each of these six categories, respondents could
indicate their interest for a number of pre-specified geo
datasets (yes/no) or specific spatial indices (5—15 per cat-
egory, 57 in total), and an open field was added to indi-
cate other specific interests and suggestions. A total of
73 respondents from over 10 different GECCO-affiliated
organisations completed the survey. The survey results
showed that virtually each listed dataset was of interest
to at least a few respondents, and approximately a third
of the proposed datasets generated the interest of the
majority of the consortium. Data sets with high level of
detail generally gained more interest, e.g. the availability
of alcohol and tobacco in the food retail environment,
while at the same time there was also ample interest for
aggregated data (factors combined in a single construct,
such as walkability) in larger spatial units. Together these
results implied the desire for a large variety of personal
exposure data in terms of thematic and spatial detail and
temporal ranges.

Next to the literature scan and the survey, the prioriti-
sation of our data collection was informed by the follow-
ing factors (see also Fig. 1):

+ Data quality and trustworthiness of data source (e.g.
is it a known data source with metadata on purpose,
quality and other relevant characteristics)
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Fig. 1 Decision tree with the different criteria used and decisions taken during the selection of geodata and the production of environmental

Criteria:

(pedine )<

Criteria:

Geo-data for
national studies

variables for GECCO

+ Minimum spatial resolution (e.g. neighbourhood
level for administrative data and 500-m resolution
for raster data)

+ Temporal resolution (e.g. for highly dynamic data
such as average temperatures much higher resolu-
tions—often daily or monthly—are necessary than
for semi-static data such as road infrastructure, for
which 5-yearly updates are sufficient)

+ Thematic resolution (e.g. can built-up area in a
land use dataset be divided in specific classes such
as residential area, office area, industrial area,
retail area, social-cultural services, etc.)

+ Costs and use restrictions (e.g. cost of a dataset
can be too high in relation to available budget and
the relevance of the dataset; the use of the data is
only allowed by the data-owner for the research
project the data was acquired for).

In general, these criteria were pragmatically applied
and meant we gave priority to affordable or free data-
sets of higher quality, with a high spatial, temporal and
thematic resolution for data themes that were of suffi-
cient interest for our targeted user community.

Spatial data sources
Professional open geospatial data of The Netherlands
with minimal quality standards accompanied with a
metadata description can be found via the national clear-
ing house [13] and/or the national public geodata plat-
form PDOK [14] together with a map and download
service for location data in tabulated form or data in geo-
graphic information systems (GIS) formats. Examples of
such datasets concern altitude data, topographical key
registrations, cadastral maps, protected areas, national
cycling and walking routes, aerial photography and so on.

Special clearing houses also exist for more thematic
spatial datasets such as the National Data Warehouse
for Traffic Information (NDW) [15], open government
data [16], open education data [17] or the Environmental
Health Atlas [18]. Examples of data that were found this
way are essential geodata sources such as topographical
data by the Dutch cadastre, neighbourhood characteris-
tics and land use data by the Statistics Netherlands (CBS)
and health or noise data via the National Institute for
Health and Environment (RIVM).

While these sources account for a large share of the
available geodata, still a considerable share of geodata,
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both open geospatial and commercial geodata, is avail-
able only via specific spatial data sections of professional
organisations themselves, such as certain scientific data
produced by universities, research institutions and geo-
data companies. Examples are air pollution datasets on
address level produced by the European Study of Cohorts
for Air Pollution Effects (ESCAPE) [19], poverty maps on
postcode 4 level produced by The Netherlands Institute
for Social Research (SCP), sport accommodation address
locations by the Mulier institute, or (commercial) retail
address locations by Locatus [20].

Another category of (semi)professional data can be
found in the form of voluntary collected geodata, such
as road data and points of interest in the OpenStreetMap
project. Sometimes recent data of a certain theme can
be found via the national clearing house, but older his-
torical data only via the data providers themselves or via
specialised research data archives such as Data Archiving
and Networked Services (DANS). On top of this, national
branches of commercial geo software companies such as
ESRI offer free geodata services in the form of pre-pro-
cessed national datasets in GIS ready formats for exam-
ple for the key registries on topography, buildings and
addresses [21].

Besides the data on a national scale, large quantities
of geodata are available on regional to local scales for
which e.g. provinces and municipalities can be excel-
lent sources. Subnational datasets are collected by the
GECCO project on specific request.

Finally, relevant geodatasets exist that were not (yet)
published online, except by mentioning in a report or
research paper. To acquire these types of datasets, spe-
cific requests to the data owners were made.

Processing steps from geodata to personal exposure
variables

Selected datasets downloaded from FTP-sites and data
repositories concerned spatial data in different kind of
file formats and were transformed into standard GIS
vector and raster formats and where necessary pro-
jected or re-projected to the Dutch coordinate system
(Rijksdriehoekstelsel).

To produce a basic set of spatial variables the geodata-
sets were processed further using common spatial opera-
tions, such as spatial selections/extractions (e.g. from
European to national extent), spatial aggregations to sum-
marize data (e.g. point/line vector data or high resolution
raster data) to administrative units, joining of attribute
data to administrative units (e.g. data national statistics
office to neighbourhoods or PC4 areas), merge or dis-
solve operations, buffering, reclassifications of thematic
data, as well as data enrichment using auxiliary data. An
example of the latter operation was the preparation of a
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land use mix variable where we ‘enriched’ the national
land use data by disaggregating the land use class ‘com-
mercial areas’ to two separate classes ‘industrial/manu-
facturing area’ and ‘office space’ by using detailed polygon
data on the utilization of buildings in the national key
register on addresses and buildings (BAG). More specific
spatial variables with different personal exposure areas
were constructed using spatial functions such as neigh-
bourhood analysis, kernel density, zonal statistics and by
making specific combinations of variables.

The next procedural step was to convert the environ-
mental data to personal exposures, which is the expo-
sure of individuals in their so-called spatial context or
exposure area. This step involves the statistical aggrega-
tion (e.g. count, average) of environmental variables over
areas surrounding each of the residential locations in The
Netherlands. In a number of cases there was no need to
aggregate values over a spatial context, for example when
the exposure was mostly relevant for the location of resi-
dence itself, such as exposure to noise during the night.
In those cases, the value of the environmental attribute
at the location of the front door or at the centre of the
building was directly assigned to that residential location.

