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Abstract 

Background:  This paper deals with the location of emergency medical stations where ambulances waiting to be 
dispatched are parked. The literature reports a lot of mathematical programming models used to optimize station 
locations. Most studies evaluate the models only analytically applying the same simplifying assumptions that were 
used in the modelling phase. In addition, they concentrate on systems operating one type of emergency units in 
homogeneous urban areas. The goal of our study is to identify which optimization criterion the emergency medical 
service (EMS) outcomes benefit from the most and which model should be used to design tiered systems in large 
urban–rural areas.

Methods:  A bi-criteria mathematical programming model is proposed. The criteria include the accessibility of high-
priority patients within a short time limit and average response time to all patients. This model is being compared to 
the p-median model with a single response time objective and to a hierarchical pq-median model that considers two 
different vehicle types. A detailed computer simulation model is used to evaluate the solutions. The methodology is 
verified in the conditions of the Slovak Republic using real historical data on 149,474 ambulance trips performed in 
2015.

Results:  All mathematical models improve EMS performance by relocating some stations compared to the cur-
rent distribution. The best results are achieved by the hierarchical median-type model. The average response time is 
reduced by 58 s, the number of calls responded to within 15 min is increased by 5% and the number of high-priority 
calls responded to within 8 min by 6%.

Conclusions:  The EMS systems operating in heterogeneous areas should be designed to minimize response times, 
and not to maximize the number of calls served within a given time limit.
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Background
Emergency medical service (EMS) is an inseparable 
component of health care systems in many countries, 
from all income groups and regions of the world [1, 2]. 
Its main role is to provide first medical aid to patients in 
emergency situations. The organization of the EMS sys-
tem substantially affects patients’ chances of survival and 
recovery. Therefore planning EMS at all levels (strategic, 

tactical and operational) represents a challenging prob-
lem that is still topical in the constantly changing socio-
economic environment.

In the past two decades, an increasing demand for 
EMS service worldwide has been reported. Popula-
tion ageing has been identified as the key factor of this 
phenomenon [3, 4]. Elderly people suffer from chronic 
diseases and mental or physical dysfunctions. They are 
subject to the risk of sudden worsening of their medical 
conditions and injuries caused by falls. Also the risk of 
life-threatening emergency events, such as the stroke, 
severe respiratory difficulties, and cardiac arrest, 
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increases with age. As a result, elderly people require 
EMS at a higher rate than younger people do. Although 
the elderly do not constitute a large part of the whole 
population, their share in EMS demand is significant. 
For example, Veser et  al. [5] analyse the situation in 
Bavaria, which is the largest German federal state. In 
2012 people aged 75  years and over constituted about 
9% of the total population but accounted for 33% of all 
emergency cases. Lowthian et al. [3] state that in 2008 
the proportion of Melbourne’s population aged 85 years 
and over was 1.6% but the proportion of emergency 
transportations accounted for by this group was 13.6%.

The available census and EMS data show that the Slo-
vak Republic follows this trend. The demographic trend 
elicits the need for changes in the EMS infrastructure 
so that the EMS system can operate better—save more 
lives, reduce permanent disablement, and improve the 
outcome of patients. The responsiveness of the system 
could be improved by better distribution of the stations 
so that they are closer to the locations where emergen-
cies may occur. The discussion about the need for sys-
tem reorganization due to demographic changes has 
started also in other countries, for example in Slovenia 
[4].

In this paper we focus on locating ambulance stations. 
The purpose of this work is to identify the best strategy 
for optimization of EMS infrastructure in a large-scale 
urban–rural area.

In the following literature review we focus on success-
ful location models in EMS. Special attention is paid to 
the models dealing with different categories of patients 
and multi-objective models. Moreover, computer simula-
tion in EMS infrastructure optimization is reviewed.

Optimization problems arising at emergency care 
pathway are surveyed in Aringhieri et  al. [6]. Regarding 
EMS location problems, the authors focus on the mod-
els incorporating equity and uncertainty. Valuable for 
our research is especially Sect. 6 of the paper where the 
authors point out that simplifying assumptions are una-
voidable in optimization and computer simulation can 
help to assess the performance of the planned system in 
practice.

A survey on recent research in healthcare facility loca-
tion is supplied by Ahmadi-Javid et  al. [7]. The study 
reveals that the maximal covering location problem 
(MCLP) is widely used to study location of emergency 
facilities. The problem allows for numerous variations 
and extensions, the most popular of which is the maxi-
mum expected coverage location problem (MEXCLP). 
The MEXCLP seeks to maximize the expected covered 
demand supposing an ambulance being busy with a cer-
tain probability and operating independently from other 
ambulances.

McLay [8] enhances the MEXCLP considering two 
different types of emergency vehicles and three patient 
classes. Calls are classified as Priority 1, 2, 3, where Pri-
ority 1 calls are life-threatening, Priority 2 calls may be 
life-threatening and Priority 3 calls are not life-threat-
ening. The objective is to maximize the total number of 
expected Priority 1 calls responded to within a specified 
amount of time. The probabilities of vehicles being busy 
are the same for all candidate locations and are calcu-
lated by the hypercube queuing model. Knight et al. [9] 
deal with multiple classes of heterogeneous patients. 
Patients differ by medical conditions, so they have differ-
ent urgency levels. The authors use the maximal expected 
survival location model with a different survival function 
for each patient class. The objective is to maximize the 
overall expected survival probability across all patient 
types. Leknes et  al. [10] modify the maximal expected 
survival location model by Knight et al. [9]. The service 
time depends on the distance from a station to a demand 
zone, the distance from the scene to a hospital, the drop-
off time and the probability of the transportation to a 
hospital. This way the model reflects the heterogeneity 
of the demand zones in the solved region. Three severity 
levels of calls are applied.

The models maximizing the overall expected survival 
probability across all patient types [9, 10] are in fact 
multi-objective models, where individual objectives for 
each patient class are combined into a single objective 
using the scalarization method. The main drawback of 
this method is how to set weights of individual objectives 
to make the model produce good results acceptable in 
practice. Another approach to cope with multiple objec-
tives is goal programming. Alsalloum and Rand [11] opti-
mize locations of a pre-defined number of ambulances. 
The objective function consists of two goals. The first 
is to maximize the expected coverage, and the second 
is to reduce the spare capacities of located ambulances. 
Goal programming requires a careful setting of objective 
targets, which is a difficult task especially if the model 
involves a large number of uncertain parameters. Inap-
propriate targets may lead to non-optimal solutions.