More often, however, epidemiologists are interested in
a statistical summary of data within the exposure zone
around an address location. This can be the adminis-
trative neighbourhood or 4/6 digit postal code areas in
which the address is located or one or more (usually)
circular shaped exposure radii of any distance usually
between 100 and 2000 m. In that case the radius distance
can depend on the expected activity space for e.g. walk-
ing, cycling or driving of a certain target group. Alter-
natively, the exposure area can have different forms,
including irregular forms, e.g. on the basis of calculated
travel distances over the roads (e.g. the area reached
within 5 min walking distance) or the exposure area is
not centred around an address location but around a cer-
tain destination e.g. to determine which addresses fall
inside the service area of a certain school or health ser-
vice. Furthermore, in some cases we have weighted also
the distance to individual features within an exposure
zone by applying kernel density analysis. Kernel density
analyses take distance to—for example food retailers—
into account as well as density, by assigning more weight
to more nearby features than to features further away
according to a certain distance function and, this way,
produce a continuous density surface. For example, the
standard kernel density function in the ArcGIS software
uses the ‘quartic kernel function’ described in Silverman
[22], and works by fitting a smoothly curved surface over
each feature point within the exposure zone, with a sur-
face value diminishing from the central point to a value
of zero at the search radius distance. The kernel density at
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each output raster cell is subsequently calculated by add-
ing all the values of kernel surfaces where they overlay the
raster cell centre. Figure 4 gives an example in which this
kernel density function was used to produce distance-
based kernel densities of supermarket access within a
1000-m radius. A relatively simple example of personal
exposure assessment from environmental data in a raster
format at high resolution (25 m) is shown in Fig. 2. The
left panel shows a particular processing cell containing
a residential location and a circular exposure area over
which the environmental attribute is aggregated. On the
right, it is shown how this calculation is done for each
processing cell by moving the exposure area, here shown
as a square box. Point, vector, as well as raster data can be
input for such an analysis and the result can be linked to
cohort data on address level or cohort data on lower scale
levels.

The final step was to produce personal exposures for
different exposure areas in table format suitable to link
to individual-level (cohort) health data on either address,
6-digit postal code (PC6), 4-digit postal code (PC4),
neighbourhood or in some cases district or municipality
levels.

For all collected geodata that were processed into a final
GECCO product, a metadata-sheet was created contain-
ing all the relevant characteristics of the data, guided by
general principles and standard metadata requirements
serving discovery, evaluation and use of spatial data (see
Annexes S1-S3 for examples). ArcGIS (version 10.6 or
higher) from ESRI with the Spatial Analyst extension was

A B
Al
/—-—— Neighborhood outline 1 HHH
% Cells included for processing HH HH
=——— Processing cell 2
Fig. 2 Concept of moving window/neighbourhood analysis in GIS.
For explanation refer to main text
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used for most of the spatial operations in combination
with QGIS (version 3.0 or higher) for some specific oper-
ations. Several parts of the variable production process
were automated using Python scripts with the Python
site package ‘ArcPy’ for utilizing spatial functions avail-
able in ArcGIS.

Despite the use of high-end computers with high pro-
cessing speed and large working memory, very large
repetitive database operations could not be executed in
acceptable processing times. For producing multiple
exposure variables on the address level by extracting and
joining geographic data to over 9 million address coordi-
nates, we therefore used process scripts written for exe-
cution in a specific spatially aware software called Geo
Data and Model Software (GeoDMS). The GeoDMS is a
calculating engine that was specifically designed to pro-
cess, calculate and visualize large (geographic) datasets.
All datasets are stored on secured university network
servers, which are rigorously protected and regularly
being backed-up.

Figure 3 provides an overview of the different steps and
products in the process from original source data to envi-
ronmental exposure variable.

Figures 4 and 5 below provide map examples of respec-
tively a kernel density based environmental exposure
variable and a compound index variable based on six sub
variables.

Geographicissues and quality aspects

During the various transformation processes known
geographic issues were encountered that needed to be
addressed. A common issue is for example the Modifi-
able Areal Unit Problem (MAUP). The MAUP leads to
one of the well-known challenges in spatial epidemio-
logical research and other population health studies [23,
24] and occurs when e.g. point-based measures of spatial
phenomena are aggregated into administrative units in
which summary values (e.g., totals, rates, proportions,
densities) are influenced by both the shape and scale of
the aggregation unit. Fully resolving this issue is currently

Data-acquisition
[:> Data-download
Data pre-processing

| |

Spatial data

inventory

Harmonisation
Transformation

Enrichment
Metric / index
development

Extraction to
address points and

Metadata

administrative <: e=cHpdon

units (PC4, PC6,
neighborhood)

Wishlist environ- Pre-processed
mental variables datasets

Environmental variables Online overview of metadata
in GIS/table format

and data access procedure

Fig. 3 Overview of different steps and products in the process from original data to environmental exposure variable
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[ 0.99-1.41
B 142-19
B 1.91-247
B 2.48-3.15
B 316 - 4.1
B 212-6.93

——— s—Komet

Fig. 4 Map example showing the kernel density (in average number of supermarkets per km?) of supermarket access within a 1000-m radius for
the Netherlands (left) and the Amsterdam region (right) in 2008, where dark red indicates higher access

1Kilometers

Fig.5 Map example showing the walkability scores (range 0-100) for a 500-m exposure area of The Netherlands (left) and the Amsterdam region

(right) in 2015, where green indicates higher walkability
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not feasible, but to address and reduce this specific prob-
lem, we calculated point density kernels prior to aggre-
gating data to neighbourhoods. Doing this accomplished
that distance weighted environment information around
each data-point was gathered and summed up in a regu-
lar spaced raster and subsequently averaged over the cor-
responding neighbourhoods. In effect this meant that
also cross-border environment information was incor-
porated into the data aggregations of each neighbour-
hood. This procedure to reduce the MAUP is, however,
only necessary when it cannot be avoided to aggregate
data to administrative units such as neighborhoods, e.g.
when health cohort data is only available on a certain
administrative scale level. More sophisticated methods
have been developed to deal with MAUP and related
geographic issues, such as Bayesian hierarchical models
and Geographically Weighted Regression with a focus
on local spatial regression rather than global regression
[25], but in general we recommend to avoid any aggre-
gation of available geographic data to administrative
units and work only with uniform exposure units, such
as the circular exposure radii that are often used in the
studies related to GECCO. Furthermore, as suggested by
Fecht et al. [26] we recommend to look for a spatial unit
of analysis that reflects as much as possible the expected
geographical scale of interaction between the spatial
determinants and the health outcomes. In case data
aggregation to administrative units cannot be avoided we
recommend to carry out the proposed method for reduc-
ing MAUP effects and additional sensitivity analysis with
different spatial scales for the assessment of remaining
MAUP effects on the results. Another known geographic
issue is the Uncertain Geographic Context Problem,
relating to the chosen area and time of exposures—which
might not accurately represent the actual area, time and/
or duration that exert contextual influences on the health
behaviours or health outcome under study [27, 28]. Ide-
ally, addressing this issue would mean that more appro-
priate contextual units would have to be de-lineated.
That means that these units have to be based on peo-
ple’s actual or potential (often multiple) activity spaces
[28], and determining these, e.g. with GPS based activity
survey data. Unfortunately, this is an unattainable objec-
tive for most studies. In any case, the decision on what
specific area of exposure and time of exposure to use
will be specific to the research population and question
under study, as well as the available survey- or cohort
data that will be linked. Within GECCO, most exposures
are therefore calculated for different points in time and
a range of area types and sizes, as detailed further down.
In addition, as recommended, we and others encourage
researchers to develop an adequate theoretical model for
taking spatial and temporal contextual uncertainties into
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account, to do sensitivity analyses with other area sizes,
and choose exposures that are measured with the nar-
rowest possible time gap [28-30].

To make a proper evaluation possible of the fitness
for purpose of the produced environmental variables,
we provided relevant metadata on the primary (origi-
nal) data sources, as well as metadata on the details and
applied processes towards the secondary (derived) geo-
data and environmental variables. The majority of the
original data comes from formal national bodies such as
the Dutch statistics office (CBS), Dutch environmental
assessment agency (PBL) or the Dutch cadastre and are
usually subject to internal quality control procedures and
provided and catalogued with detailed metadata based
on international standards such as ISO (e.g. the Dutch
metadata profile ISO 19115 for geographical data and/
or the European metadata standard INSPIRE for spatial
data).

However, more specific geodatasets such as the national
dataset sport accommodations (Mulier sport-research
institute), the public transport stops dataset (Gronin-
gen University/NDOV), or the Locatus retail data, do
not always contain standardized metadata descriptions.
Therefore, besides providing available metadata as much
as possible on both primary data and secondary data, we
carried out random verification-checks of areas that are
familiar to us, before delivering requested environmental
variables to researchers. For the Locatus retail-data we
carried out a separate verification study [31].

List of environmental exposures
Although the final products of the GECCO project are
environmental variables in table format, the produced
intermediate geo datasets have an essential role in the
project. Any desired variable that is spatially different
from the standard set of produced variables (e.g. updated
neighbourhood borders, larger exposure radius) needs to
be reproduced on the basis of a pre-existing geodata set.
In depicting our list of environmental exposures here,
we chose to distinguish 6 categories of exposures and
classify geodatasets and derived environmental variables
with their different exposure zones according to these
environments (see Table 1). Some of the datasets and/
or derived environmental variables could be allocated
to other health environments as well, e.g. neighbour-
hood data contains a clear administrative-demographic
component as well as a socio-economic component that
could also be classified to the social-cultural component.
For each environmental variable and/or geodataset
listed in Table 1, a more detailed metadata description is
available via http://www.gecco.nl/exposure-data-1. Three
examples can be found in Annexes S1-S3 Additional


http://www.gecco.nl/exposure-data-1

Page 8 of 16

:49

(2020) 19.

Lakerveld et al. Int J Health Geogr

(W GZ'0 JO UoNN|Osal ‘3| YD) o10yd

[BL3€ PaIRLU| 3Y) pUB SBUIPING DY 3U ‘S3JY ENHY PUB ZNHY U3 (OlY) BuInabuiogaa sepy /(NAIY) usw

wioly paALRP aeds Uaalf 01 paje|al s19se1ep JUSIAYIP JO UOMRUIGUIOD  -UOIIAUT SU1 pue YeaH dIjgnd 1o} 31nisu|

spiefanelb pue sisa10} ‘syied ‘susapieb
21|gnd sapnjoul 33edsuaaIn) $31025-7 Se pale|nd|ed Alsusp adedsusnin

sasse[D asn pue| 2412ads aAY Jo Aau
-9601313Y 21 S91EDIPUI PUB $3105-7 SB P1[ND[D S| XIUW 9sh pue| 3y |
$3552|20NS Of7
"B PUB SISSE|D 95N PUE| UlEW 6 Ul UONEDYIS
9661 PUB €661 UamIag  -seD ‘Aydesboloyd [elae pue oL dOL o' uo

1IN0 sabueyd uonedyIsse|D 'e1ep pazielauab suIadUOD 3sN puepaseq (SgD) SPUBBYIDN SOISHeIS—asn pue

e1ep AJeljixne Buisn pa1onIsuod ale 10z

210J2q SIPIA "$2102S-7 SB Pa1e|n|ed eale UoHA|od 3jemapis Jo Alsusq
sKemapis pue
©aJe Pa1d39|es aYd saue| 312A21q a1eedss Jo siae| uobAjod
JO 9715 341 01 (SH3| 20U JO 931Y1) SUONDISISNUI SNJY JO JSGUUNU Byl SIsyl0 Buowe Buipnjdul (115epeD—|0g)
U23M13q ONnel 3Y1 AQ pa1uasaidal ‘HI0MIBU 192115 31 JO AUANDIUUOD
_ 219 ‘sy1edioo) ‘saue|
(NMILYYH133093M JaAe| 1meay 91242 ‘sppuuny ‘sabpuq ‘siixe pue sduies
3Ul]) $10Z IN 0LdOL 19Se1EP BU1 LIOL PIALSP S| AUSUSP Peoi(ied) ay L 'SUONOUN( ‘sAeM|IR] ‘SPEOI JO SIakE| dUl|

pue uiod Yum (6107 ‘91152Ped—01dOL

-1e|dsiay yfijapueT, e1ep yum paulof exep aull yied ajaAd

S|oA3] S3|BDS [EIUOZIIOY JUIDHIP UO 3|G.|IBAR 1BULIO) 19ISE) SpJeOq J91eM PUR JUSWIUIIAOD

Ul 1onpoid A1awije Jase| e s spueiayIaN ay Jo dews apniye sy [esuad ‘sadulroid Jo uonesadood—|uNHY