Aboueljinane et al. [12] supply an overview of the liter-
ature on simulation models applied to emergency medi-
cal service operations. The review covers the time period 
from 1969 to 2013. Computer simulation is identified as 
a useful tool for the analysis and improvement of EMS 
since it allows us to model the system in a high degree of 
detail that is not possible when using other methods such 
as mathematical programming or queuing theory. Most 
simulation studies support decisions on the base stations 
to open and the number of ambulances to assign to each 
open station. Aringhieri et  al. [13] compare the current 
station locations in Milan (Italy) with locations proposed 
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by the capacitated version of the location set cover-
ing model. Several scenarios with different ambulance 
speeds, the number of ambulances and dispatch proto-
cols were evaluated by simulation. A trace-driven simula-
tion approach was used, which means the model accepts 
a stream of actual call data as input. In contrast to self-
driven simulation models, trace-driven simulation does 
not need the estimation of probability models describing 
the time and spatial distribution of calls and duration of 
service times. On the other hand, it has some shortcom-
ings [14]: this approach requires a large amount of his-
torical data; one has to handle erroneous records in the 
database of interventions; the existing data do not repre-
sent the future, so the simulation model cannot be used 
for mid-term and long-term planning when the demand 
volume will increase.

Zaffar et  al. [15] recently evaluated three different 
deployment strategies by a trace-driven simulation model 
using Mecklenburg County (US) EMS data. The simu-
lation model is not very realistic since it uses constant 
values for ambulances’ speed, on-scene and drop-off 
times. The travel times are calculated using the Manhat-
tan distance. Ünlüyurt and Tunçer [16] compare four 
coverage-based models for station location and ambu-
lance allocation via discrete event simulation model. The 
experiments include a case study of Istanbul and ran-
domly generated instances. Also this simulation model 
uses constant travel speed and drop-off times. Every 
patient is supposed to be transported to a hospital. More-
over, ambulances cannot be dispatched to another call 
while they return to their original station.

We conclude this literature review by considering 
a recursive optimization-simulation approach to the 
ambulance location and dispatching problem [17]. The 
method iterates through two steps. First, an optimal loca-
tion of ambulances and dispatching strategy is proposed 
by mathematical programming using an initial estimation 
of ambulances’ busy fraction. The model is a variant of 
the MEXCLP. Then the system with optimal infrastruc-
ture is assessed by computer simulation resulting in an 
updated busy fraction (equal for all ambulances) that 
inputs the mathematical model in the following iteration. 
The process is repeated until convergence is achieved. 
Convergence is measured by busy fraction and the loca-
tion vector, respectively. The most inspiring issue for our 
research is the conclusion of the paper where Lanzarone 
et  al. emphasise the necessity of using heterogeneous 
busy fractions especially in large case studies.

From the presented literature review one can make the 
following conclusions:

The research made so far has not answered the ques-
tion which optimization criterion is the best proxy for 
health outcomes and which model should be used for 

designing EMS systems in a mixed urban–rural territory. 
Most studies do not compare different models mutually, 
and if they do, their comparison is based on the pre-
scriptive model and suffers from the same simplifying 
assumptions that were used in the modelling phase. As 
Aringhieri et al. [6] emphasize, the best way of the assess-
ment of the validity of alternative approaches is computer 
simulation. The simulation models published in the lit-
erature oversimplify the real operation due to the lack of 
operational data or for the sake of shorter computer pro-
cessing time. Some common simplifications were men-
tioned with the references. However, location decisions 
are of strategic nature with long-term consequences and 
are associated with considerable investment costs. So, 
it is worth spending extra time on a careful assessment 
of the proposed infrastructural changes. In our opinion, 
the simulation model should be as realistic as possible. It 
should accurately capture all sub-processes of the service. 
The parameters of the model should be derived from real 
operation of the system. Of course, better model requires 
more computing time, but computing time does not mat-
ter in strategic planning, the outcome of the approach is 
more important. A similar conclusion is derived in [17].

The goal of our study is to identify the best suitable 
optimization criteria and corresponding mathematical 
programming model for designing an EMS infrastruc-
ture in a mixed urban–rural area. We do not consider 
investment costs associated with the redeployment of the 
stations. They are not extremely high because the ambu-
lance can be housed in a fabricated building. Rather we 
use such optimization criteria that reflect the main goal 
of the EMS system—to save as many people as possible. 
Since this output cannot be measured when designing the 
system, surrogate optimization criteria are formulated 
instead. We concentrate on the most common criteria—
response time and coverage. We aim at the validation of 
the modelling approaches with a detailed computer sim-
ulation model that precisely imitates the behaviour of all 
entities included in the system (patients, dispatchers, and 
ambulances).

Materials and methods
Description of the region of interest
In the Slovak Republic, the EMS system is centralized 
and managed by the National Dispatch Center for EMS. 
The system consists of: (1) regional dispatch centres; 
their main role is to receive and evaluate emergency calls 
and dispatch appropriate rescue units; and (2) rescue 
units (i.e. ambulances staffed by rescue teams) that aim 
at providing adequate medical care to patients. The pre-
sent organization of EMS in Slovakia was established by 
a series of laws in 2004. Thereafter, in 2010 the regula-
tions of the Ministry of Health defined the amount and 
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locations of ambulance base stations across the country. 
The intention for the distribution of the stations was to 
be able to reach 95% of patients within 15  min or less 
after the emergency call, regardless the patient’s condi-
tion or the character of the area (urban or rural). Accord-
ing to the regulations, 273 stations are deployed in 211 
towns and villages. Larger towns have multiple stations.

The regulations define just the town where a sta-
tion should be, not its precise geographical location. 
A provider who gets the license to operate a given sta-
tion chooses a suitable building, and so determines its 
address. The providers are public or private institutions. 
The jurisdictions of the providers are not restricted, 
they may operate across the whole country. The study 
in this paper is related to the positions of the stations 
in 2017, when EMS was provided by 12 agencies, Falck 
Záchranná, a.s. being the largest with 107 stations.

The Slovak system works in a Franco-German style, 
where the ambulance crew is qualified to provide on-site 
medical care. There are two types of ambulances. Most of 
them provide basic life support (BLS; Slovak abbreviation 
RZP) and have only a paramedic and a rescue driver on 
board. About one third of ambulances are well-equipped 
advanced life support units (ALS; Slovak abbreviation 
RLP). An ALS crew consists of an emergency physician, a 
paramedic and a driver. The staff is capable of performing 
additional life-saving procedures, e.g. inserting breathing 
tubes. The closest available ambulance to the emergency 
site is always dispatched regardless of its type. If it is a 
BLS ambulance and the incident is life-threatening, then 
the closest available ALS ambulance is dispatched con-
currently. The rationale is that any medical treatment is 
better than waiting without a professional intervention 
for the arrival of a doctor. In 2017, total of 521,164 trips 
were performed by one or the other type of ambulance 
[18].

In this paper we focus on the relocation of the current 
stations. We do not want to change the number of sta-
tions because adding stations would be unacceptable due 
to economic reasons and closing some stations would 
worsen the accessibility of urgent health care. Our aim 
is to relocate some existing stations to other potential 
locations hoping that the new distribution will shorten 
response times.

Modelling demand
The first task in optimization of the station locations is 
to define the demand zones where potential patients 
live. We decided to identify the demand zones with the 
territorial units used in the census for two reasons. The 
first one is that we face an emergency system whose 
infrastructure is spread over a large-scale area (specifi-
cally, the whole state territory) populated by millions of 

people (population of Slovakia in 2020 was 5,459,781). 
Inhabitants, i.e. potential patients, have to be aggregated 
in a limited number of units, so that the resulting loca-
tion model can be solved by common computational 
resources with limited memory and in an acceptable 
amount of processing time. The division of the country 
into smaller demand zones (e.g. by a rectangular grid) 
would result in an intractable location problem due to a 
huge volume of input data and an enormous number of 
variables. Thus our demand zones correspond to villages 
and towns. The two largest cities (the capital Bratislava 
with 440,948 inhabitants and Košice with 238,138 inhab-
itants) are administratively divided into boroughs (17 
boroughs in Bratislava and 22 boroughs in Košice) that 
are regarded as separate demand zones.

The second reason for regarding census units as 
demand zones is the estimation of the number of calls 
arising in every demand zone. The demand in particular 
zones can be estimated in several ways: from real data 
on EMS calls [19, 20], from the population in the given 
demand zone [21, 22], or from EMS interventions per 
1,000 population and population structure [23]. The first 
way is possible if EMS statistics for all demand zones 
under consideration are available. The second way is a 
rough estimation that need not correlate with a real num-
ber of patients, since the demand for EMS is influenced 
by the population’s age structure that varies in a large-
scale area, as we will demonstrate later on. The result is 
that the solution could not be optimal for real demand, 
and a so called surrogation error might arise [24]. Since 
historical data on ambulance interventions in every 
municipality were not available to us, we decided to pre-
dict EMS cases according to the third way, using a sample 
of patient data provided us by Falck Záchranná, a.s. and 
publicly available demographic data on population’s size 
and age structure. This way of demand-modelling results 
in a more realistic solution.

Falck Záchranná a.s. supplied us with depersonalized 
data on 149,474 patients served in the year 2015. There-
fore demographic data we used for demand estimation 
are also for 2015. The 2015 population data published 
by the Statistical Office of the Slovak Republic reveal 
that people aged 65 years and over constitute 14.45% of 
the population. However, the population’s age structure 
is not homogenous throughout the state. To get a bet-
ter idea about the age of people in different regions of 
Slovakia, we calculate an aging index for each territorial 
unit as the ratio of inhabitants who are at least 65 years 
old over inhabitants below the age of 65. The index var-
ies a lot among municipalities (min = 0.012, max = 1.333, 
median = 0.177, mean = 0.189, sd = 0.083). At the district 
level the differences are not so conspicuous (min = 0.096, 
max = 0.263, median = 0.171, mean = 0.171, sd = 0.030) 
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but their graphical presentation is more readable, and it 
illustrates the distribution of elderly people across the 
country (Fig. 1). The regions in the north with low index 
have a high birth rate. The highest index is in the central 
part of two largest cities Bratislava and Košice, where 
elderly people are in majority.

To calculate the share of elderly people in emergency 
dispatches, we use the Falck sample data. This dataset 
contains information about the time and date of each 
incident, the patient’s age, the initial medical diagnosis, 
and time stamps of the whole EMS trip. The data suggest 
that patients aged 65 years and over required 42.34% of 
the interventions.

Combining Falck data with publicly available statistics 
reported by the National Dispatch Center [25] and the 
population statistics published by the Statistical Office of 
the Slovak Republic we can calculate the rates of emer-
gency interventions for various age groups according to 
Eq. (1):

where ratek is the 1-year number of emergency cases 
per 1,000 persons in age group k, Falckk is the number 
of patients in age group k in the Falck dataset, Falcktotal 
is the total number of patients in the dataset, D is the 
total number of ambulance dispatches reported by the 
National Dispatch Center for the year 2015, and Popk is 
the number of inhabitants in age group k.

(1)ratek = 1000
D · Falckk

Popk · Falcktotal

Within each age group we can further distinguish 
two groups of patients according to their initial medical 
diagnoses. The most severe diagnoses are denoted as 
the First Hour Quintet (FHQ), and they include: chest 
pain, severe trauma, stroke, severe respiratory difficul-
ties, and cardiac arrest. Although the international defi-
nition of FHQ does not list unconsciousness, it is also a 
life-threatening condition. Therefore, after a consulta-
tion with emergency physicians, we decided to include 
it in FHQ. The FHQ conditions require immediate res-
cuing. If a call is recognized as a FHQ call, it gets the 
highest priority because every minute of delay in the 
response reduces patient’s chance of survival. The FHQ 
patients account for 26.51% of all patients in the Falck 
dataset.

The analysis of EMS data reveals that the overall rates 
as well as FHQ rates increase with age (Fig.  2). The 
Spearman correlation is ρ = 0.95 for overall rate and 
ρ = 0.96 for FHQ rate. The dependency curve has an 
exponential shape, with the acceleration from the age 
of 65 years.