(S9D) SPUBHISUIAN SINSIIEIS—asn pue] 00008910001 0SL00S0SE 0505 Ly 1007 966 | €661 6861

(S9D) SPUBJIBUION SINSIIEIS—asn pue ] 00008910001 0SL0050SE 0505 Ly 0007 966 | €661 6861

Aydeibodo] sjeds-abie isibal Aoy

—14g) wa1sAs Ja1s16a1 Aydeibodon diseg

uone1dbA MO 9%~

SQnIYS %-

sasse|d 1ybiay 93]~

S994] %-

9d '¥d ‘aN £10T (sl "W 0) 92eds usaln

SLozziozoLoe
9d ‘vd ‘N 800C 900C £00C
Aususp 22eds usain

uofealdal /adedsuaib-g
S32IA13S D1gnd /5310
SDIAIDS [BINYND-[R1D0S-E

[eIDIAWWIOd-7

enuapIsaI-|
510 2102 0102 csceh 2o DU
9d7d'dN 800 900C E00C >98N puel

x3apul AdoJius /Xiud 9sn pue

Sl0C
107 00800
900¢ €00¢ 000
9d '7d "IN 2V 9661 €661 6861 asn pue
9d '7d 'aN
000705910001 610¢s10¢
10 800¢ £00C

05£00505£05205 Ly 000 9661 €661 6861 Asuap yemapis

9d '7d "IN
000Z'0591°0001 610C 510 ¢loT

0S£00SOSE0SE05Ly €00 100Z €661 6861 AuAnd3ULOD 192115

N (504 Ausuap peoy
aN 610C Ausuap yied a2/A01g
(e3)810T (ENHY) uonnjosal ‘wid 0g-
(®3)0l0C (ZNHY) UonN|0Sal ‘W G-
('®3) 000 (LNHY) UonNjosal ‘W Gz-

(pasn pue

passad2e 3 ued sbul

-punouns ay1 Aem

3y buuIw-I219p asn

pue| pue 2INIdNAS

-RJJUI) JUBWUOIIAUD

94 'vd ‘N 2V 8107-000C $2112WNUSD Ul 9PNy Auanoe [ed1sAyg ‘|

syieway 924N0S e}epodn

9pod |e3sod 1b6Ip-9 = 94
spo> |eysod 36Ip-1 = vd
pooyinoqybiau = gN

$3)eUIpIo0d SSAIpPE = DY

(w) snipes ssaippe = (1)y
(s)auoz ainsodx3 pouad

(s)a|qeriea Kioba3ed
|eauawuolIAug ainsodxg

$324n0s ejep pue sajqeliea ainsodxa jeuosiad jo Lyjiqejieay | ajqel



Page 9 of 16

:49

(2020) 19

Lakerveld et al. Int J Health Geogr

gp Ul 9S10U dujel) paxiw

UO UORN|OS3I W GZ X GZ YIIM [003 3slou eledwul Yiim e1ep Paj|9POoly JUSLUSSISSY [eIUSWUOIIAUT SPUBHRYIaN T9d

159Nba1 UO PaALIBP Bq UBD S3|CeLIeA 3INS
-odxa paseq A1IsUap pue adULISIP [BISAIS 19SEIRP SIY} JO SIseq ayl UQ

1033 PooYINOqyBIBU dNYN SUWIODISA0 O} Pale|ndjed e

Aousby

S135e18(] SPURIBLISN 1S 9d '7d "N ‘v

(AOAN)

19019/ Jeequad( eieq ajeuonen yueq

sdos 1odsuesn 21/gnd Jo (snipel yoieas W-000 1) sanIsusp 1uiod [9UIdy -elep /Usbuiuoin) 1181ISIaAIUNSY(1Y 1SUSIPOID aN

6107 SUISDUOD 1EP JaY10 DY) ‘G107 Jeak a1
SuJdU0D sadeds bupyied dn-}jing a1eAud 1oy e1ep Dyg 3] ‘9107 JO

00001:1-005°C:L

S$9[e2S U0 MY PUB OYF '01dOL 199 Wol
e1ep UobAjod pue 1ulod J01D3A SUIqUIOD)

“(KyI0YINY SPIYSA SPUBLSYISN) MAY /241

$19pI0Q POOLINOGUBIaU B3 10} 9PBUI US3G dABY SOLIBWIWINS [eDNSIeIS  -Seped),sade|d buijied, 195e1ep wolj paalag aN

18P BUI| J01DIA

001 pue 0 Usamiaq sanjeA 01 s3nsal ayl bujzilewou pue
S1UUOAWIOD XIS S1 JO $21025-Z dY3 Bulwns g paiejnojed s Aljigesjep

000°5:1-005:| 9[eds uonedljddy —|og—Aydeibodo] ajeds-abie| 12151631 Ay

21N33sUL 21N
au1 A pabeuew suORePOWWODe 1ods 000'ZZ "B WOlj S91eUlpI00d
AX41Im 195R1EP [PUOIIRU B WIOJ) P1RINJ[R §| AUISUSP UOIIEPOWLO0IIY

12U[apUBRA) pUE Wiofe(dsIaly ylijop

-Ue7 Aqg eep peol IN 0LdOL Wol panuad ¥d SN

SpuUBlaYIIN

ansepe) Aydeibodo sjeds sbie| /oiseq pue
(SgD) spuepiayIaN sonsiels uonendod
pue 3sn pue| uo paseq 13foid 0DID  00EOSOVO00L 0SL00SOSERSTOSLy 007 966 | €661 6861

9d '7d ‘N

a1seped

2hseped—01dOL
—]49) Wa1sAs 13151631 Aydesbodol diseg

NSl
1DIINA (YSA) poqueyiods puelsageleq N

9d ‘7d PV £00C S00C ¥00C 000C

9d '¥d "IN 110Z 010Z S00C £00C

800¢ uspul
(I1e pue e ‘peos PaXIW) ueaw A|lep—asiou dyjel|

610C suonels Aemjiey

(510t (sdois wiey pue
woyy parepdn) gLoz  Ixel ‘onsw ‘A1) ‘sng) Alsusp dols uodsuei d1gnd

saoe|d Bupyied Jo Jaquinu /s1ed JO JaqUINN-
se ol1eJ 9oeds yied-

a1e1day Jad saoe|d Bupyied Jo JsquinN-
ployasnoy Jad sadejd buiyied Jo Jsquinu
U1 Ausuap adeds yled-

saoe|d bupyed Jo JaquIinN-

(sy4ed ued pue sabeseb
(5107 Ovg bupyied predun /pied pue sade|d [elruspisal
saoeds yled) 6107 91eAld ‘sadeds Bupyied 19245 d1jgnd) sadeds bupyied

S9POU 1odSuRI PUB SYIOMIBU ‘SIN0I Bupjem
SNONUNUOD 6107 PuUe BulpAd Bulpnidul somiau Bupjjem pue 3PAdIg

Ausuap ijem apis (9

9oeds usaIo (§

AUAD2UUOD 199415 (1

XIW asn-pueT (¢

SUOIJRUNSIP SDIAIDS pUB [IB13l JO Alsua( (7

Ausuap uonendod (|

slocelocoloe :SUSUOdWOD XIS UO Paseq 21035 31soduwo
8007 9007 €007 B 15 uo paseq . D
xapul Aujiges|em
sno (s393[qo |ea1ydeibodol Jo siake| uobAjod pue
9d ‘Pd ‘N -NURUOD 070Z-7 L0 dul| wuiod) |©g—Aydeibodo] ajeds-abie| 1a1siba1 Aoy
610C
SL0Z €10Z 10T (sIuBWDd BUIYSILINg ‘UlR1IS) 11eM

‘syoe1) ‘speos ‘0'e)—| ¥g 01 dOJ—Aydeibodol aseg

/107 (100pIN0 pue J0opUl) AJISUSP UOIIEPOWULIOIIE 10dS

(paniod1ad

10/pue pajspow

‘painseaw ‘191em Jo

10S e ‘sbuipunol

-INS Ul duUesInuU

suonnjjod) uonn|jod
[PIUSLUIUOIIAUT '€

JuswuoliAnuL
Aujigowaiodsuel| 'z

s)yiewdy

apod |eysod 1bIp-9 = 94
apo> |eysod ubIp-t = vd
pooyinoqybiau = gN
$9)eUIPIO0D SSAIpPE = DY
(w) snipea ssaippe = 1)y

32In0s e}epPOdH (s)ouoz ainsodx3

(s)s|qetien
pouad [UETIIE]

Kiob63jed
ainsodx3

(panunuod) | ajqel



Page 10 of 16

:49

(2020) 19.

Lakerveld et al. Int J Health Geogr

aNSsI 4NV 1uaAaid

01 s[auIay Aususp ulod Buisn spooyinoqybiau o) paiebaibbe

s e1e ‘[7€] 219YyMas|a paqLISaP Se 210DS |34 01 bulpiodde § +
pue G — UsaM1aq (XapUl $s3Ulyl[esy JUSUIUOIIAUS POOY) 310D$ Xapu|

(020-¥002)

0D pue °H°> Joj 1ede ‘pg0T PUe 5707 (NAIY) W
‘020 10 S3|GRLIRA ||B JOJ 3|R|IAR SR SUOII-PIIUSDUOD 8ININJ P3[|SPON  -UOJIAUF 31 pUe Yl|esaH d1|qnd 40 81Nn11su|

Ajuo aanesipur sdew (53) |0OS ‘SUONEIO| JUSWRINSEIW
[BIDLJO WO SIUSWINSEIW PUB SUOIIR|ND|ED [9POW JO UOIBUIGUOD (WAIY) JusW
© U0 Paseq SUOIeIIUadUOD UoiN||od J00pIN0 abeIaAR [enuuy  -UOIIAUT DU} PUB Y3e3H D1gNd 10} 21ndisu|

JamalAdew auljuo 935 JusW (3dvDS3) s10ey3
-Uo1IAUS [edIsAyd Yy pue e1ep dyjel] ‘e1ep USWINSeIW YIIM Pale|  UOAN|[Od JIY J0j 1J0YoD Jo Apnis ueadoing
-0da1u1 /paj|Spow SUOIRIIUSOUOD UoIIN||od J00pIN0 abeIaAR [eNUUY  /(SYYI) S9IUSIDS JUSUISSISSY XSIY JO 3INISU|

(MU3]) JUsW
(Uap Ul 3siou) BIU pue Aep oy 3|qejieAe elep Slesedas-abeuely Ja1eA PUB IN1-DNiselu] JO AlsIUlA

(Mmusyjo
sIa1Ieq PUNOS pue sadA1 peos ‘Ausuaiul "UIW) $310M 211Gnd Pue shemiziepjo dag
Sljel) BuIpN|oUl PAUNODDE SJ. S10108) [eI9ASS 'gp Ul 3SI0U PeOl Kouaby

UO UOIIN|OS3I W GZ X GZ UM [00) 350U eled ] Ylm e1ep Pa||apoly  1USWISSISSY [BIUSULUOIIAUT SPUBLRUISN Tdd

(1senbai uo
PaALISP 3G UED S3|gelieA
ainsodxa paseq Alsuap
puB 3JURISIP [BIIASS 135 (1sanbal

810¢-110¢
810¢-110¢
8l0¢-110¢
8l0¢-110¢
810C-5661
8L0C-110C
8l0C-5661
810¢-£10¢
810¢-110¢
8l0¢-110¢
8l0¢-110¢

9d'vd'ANDY  AUeIA8LOZ-S661

(€107
10430U “ON) /10T
9d 'vd 'ON 2V 9107 SLOZ #10Z £10T

9d 'vd PV 600¢
9d v 910¢
9d 'vd 2V 910¢ 110¢ 900C

L1ocoLoc
9d '¥d 2V 800¢ L00Z ¥00Z 000C

(3s9nbas uo e1ep Julod SN1EJOT WOI) PIALISP

SNLYDOT e1ep a1eulpiood ulod [1e1aY -elep SIY) JO Siseq Yl UO) gN UO SIeak Jay10) 9107 S3|GeLIA JU10) XOPUI-SSaUIYI[eay JUSWUOIIAUD POOH