For the modelling purposes we will distinguish three 
age categories: (i) children in the age of 0–14 who have 
the lowest emergency incident rates (see Fig.  2), (ii) 
teens and nonelderly adults aged 15–64, and (iii) elderly 
people aged 65 years and over who call EMS the most 
frequently. The emergency incident rates for these cat-
egories are shown in Table  1. Based on the age struc-
ture and the rates we can estimate the annual number 
of EMS patients in municipality j according to Eq. (2):

Fig. 1  Spatial distribution of elderly people (Slovakia, 2015)
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where ratek is the 1-year number of emergency cases per 
1,000 persons in age group k, and popkj is the number of 
inhabitants in age group k in municipality j. Similarly, the 
annual number of high-risk patients bFHQj  can be calcu-
lated using the rates of FHQ incidents.

Modelling candidate locations and travel times
Candidate locations where stations can be placed are all 
municipalities and other villages that do not have local 
government but are the seats of stations today. There 
are 2,934 candidate locations in Slovakia and 2,928 of 

(2)bj =

3
∑

k=1

ratekpopkj

them are municipalities. The towns, boroughs and vil-
lages are represented by the nodes on the road network 
that are closest to the centre of the municipality. This 
way the calculation of travel times can be based on real 
network distances. The digital road network was down-
loaded from the OpenStreetMap database [26], which is 
a freely available source of geographical data. The travel 
times are related to deterministic speed of vehicles that 
depends on the quality of the road, its location inside or 
outside built-up area, the type of the movement (whether 
the ambulance drives at standard, or all possible speed 
with lights and sirens), and traffic volume that is higher 
in morning rush hours (from 6:30 to 9 am), as well as in 
evening rush hours (from 3 to 6 pm). The average ambu-
lance speeds with regard to the road category and day 
time were derived from GPS records of ambulance trips 
by the Falck company (Tables 2 and 3) [21].

The bi‑criteria mathematical programming model 
with coverage and response time objectives
The first model we propose is a bi-criteria model to 
maximize the expected coverage of high-priority FHQ 
patients and to minimize response time to all potential 
patients. The optimization procedure consists of the fol-
lowing steps:

1.	 Specify the stations that can be relocated.
2.	 Estimate the workload of ambulances using com-

puter simulation.
3.	 Optimize the locations of the stations.
4.	 Specify geographic coordinates and assign ambu-

lance types to the relocated stations.
5.	 If the distribution of the stations did not change, then 

stop. Otherwise, go back to step 2.

In the following text we describe the individual steps in 
detail.

Fig. 2  Emergency incident rates increase with age (Slovakia, 2015)

Table 1  Emergency incident rates

Age group Rate

0–14 26.09

15–64 69.12

65 +  267.07

Table 2  Average speed in urban areas (kilometres per hour)

Road category Lights and sirens Standard speed

Speed Morning rush 
hours

Evening rush 
hours

Speed Morning rush 
hours

Evening 
rush 
hours

Motorway 100 92 90 90 86 86

Expressway 100 92 89 90 84 82

Important national road 65 60 56 46 42 40

National road 60 51 55 40 39 38

Local road 59 50 50 36 35 35

Residential road 8 6 4 8 7 7

Minor road 5 4 4 5 5 5
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To get a realistic solution, we do not allow all sta-
tions to change their current position. To decide which 
stations must remain where they are we apply two 
assumptions. Firstly, we suppose that ambulances in 
large towns are fully engaged. Therefore if the expected 
number of patients in a town exceeds the capacity of 
all ambulances currently stationed there, we do not 
allow them to change their positions. They are denoted 
as fixed and are not subject to the optimization. The 
demand volume in the corresponding municipalities is 
reduced by the total number of patients served by fixed 
stations. Secondly, we respect previous managerial 
decisions about multiple stations in a town where the 
estimated number of patients is less than the capacity 
of a station. There may be reasons that are not appar-
ent to us but verified in practical operation. In such a 
case the model leaves one of the stations in the place 
and seeks better locations of the other stations. The 
preserved stations are not fully engaged by local resi-
dents in this case. Therefore the mathematical model 
fixes their positions but allows other municipalities to 
be assigned to their service area. The side effect of this 
pre-processing step is that the number of decision vari-
ables gets smaller and the complexity of the model is 
reduced.

A demand point is covered if an ambulance reaches it 
in a time standard. The desired service standard was set 
with regard to critical patients who are in life-threatening 
conditions and every minute delay in response time dra-
matically worsens their outcomes. These patients should 
be reached within 8  min, which is a widely accepted 
standard in most European countries for critical patients 
[27]. Thus assuming one minute pre-trip delay, we set the 
travelling time limit Tmax to the value of 7 min. Using this 
time standard we define the neighbourhood of a munici-
pality. The neighbourhood consists of all candidate loca-
tions which are at most Tmax minutes far away.

To formalize the model, we introduce the following 
notation.

Sets and indices

I—set of candidate locations
I1—set of fixed candidate location, where the ambu-
lances are not fully engaged
J—set of demand points (all municipalities)
i ∈ I—candidate location
j ∈ J—demand point
k—index corresponding to the number of stations
Nj =

{

i ∈ I : tij ≤ Tmax
}

—set of candidate locations 
in the neighbourhood of demand point j

Parameters

p—number of stations to be sited
qj—probability of an ambulance in the neighbour-
hood of demand point j being unavailable
Tmax—the desired service standard; Tmax = 7

bj—the annual number of EMS patients in munici-
pality j reduced by the capacity of the fixed stations
b
FHQ
j —the annual number of FHQ patients in 

municipality j
tij —shortest travel time from candidate location i to 
demand point j
sti—the number of fixed stations at candidate loca-
tion i
nj =

∣

∣Nj

∣

∣—the number of candidate locations in the 
neighbourhood of demand point j.