(‘0s) apixolp anydjns-
(03) 1005-

(f0) uoz0-

(“ON) 2pIX0 UboIN-
CON) apixolp uaBoIIN-
(EHN) elUOWIWY-

(©'\d) 13118W S1R|NdINEY-
(SYNd) JoneW d1e|NdNIRg-
(0D) 86d apIxouOW UOGIe)-
(OD) epIxouow uogie)-
(°H%D) suazuag-

sbelane
|ENUUE P3|[9POU UOIIN|0S3I Wy | uonnjjod Jiy

(53) 1005~
(“ON) apixolp uabonIN-
(O'Ng) Jon1eW B1eNdILIEY-
(E9Nd) Jenew a1ejndned-
abesane
|enuue paj[epoul uonn|josal "W g7 COE_\:_OQ Yy

(“ON) apIxo usboniN-

(YON) apIxolp uaboIIN-
(%) Janiew 21endied-
(OYd) 12118W S1BNDMIRY-
92URQIOSAR §'7 Wd-

(“YNd) Jonew 21endnJed-

S9N|eA UeaWl pue "xewl :C_C\CO abeiane
[ENUUE P3|[3POW UOAN|OS3) Wi G > uonn|jod iy
Joydiyos asiou Loduy

(sKem yb1y) SpPeOI [BUONEU —3SIOU DUjel|

UapT Ul (AJUO peoJ) ueaw Ajiep—asiou dujel |

1UuswuoliAUS
|le121 pue poo

s)yiewdy 921N0S e}epoan

apod |eysod 1bIp-9 = 94

apo> |eysod ubIp-t = vd

pooyinoqybiau = gN

$9)eUIPIO0D SSAIpPE = DY

(w) snipea ssaippe = 1)y
(s)@uoz ainsodx3 pouad

(s)s|qetien
|ejuswiuOLIAUg

Kiob3jed
ainsodx3

(panunuod) | ajqel



Page 11 of 16

:49

(2020) 19

Lakerveld et al. Int J Health Geogr

SPIRMUO G 07 WO SOSIIRIS [eUORIPPE
SUIRIUOD $Dd JaHIP UBD SBUOZ 9Dd PUB $)d 10 S3|GRIIRA 3|qR|IeAY

2U0Z 2INsodxa pajedipul Jad paziewwns Ajjereds
90 UeD e1e( "UONNIASUI / [00YdS 13d Blep SS3IPPE PUE $31eUIPI00D)

005°Z:1 WOl Buliels 3[eDS B UO (0Z07) S9552IPPE Uol||IW €6 pue sbul
-pJINgG Uoljjiw Q| UeYl 210w Huiureiuod (uobAjod Auiod) 19se1ep 10109/

Ss1eaA DU JaA0 SBURLD UBD S3|GRLeA PaPIOdal UL

0s|e pue sieak 3y1 J9A0 aBUBYD UBD SUOISIAIP/SI9PI0g pooyinoqybian
pooyinogybiau iad sajqe

-1ieA d1ydesbowap Jo 9bues e SPI0d3L (D) 9ILJO [B1ISHEIS Y2INQ 9Y |

(suonejsy
wopbuly pue Jouiu| ay1 Jo AsiUl yaing
‘(SgD) SpuUeIBYIaN SD1ISIIeIS JIOUUOIA 91P1ST
[B9Y ONIMS ‘UYD1e3s3Y 4gy ‘0'8) SNOSUR||IDSIA

(SgD) SPUBHISUIAN SANSIILIS - SIASHES $Od

2DU3IDS pUE 21NN ‘UoNeINP JO
Ansiun - (ONQ) slimiapuQ BuuoAln Isualg

N 2aseped
‘(Ovg) SBulp|Ing pue sassaippe Jaisibal Ay

(S9D)
SPUBLSUIBN SOIISIIEIS, USLERNLINNG U HfIA,

¥d

vd

9d 7d ‘SN OV

9d '7d "IN 2V

aN v

12d Jay!
abuel) 5107-0661

(s901d asnoy/suoidesues

‘a1 [9ARI1 'S90J0 150d 'S9552UISNG PUe |1e1a)

‘592140 ABoj0d A} JusW-UOIIAUS BUIAI| ‘AlIjIqeAl|

(31qeueA ‘95N pue| ‘SWIOdUI %2015/51yauag buisnoy ‘uods-

ued  ‘2Jed U1[eay- ‘UoIeINPa- ‘2iNNd Sa1lljIDe) ‘D1edp|Iyd
‘A1q1ss922e) 3p0d [e150d 1BIP- SONSIEIS JSLNO

(punoiboeq
uonelbiw ‘uonisodwod pjoyasnoy ‘syuelgeyul
8107-8661 Jo abe pue xas ‘0'e) apod [e1sod 1BIP- SONSIELS ADY

uonesnps Jaybiy-

s|ooys [e1dads-

5|00Y2s AJepuodas-

sjooyds Asewld-

810¢ uoneosnpj
eale buip|ing-

Je3A UOIdNIISUOD-

uoldUNy uonezI|iIN-

ERSENEN
‘sueAeJed ‘suoljined yoeaq ‘syiiaq ‘sbulp|ing ‘sasnoy-
SNONUUOD “Buipnjpul
0z0z-110T (9vg) sassaippe/sbulp|ing

Ia1eM/pUB| BAlY-
eale g buiddejisnp-
(pooyinoquybisu e u| $3sSaIppe punole
SnIpel e ulyim sa131[12e) dY13ads Jo Jaquunu sbesane
pue s311[12e} dYidads 01 92URISIP SDRIDAR) SAIUUSWIY-

3SN pURT- S3PIYSA IOJON-
sassaUISNg-
AWIND3S [eD0S-WID-

Qwiodul-
inoge-
uonesnp3-(A11d3e /seb) uondwnsuod ABiaul-
(019 ‘s9dA1 duspisal ‘diysisumo ‘wai) BulA-
32015 BuIsNOH-
uoneziueqin-
9DUBUIAOIG-
Aususp uoneindod-
(212 "Al[erIow ‘X35 ‘'sasse|d abe) soiydesbowsg-
(SanIuswe [einynd
pue si1aweled
DIWOUOIS PUE [BID0S

s)yiewdy

921N0S e}epoan

apod |eysod 1bIp-9 = 94
apo> |eysod ubIp-t = vd
pooyinoqybiau = gN
$9)eUIPIO0D SSAIpPE = DY
(w) snipea ssaippe = 1)y
(s)@uoz ainsodx3y

6107-200C ‘Aydesbowsp Aoy
Ajeak-auQ ‘SUOISIAIP DAI1RIIS]
100C-5661 -UIWPE) JUBWUOIIAUS
Kl1eak-om| $211511B1S POOYINOqybIaN JJWOU023-01205 °G
(s)s|qetien K10b693ed
pouad |ejusWIUOIIAUg ainsodxy

(panunuod) | ajqel



Page 12 of 16

:49

(2020) 19.

Lakerveld et al. Int J Health Geogr

5195e1eP |N [4ST IA PApIAOId

U01eAIBSCO [N D11PUWIOINe GE—EE U0 Paseq (W 0L | Jo snipel
42Jeas pue Wy Oz 9215 320|q 4a1awesed sjamod 'z yum ‘uonejodiaiul
pa1ybiap 92uelSIg 9sIAU|) e1ep palejodisiul JO SpUb wy | X |

(1931ew Jnoge| Y3 ut uonisod

21N113sU| [P2160]0I0313|N SpUBRYIaN [PAOY

(dDS)

pUR 3WODU] ‘UOIIEINPA U0 PISEQ IR S3I0DS SNILIS DILUOUODS-01D0S  UDIRasaY [RID0S JO 3INMISU| SPUBLBYIDN Y|

pooyinoqybiau pue eae

(dDS)

$2d J12d suoniuyap 45 01 bujpiodde spjoyasnoy,1ood, jo 9612194 Yd1easay [ed0S JO 91NISU| SPUBAYISN YL

SPIEMUO | |07 WO SD1SIIRIS [UONIPPE PUE SIeak
|| 10§ A1UBGIN pUR ALISUSP [BIUSPIS3I ‘SBUIIIMP ‘SluBlIGRYUI JO 1]
-WINU UO $D11S11e1S DISeq SUIIUOD UDX1SIIeISIURNISIA, 195Iep S8 3y |

elep paseydind

(S9D)
SPUBLIBUIDN SINSIEIS USXR1SIRISIURNIDIA

(SgD) spuelBYISN S21ISIIRIS—SDNISIIIS 9D d

(NOYg) puepispsN
ua||ersbuQ aplaaisibayab puelisag 9d /107-£007 AJeax SjuSpIdUl DLyel]
wnuwixew Ajleg-
suonels wnwiuiw Ajleg-
(NN 183k 1ad abeiane AjieQg-

9d'7d ‘AN OV Ajlep)uaind-1961

£10C910C ¥1oC
(910C 9N) #d 010C 900Z ¢00C 866

¥d ‘N £10C

((0€ "e2) SUONRUNSIP 15a183U O)

SDUBISIP ‘W € /2/1 UIYUM SUOLRUNSDP JUDIBYIP OF
'8D JO Jaquunu asn ABIaus ‘A11IN23s [e120S ‘sBuljlemp
Ajiwey sjdninw /a16uls ‘Alisdoid psiusi /psumo

810C-G10z  ‘sassep abe Anadoid 'spjoyasnoy) soisiiels 1Yo

sanjea Ausdold

sBuljlamp Jo Jaquinn
uJa1s9MmuUoU—IbYDeg IBIN
ulaisam—ibyDeq 1IN
yoIng aAleN

5955812 96PIUSDIS
UswoM JO Jaquinu 10|
usW JO Jaquunu [elo|
sieak 69 < Syuelgeyu|
s1eah G9-Gy syuelIgeyu|
s1eaA GH—G7 S1uRlGRYU|
sieah G7-G | SsluelgeyU|
SIe3K G| > Syuelqgeyul

sjueligeyut Jo JlaquunN

1195 pub 1313w 001 X 001 Jod

9d 'vd ‘AN 2V 8107-000C saInBy [ednsiess A3y
(32035 Buisnoy ‘syuelBILIWI ‘BUI0dUl
9d 010z '¥00z ‘sd1ydesbowsp ‘0'e) opod [eisod 1BIP-9 SONsels Ay

pub wy sad ainlesadwa]

21025 SN1LIS DJUIOUOI3-01D05

spjoyasnoy,Jood, 9, ul AaA04

ainjesadwal
J1e ‘sdayisae A194es ‘9

apod |eysod 1bIp-9 = 94

apo> |eysod ubIp-t = vd

pooyinoqybiau = gN

$9)eUIPIO0D SSAIpPE = DY

(w) snipea ssaippe = 1)y

syleway 92In0s ejepoan (s)@uoz ainsodx3

pouad

(s)s|qetien K10b693e>
|ejuawuoIAug ainsodx3

(panunuod) | ajqel



Lakerveld et al. Int J Health Geogr (2020) 19:49

file 1: Annex S1, Additional file 2: Annex S2, Additional
file 3: Annex S3.

Utility and discussion

Interdisciplinary research and collaboration can provide
substantial benefits to scientists, practitioners and policy
makers and it is predicted that the future of research is
increasingly interdisciplinary [33]. GECCO is a solid
infrastructure that facilitates such interdisciplinary
research. It uses a systematically and integrated method
to centralize rigorous and validated scientific informa-
tion about environmental conditions and exposures.
GECCO facilitates the linkage of these data to deep-
phenotyped individual-level cohort data enabling iden-
tification of spatial or temporal relationships between
the exposures and (adverse) health conditions. Besides
being an infrastructure, GECCO also supports essentially
needed interdisciplinary collaboration as Health Scien-
tists, Epidemiologists (clinical and environmental), Data
scientists, Geographers, health cohorts, and GGHDC are
involved. Without such collaboration it would be impos-
sible to manage the complexity that arises with integrat-
ing data from different disciplines.