Decision variables

xi =

{

1, if a station is located at site i

0, otherwise

yjk =

{

1, if demand point j is covered by at least k stations

0, otherwise

Table 3  Average speed in rural areas (kilometres per hour)

Road category Lights and sirens Standard speed

Speed Morning rush 
hours

Evening rush 
hours

Speed Morning rush 
hours

Evening 
rush 
hours

Motorway 110 100 102 100 100 100

Expressway 110 98 98 100 90 90

Important national road 101 88 89 86 67 65

National road 91 78 80 67 58 57

Local road 68 59 60 58 53 55

Minor road 5 5 5 5 5 5
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The following model is a mathematical programming 
formulation of the bi-criteria MEXCLP-pMP location 
model.

subject to

The objective function (3) maximizes the expected 
coverage of critical patients taking into account 
possible unavailability of ambulances. The term 
b
FHQ
j

(

1− qj
)

qk−1
j  represents the increase in expected 

coverage of municipality j brought about by kth sta-
tion. According to Eq.  (5), sitting multiple stations in 
the neighbourhood of municipality j enables multiple 
variables yjk take the value of one and account for the 
increase in coverage. The objective function (4) mini-
mizes the total travel time needed by the ambulances 
to reach all patients. The average travel time is equal 
to the total travel time divided by the number of all 
patients. Constraints (6) assign every municipality j to 
the service area of exactly one station i. Constraints (7) 

zij =

{

1, if demand point j is served by the station located at site i

0, otherwise

(3)Maximize f =
∑

j∈J

nj
∑

k=1

b
FHQ
j

(

1− qj
)

qk−1
j yjk

(4)Minimize g =
∑

i∈I

∑

j∈J

tijbjzij

(5)
∑

i∈Nj

(xi + sti) ≥

nj
∑

k=1

yjk for j ∈ J

(6)
∑

i∈I

zij = 1 for j ∈ J

(7)zij ≤ xi for i ∈ I − I1, j ∈ J

(8)zij ≤ 1 for i ∈ I1, j ∈ J

(9)
∑

i∈I

(xi + sti) = p

(10)xi ∈ {0, 1} for i ∈ I − I1, j ∈ J

(11)yjk ∈ {0, 1} for j ∈ J , k = 1, . . . , nj

(12)zij ∈ {0, 1} for i ∈ I , j ∈ J

ensure that if a municipality j is assigned to a node i, 
then a station will be opened at the node i. Constraints 
(8) allow a municipality j to be served from a fixed sta-
tion that is not fully engaged. Constraint (9) limits the 
number of located stations to their current amount. 
The obligatory constraints (10)–(12) specify the defini-
tion domains of the variables.

To solve the bi-criteria model, we used the lexico-
graphic method. The method assumes a ranking of 
the objective functions according to their importance 
but in contrast to scalarizing and goal programming 
approaches, it does not require additional parameters. 
It is an iterative method. In the first step, the problem is 
optimized with the most important objective. If it has the 
only optimal solution, then this solution is also the best 
solution to the original multiple criteria problem and the 
method finishes. Otherwise, the problem with the second 
most important objective function is solved subject to a 
condition that the first objective function value will not 
worsen. The process repeats until a single optimal solu-
tion is found. In our problem, we consider the expected 
coverage of high-priority patients to be more important 
than the average response time. First, the single crite-
rion model (3), (5), (9)–(11) is solved. The model maxi-
mizes the expected coverage of high-priority patients. 
Let us denote its optimal objective value as f ∗ . Then the 
weighted p-median problem (4), (6)–(12) with additional 
constraint (13) is solved.

Constraint (13) assures that the expected coverage of 
most critical patients will not worsen when minimising 
the average response time for all patients.

The structure of the MEXCLP model (3), (5), (9)–(11) 
makes it easy to solve by a general-purpose solver. The 
weighted p-median problem (4), (6)–(10), (12), (13) is an 
NP-hard problem with a huge amount of variables that 
cannot be solved exactly. Instead, an approximation algo-
rithm has to be used. We chose the kernel search method 
and adjusted it to our specific problem. Kernel search is 
a recently developed matheuristic that has been success-
fully applied for solving mixed integer linear problems 
(MILPs) with binary variables [28, 29]. In principle, it is 
a decomposition method that in sequence solves sub-
problems of the original MILP problem. A sub-problem 
consists of a subset of decision variables. The subset 
contains only promising variables (a kernel) and a small 

(13)
∑

j∈J

nj
∑

k=1

b
FHQ
j

(

1− qj
)

qk−1
j yjk ≥ f ∗
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subset of the remaining variables. The sub-problems are 
solved using a general-purpose MILP solver as a black-
box. Thus the method benefits from the efficiency of the 
state-of-the-art solvers.

The solution of the model defines the municipalities 
where the stations will be deployed (at most one station 
in a municipality). This output is merged with the pre-
processed fixed locations, resulting in multiple stations 
in more populated towns and boroughs. However, at this 
moment we do not have specific addresses, but multiple 
stations are regarded as located in the single (central) 
node of the municipality. The geographic positions of 
the stations inside a given municipality are determined 
afterwards, using a rule-of-thumb. We proceed from 
the existing locations. The addresses of fixed stations are 
preserved. A new station, if there is one, is placed at the 
municipality’s central node on the road network. If one 
or more stations out of multiple existing stations are 
removed, they are selected randomly.

The model does not distinguish the types of emergency 
units. However, their distribution, especially the loca-
tions of ALS ambulances affect the efficiency of the sys-
tem because an ALS ambulance is always dispatched to 
the high-priority call. We distribute ambulances among 
the optimized station locations a-posteriori in the fol-
lowing way: first, we retain the type of fixed stations that 
are disregarded in the optimization, and also the type of 
those stations whose positions were not changed by the 
optimization model. As regards the relocated stations, 
firstly we place ALS ambulances close to their current 
positions that are mainly in hospitals. The remaining sta-
tions are assigned by BLS ambulances.

The probability of an ambulance in the neighbourhood 
of a municipality being unavailable is an input parameter 
to the bi-criteria model. It is estimated using computer 
simulation of the EMS system. The probability is calcu-
lated as the average workload of potential ambulances 
in the neighbourhood. However, the workload depends 

on the distribution of the ambulances and therefore it 
is de facto the output of the model. Since we need it as 
input, it must be estimated a-priori. Initially, the work-
load is estimated using the current station location. If 
there is at least one ambulance currently operating in a 
candidate location, then the probability of this candidate 
is calculated as the average workload of currently operat-
ing ambulances. If the candidate does not have a station 
today, then its workload is set to the average workload 

of the stations that are in the 30 min neighbourhood of 
the candidate. The optimized distribution of the stations 
is submitted to simulation to obtain workload for the 
second run of the model. The process is repeated until 
convergence is achieved. Convergence is measured by 
ambulance distribution. When the locations in two suc-
cessive solutions are (almost) identical, then the process 
stops.

The hierarchical model minimizing response time
To cope with the two-tiered EMS system that works in Slo-
vakia and in many other countries, it is desirable to design 
an optimization model where different types of EMS units 
are taken into account. The EMS system with two vehicle 
types can be viewed as a hierarchical facility system. Using 
the classification by Şahin and Süral [30], we face a multi-
flow, nested, and non-coherent system. If the objective is 
to minimize the total distance (or travel time, respectively) 
from demand zones to the closest ALS and BLS stations, 
then the hierarchical pq-median problem is to be solved. 
We propose a modification of the pq-median model by 
Serra and ReVelle [31]. Serra and ReVelle focus on coherent 
systems where all demand areas assigned to a lower level 
facility must be assigned to one and the same upper level 
facility. However, this condition does not hold in the EMS 
system we deal with. Thus we have amended their model 
for a non-coherent system. Moreover, we allow an upper 
level facility to be located only at a site where a lower level 
facility is opened.

In addition to location variables xi that decide on loca-
tion of stations regardless of their type, we need another set 
of variables that model the decisions on locating only ALS 
stations:

Service areas of the ALS stations are modelled using the 
following allocation variables:

The lower level of the hierarchical pMP model consists 
of the objective function (4) and constraints (6)–(10) and 
(12). It decides on location of stations regardless of their 
type and creates their service areas. The upper level of the 
model decides which stations opened in the lower level will 
house ALS ambulances:

ui =

{

1, if an ALS station is located at site i

0, otherwise

vij =

{

1, if demand point j is served by the ALS station located at site i

0, otherwise
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subject to

The objective function (14) minimizes the total travel 
time needed by the ALS ambulances to reach all patients. 
Constraints (15) assign every municipality j to the ser-
vice area of exactly one ALS station i. Constraints (16) 
say that a municipality j can be assigned only to an open 
ALS station. Constraints (17) allow an ALS ambulance to 
be allocated only to a station opened at the lower level 
of hierarchy. Constraint (18) limits the number of located 
ALS stations to their current amount r. The remaining 
constraints (19) and (20) specify binary variables.

Both levels of the hierarchical model can be solve 
exactly using an efficient method by Janáček and Kvet 
[32]. The ALS ambulances will be allocated to those fixed 
or relocated stations, for which ui = 1 in the optimal solu-
tion. The remaining stations will house a BLS ambulance.

Computer simulation model
A detailed computer simulation model was developed 
[21]. Its purpose in this study is twofold: (i) to estimate 
the workload of ambulances as the input for the math-
ematical programming model, and (ii) to evaluate the 
performance of the EMS system with the infrastructure 
proposed by the model. The computer simulation mod-
els the reality on a less abstract level than a mathematical 
programming model does, therefore it provides us with 
better idea of the performance of the projected system. 
It calculates such quantitative indicators that cannot be 
derived from a mathematical programming model itself.

We implemented a self-driven, agent-based simulation 
model using AnyLogic simulation software. The model is 
developed on the Java simulation core. We implemented 
a library of classes and functions in Java for the simula-
tion support.

(14)Minimize
∑

i∈I

∑

j∈J

tijbjvij

(15)
∑

i∈I

vij = 1 for j ∈ J

(16)vij ≤ ui for i ∈ I , j ∈ J

(17)ui ≤ sti + xi for i ∈ I

(18)
∑

i∈I

ui = r

(19)ui ∈ {0, 1} for i ∈ I

(20)vij ∈ {0, 1} for i ∈ I , j ∈ J

The model was calibrated using the data sources as 
follow:

1.	 Publicly available statistics published by the National 
Dispatch Center;

2.	 The positions of the stations provided by the Minis-
try of Health;

3.	 A sample of patient data provided by Falck 
Záchranná a.s.;

4.	 LandScan data on population distribution;
5.	 OpenStreetMap data on the road network;
6.	 Historical data on the average ambulance speed with 

regard to the road category and day time provided by 
Falck Záchranná a.s.

The dataset obtained from Falck Záchranná a.s. 
allows us to extract important knowledge. First of all, 
the time distribution of calls can be revealed. With 
regard to the seasons and weekdays, we did not observe 
statistically significant differences in the number of 
calls. However, the call rates change significantly dur-
ing a day. We can observe two peaks, one between 9 
and 11 am and the other one between 5 and 9 pm. So 
the arrival of calls is modelled as a non-homogeneous 
Poisson process with the arrival rate varying depending 
on the time of day.

The spatial distribution of patients is modelled using 
the LandScan database [33]. LandScan data represent 
an ambient population (average presence of people over 
24  h). A grid cell corresponds to an area of 30′′ × 30′′ 
(arc-seconds) in the WGS84 geographical coordinate sys-
tem. The territory of the Slovak Republic is covered by 
70,324 grid elements. The call that has been generated by 
the Poisson process is assigned to a grid cell with a prob-
ability that is proportional to its population. Inside the 
grid cell, the call is assigned randomly to a node on the 
road network.

The model captures all important processes presented 
in the management of emergency patients including pre-
cise modelling of the distribution of processing times.

The main features are the following:

•	 As to demand modelling, we take into account three 
important characteristics: the arrival distribution, the 
geographical distribution and the priority of calls.

•	 The model of the service time comprises all phases of 
the ambulance trip—the journey to a patient, treat-
ment of the patient at the site of the incident, trans-
portation to a hospital, drop-off time in the hospital, 
and the journey back to the base station.

•	 The movement of an ambulance respects the under-
lying road network.
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•	 The on-scene time is modelled using a probability 
distribution that depends on the patient’s diagnosis 
and crew’s qualification.

•	 The probability of the transportation of a patient to 
the hospital depends on the type of the intervening 
crew. The real data show that 77% of the patients 
treated by a paramedic team and 51% of the patients 
treated by a physician are transported to a hospital. If 
a patient has to be transported to a hospital, then the 
closest hospital complying with their condition and 
age is chosen (for example, there are hospitals spe-
cialized in cardiovascular diseases or children’s hos-
pitals).