Intended use

Usage of GECCO data is, in principle, free of charge for
non-commercial users. A simple GECCO Data Access
and Publication Policy has been set up. There are roughly
two ways through which the data can be accessed: (1)
Centrally, accessible via the GECCO steering group via
the website http://www.gecco.nl, or (2) De-centrally,
when environmental data linked to individual-level
GECCO cohort data is required. As cohorts are enriched
with environmental exposures locally (i.e. at the prem-
ises where the individual cohort data are stored), usage
should be approved by the GECCO steering group, and
can be obtained via the respective cohort(s), where addi-
tional cohort-specific data sharing regulations need to be
complied with. The 23 cohorts that are currently affili-
ated with GECCO have solid procedures set up for data
sharing and use, and must ensure that informed consent
procedures allow for that, as specified in the European
General Data Protection Regulation (GDPR). The GDPR
may provide further challenges with data logistics around
analyses. Analyses across cohorts can be done in a num-
ber of ways: (1) Pooling cohorts and harmonising vari-
ables centrally (if cohorts allow, which is usually not the
case); (2) Doing the analyses locally (i.e. without the data
leaving the premises of the owners) and meta-analysing
results; (3) Accessing data via a so-called trusted third
party (T'TP); (4) using privacy sensitive data obfuscation
[34]; or (5) Federated node analyses. The GECCO consor-
tium has gained experience in handling and combining
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multiple data sets and cross-cohort analyses have been
done successfully within GECCO [6, 35, 36].

Challenges and options for improvements

The innovation provided by the GECCO database is
its extensive coverage (whole population of The Neth-
erlands) and availability of an integrated, large set of
personal exposures, ranging from the socio-economic
environment to the physical environment. We continu-
ously strive to further improve the database regarding the
range of exposures included and the quality of the expo-
sure data. We conduct methodological studies to explore
what operationalisations may best reflect real-world
exposure e.g. to the food environment [37], and what
spatial area to consider [29]. These innovations and the
long-term sustainability are guaranteed by ongoing coop-
eration with partners in the Dutch Global Geo Health
Data Center, the Exposome-NL project, the Upstream
Team, and the European SURREAL project, among oth-
ers. We will jointly innovate the methodologies presented
here and use exposure data sets in various epidemiologi-
cal studies.

Envisioned innovations of the data provided by the
GECCO database include improvements of the personal
exposure calculation and the temporal range of expo-
sures provided. Promising for the improvement of the
quality of exposure data is the wider availability of even
more detailed maps of environmental factors as well as
more advanced exposure assessment methods. The ongo-
ing increase in the volume and spatio-temporal detail
of environmental sensor data will lead to more detailed
maps of environmental factors in The Netherlands, but
also worldwide. Earth observation data collected from
space will contribute to hyper resolution mapping in
space and time of environmental variables such as air
temperature [38], air pollution [39], and green space [40].
Near sensing data collected close to the land surface,
provide a wealth of information thus far not used in the
GECCO data base. Future improvements could include
the assessment of the attractiveness of the living envi-
ronment (e.g. green space) from street view imagery [41,
42], and the use of dense networks of low cost (mobile)
sensors for air pollution mapping in space and time. A
more novel and yet to be harnessed data source for envi-
ronmental epidemiology is the data continuously gath-
ered by modern cars that are both connected to internet
and equipped with sensors to map the environment—for
safety interventions such as emergency stops, and func-
tions such as autonomous driving. By using advanced
spatio-temporal machine learning algorithms, the remote
and near sensing innovations will lead to environmen-
tal attribute data at a higher spatial resolution, as well as
data representing temporal changes, for instance diurnal
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or seasonal patterns of air temperature [38] or air pollu-
tion [43]. This improved resolution and coverage of envi-
ronmental data will contribute to the development of
more sophisticated environmental exposure assessment
methods. One innovation is to replace spatial buffers to
represent activity spaces of persons by methods that give
a more detailed representation of the activity of persons
in space and time, by activity-based or agent-based mod-
elling [44]. Another requirement to improve exposure
assessment is to make exposure assessment specific for
the actual space—time activity patterns of persons, for
instance using GPS wearables. Alternatively, exposure
assessment parameters between different groups of per-
sons can be based on their typical daily movement pat-
tern, for instance homemakers, students, or commuters
(e.g., [45]).

Furthermore, qualitative individual-level data could be
integrated with the objectively measured GIS data. Geo-
graphic information systems are considered to be a tool
for the storage and analysis of quantitative data, but there
are examples of their use in qualitative or mixed-method
research [46, 47]. This would add contextual information
on factors that potentially co-determine health outcomes.

An additional path of innovation is to expand the data
set with more temporal data. Personal environmental
exposure can be considered as integration of exposures
over an interval of time. The interval of time that is rel-
evant may depend on the health outcome considered.
For instance, the influence of air pollution or food out-
let exposures on many cardio vascular disease outcomes
is considered to be a long-term process, and one would
require exposure values calculated over time spans of
several years or even from conception onwards. Other
health outcomes are more instantaneous, for instance the
occurrence of hay fever due to pollen in the air in which
case personal exposures are required integrated over a
few hours to days. To deal with these situations, temporal
databases of environmental factors are required, some-
thing which has only partly been addressed in our cur-
rent database.

While GECCO is part of international projects and
networks such as the Initiative on Spatial Lifecourse Epi-
demiology (ISLE) [48, 49], a relevant step for the (near)
future would be a better alignment of measures and
methods with similar infrastructures elsewhere in the
world. For instance, the Canadian Urban Environmental
Health Research Consortium (CANUE) has similarities
as it was established to facilitate the linkage of extensive
geospatial exposure data to existing Canadian cohorts
and administrative health data holdings [50]. The poten-
tial Exposome studies across countries or even conti-
nents require standardisation and harmonisation, and
stresses the need for continuance or solid embedding of
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such infrastructures in sustainable programs that are less
dependent on temporary funding.

GECCO has not been set up to address a specific
research question but is rather an infrastructure to
address a myriad of questions, also beyond the types of
examples that are provided in this manuscript. The rele-
vance of—and the forms of approaches to address—such
questions are likely to evolve over time. The relatively
novel area of environmental epidemiology and exposome
research is developing rapidly and will need to cope with
changes of exposures, whether they are gradual [51] or
very swift e.g. due to covid-19, where actual exposures
changed [52], but also spatial patterns of people within
contexts of exposures.

Conclusions

The systematic approach of the GECCO infrastructure
to centralise environmental data and develop personal
exposure variables at high resolution across various
domains has resulted in a large, accessible and utilisable
source for exposome research. Particularly harnessing the
increasing availability of—and accessibility to—remote
and near sensing data as well as alignment with other
similar infrastructures globally are identified as key next
steps for further improvement.
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