•	 In the hospital, the rescue team hand over the patient 
to the hospital staff, then they may spend some 
time cleaning and resupplying the vehicle. The time 
needed to perform these tasks is called drop-off time. 
The probability distribution of the drop-off time is 
modelled separately for every hospital. In most cases, 
the Erlang distribution fits well. The average drop-off 
time ranges from 7.1 to 36.2 min.

•	 After leaving the hospital, the ambulance is available 
to respond to another call. It means that the ambu-
lance can be dispatched to another call on its way 
home. The logic of ambulance dispatching approxi-
mates very well the rules adopted in practice. For 
example, an ambulance can be dispatched to another 
rescue while it is returning to its home station. In 
the simulation model it means that it is possible to 
change the destination of the ambulance while it is 
moving along the road.

•	 Secondary transports are modelled as well, since they 
reduce the availability of the ambulances. A second-
ary transport is a planned activity where an ambu-
lance does not respond to an emergency call but 
transports a patient or medical material between two 
hospitals.

These features represent a significant improvement in 
comparison to other simulation models reported in the 
literature.

The model was verified using the following techniques 
recommended also in [12]:

•	 Animation to graphically visualize the movements of 
vehicles through the road network to check whether 
the rescue process and the chosen routes are as 
expected. During the rescue process, the colour of 
the vehicle changes to reflect its current state (move-
ment to a patient, stay at the scene, transport of the 
patient to a hospital, return back to the base station).

•	 Face validity by consulting EMS specialists who eval-
uated the model’s conception and output behaviour 
compared to the real-world system.

•	 Traces to track the movement of vehicles and occur-
rence of every event in the model (call arrival, vehicle 
assignment, destination hospital selection etc.) so as 
to validate the correctness of the model logic.

•	 Sensitivity analysis by performing a comprehensive 
set of simulation experiments with different values 
of input parameters (e.g. arrival rate or hospitals with 
emergency departments) to determine if the model’s 
output is as expected.

The output of the simulation model includes the fol-
lowing EMS performance indicators:

1.	 Average response time, since it has been monitored 
by the National Dispatch Center;

2.	 Percentage of calls responded to within 15  min, 
because a 15-min response time is regarded as stand-
ard in Slovakia;

3.	 Number of municipalities with the average response 
time longer than 15 min;

4.	 Average response time for the high-priority (FHQ) 
calls and the percentage of these calls responded to 
within 8 min;

5.	 Average ambulance workload and its variation.

Results
The mathematical models were solved using the solver 
Gurobi Optimizer 8.1.1. The exact method [32] for the 
p-median problem is very efficient. The computing time 
was 580  s for the weighted p-median model and 607  s 
for the hierarchical pq-median model, respectively. The 
kernel search method for the MEXCLP-pMP model was 
implemented in Java language. A single run of the model 
for one workload setting took on average about 6  min. 
Altogether 4 iterations of the model were needed until 
convergence in the station distribution was achieved.

The simulation model, described above, was used to 
evaluate the current locations of emergency stations, as 
well as the optimized locations proposed by mathemati-
cal models.

The results of the simulation experiments are sum-
marised in Table  4. The simulation experiment for one 
set of station locations consisted of 10 replications. One 
replication simulated 91  days of EMS performance. For 
response times, the mean values from 10 replications 
and 95% confidence intervals are reported. For coverage 
indicators, the mean values are given. The best values of 
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the indicators are displayed in bold. Although the ambu-
lance trip data and the population data are related to the 
year 2015, we validation of the model was performed in 
2017 using the latest positions of the stations (5 stations 
shifted in the meantime). That is why we refer June 2017 
as the current date.

The computer simulation of the current (2017) system 
revealed that the system is short of the target to reach 
95% of patients within 15  min. The real accessibility 
within this time limit is only 75.26%. 868 municipalities 
(almost 30%) have the average response time longer than 
15 min (Fig. 3). The Slovak system also exhibits poor per-
formance regarding the 8-min response-time standard 
for the high-priority calls. Only 38.84% of critical patients 

are reached within 8 min, which is far less than the EU 
average of 66.9% [27]. The average ambulance workload 
is 31.98%, which corresponds to other EMS systems 
worldwide where ambulances are typically busy at least 
30% of the time [19].

From the rest of the table we can observe that the reor-
ganization of the system has a positive effect on the per-
formance. Both MEXCLP-pMP and pMP models relocate 
approximately 78% of the stations (150 and 151, respec-
tively). Regardless of the ambulance allocation, the math-
ematical programming models reduce significantly the 
overall average response time, as well as response time 
for the most critical patients (their confidence intervals 
do not overlap with the confidence intervals for status 

Table 4  Performance indicators for the current and optimized locations

Indicator Current locations 
(June 2017)

MEXCLP-pMP pMP Hierarchical pMP

Response time for all patients (min) 11.52
(11.50; 11.54)

10.75
(10.73; 10.77)

10.56
(10.55; 10.57)

10.55
(10.52; 10.58)

% of calls responded to within 15 min 75.26 79.97 80.28 80.33
Number of municipalities with the average response time 

longer than 15 min
868 676 600 601

Response time for high-priority patients (min) 11.37
(11.34; 11.40)

10.62
(10.59; 10.65)

10.48
(10.45; 10.52)

10.44
(10.40; 10.49)

% of high-priority calls responded to within 8 min 38.84 43.75 44.23 44.36
Average ambulance workload (%) 31.98 31.89 31.84 31.78
Coefficient of variation of ambulance workload 0.29 0.24 0.24 0.24

Fig. 3  Municipalities with the average response time longer than 15 min, current station location
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quo). In parallel with reducing the response time, the 
accessibility within a given time threshold is increasing.

As regards the two policies of allocation of ALS ambu-
lances, the hierarchical model that incorporates the 
decisions on particular ambulance types achieves better 
results than the models where the type of the stations is 
defined in a post-optimization process. The most impor-
tant improvement is in the accessibility of the critical 
patients. In comparison to the current state, the average 
response time of them is reduced by 56  s. It may seem 
that one minute is not too much, but one has to realize 
that for a person who is in a life-threatening condition, 
such as a cardiac arrest, the line between life and death 
is very thin, and every second matters. Cardiac arrest 
and unconsciousness are the most frequent diagnoses of 
those patients who die before or during the rescue opera-
tion. From the Falck sample data on these patients we can 
derive the survival probability as a function of response 
time t. The survival probability function is as follows [21]:

From the sample data and the total number of patients 
reported by the National Dispatch Center we can esti-
mate that in 2019 there were 26,003 most-critical patients 
in Slovakia. The reduction of the average response time 
by 56  s means that the survival probability increases by 
0.61%. As a result, by 142 more patients could be saved. 
We think this is a significant improvement since every 
life matters.

(21)s(t) =
1

1+ exp (−2.04492+ 0.045427t)

Regardless of the model and ALS allocation policy, 
relocating the stations improves the accessibility mainly 
in the densely populated western part of the country. 
The most successful hierarchical pMP model reduces 
the overall number of municipalities with the average 
response time greater than 15 min by 267 (31%) (Fig. 4). 
The model also generates the smallest ambulance work-
load and thus increases the probability that the closest 
ambulance will be available when needed. At the same 
time, ambulance workload is distributed more evenly 
(coefficient of variation is less than at present).

Discussion
Our study is the first to compare different objectives 
for location of EMS stations in a large urban–rural 
area. This way it fills the gap in ambulance location lit-
erature since the research so far has been concentrating 
on urban rather than rural or mixed areas [34]. Model-
ling the EMS system for a heterogeneous urban–rural 
area is more challenging than it is for a homogeneous 
region. There may be different time standards for densely 
and rarely populated areas, there are big differences in 
ambulance workload, different road network quality, 
traffic volume, and the distance to the nearest hospital. 
Therefore the results of urban-oriented studies cannot be 
directly applied to a region with diverse topography and 
demography.

We concentrate on two objectives that are supposed 
to mostly influence the outcomes of emergency medi-
cal services, particularly the maximum coverage and the 

Fig. 4  Municipalities with the average response time longer than 15 min after optimization by the hierarchical pMP model
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minimum average response time. Previous studies [15, 
35, 36] suggested that the maximum coverage objective 
itself does not perform well. The response time related 
objectives such as the average response time [35, 36] 
and maximum survivability [15], result in a better sys-
tem performance than the maximum coverage objective. 
Although these outcomes were derived for metropolitan 
areas, we considered them to be a good starting point 
for our research. Another viewpoint is that the cover-
age ensures equity among the patients, at least to some 
extent. That is why we have developed a multi-criteria 
model that combines the maximum coverage of high-risk 
patients with the minimum average response time to all 
patients. This model resolves the deployment of ambu-
lance stations. Ambulances are assigned to the open sta-
tions under a heuristic rule. The other model we have 
proposed is a hierarchical model that minimizes the aver-
age response time to all patients with both types of emer-
gency units. Finally, the simulation study has revealed 
that the model with the coverage objective improves the 
existing system but it is outperformed by models that rely 
on the response time only. Our findings are in compli-
ance with Felder end Brinkmann [37] who give theoreti-
cal evidence that an equal access approach to the EMS 
provision does not maximize the number of lives saved.

A reason for poorer performance of the coverage objec-
tive may be in the imprecise estimation of busy fractions 
of ambulances. Busy fractions of the candidate locations 
that do not have a station today are set at the average 
value of the stations in the neighbourhood. It might be a 
value too optimistic for many candidate locations. Cover-
ing models in general do not differentiate different loca-
tions within the same response time threshold. Therefore, 
what may happen is that the model decides to place some 
stations in small villages near large towns. From the point 
of view of the covering objective, all patients in the town 
are considered perfectly satisfied with the service. How-
ever, the real workload of ambulances would be enor-
mous. For example, let the village, whose demand is 1, be 
5 min away from the town with the call volume of 100. 
If the ambulance was located in the village, travelling to 
the scene would add 500 min to its workload compared 
to 5 min, if the station was located in the town. So we do 
not recommend using coverage criteria for a large-scale 
region.

In our previous studies we experimented with several 
other models using response time objectives. The maxi-
mum response time was examined in [21]. The capaci-
tated version of the p-median problem was investigated 
in [29]. Here the average response time was minimized, 
provided the number of calls an ambulance could serve 
was restricted. None of these models outperformed the 
hierarchical pq-median model.

The important part of the overall emergency call-to-
care interval is the patient access time interval (PATI) 
measured from EMS vehicle arrival at the incident site 
to the time EMS personnel contact the patient. This time 
interval accounts for 10 to 44% of the overall emergency 
call-to-care interval [38]. Although reducing PATI may 
improve patient outcomes, it is not affected by the loca-
tions of ambulance base stations. Rather community- 
specific strategies are to be developed to overcome the 
patient-access barriers. In our study, PATI is modelled in 
computer simulation as a part of the on-scene time.

The results of our study can be applied in all countries 
with a tiered EMS system that utilizes different types 
of emergency units, dispatching ALS units to the most 
severe events and using BLS units for non-urgent and 
scheduled transport of stable patients. Tiered systems 
apply the Franco-German model of EMS delivery where 
the crew is qualified to treat patients in their homes or at 
the scene. Such systems are common in many European 
countries such as Germany, France, Greece, Austria, 
Czech Republic, Hungary, and Poland [39–41].

If the results of our study were to be used to reorgan-
ize an existing system, we recommend to assess the cur-
rent system thoroughly. None of the EMS systems in the 
countries mentioned above is a greenfield project. There 
may be a lot of decisions and measurements that already 
work effectively, and the reorganization should respect 
them. Here we have in mind especially the decisions on 
which stations should remain in their current positions. 
Another reason for this pre-processing step is that the 
p-median model does not allow multiple stations to be 
opened at one site. This is the main drawback of the pro-
posed approach.

Another limitation of our approach is the absence of 
investment costs connected with the relocation of the sta-
tions. A limited budget is always to be taken into account 
in real life. Together with the resistance of professionals 
and public to changes, it may lead to a limited number of 
relocated stations. Nevertheless, our models are able to 
cope with such a restriction via p and r parameters.

Furthermore, we would like to emphasize the neces-
sity of demands being modelled carefully. The changes we 
propose are based on the current demand distribution. 
Even though the impact of the age structure has been 
considered, we do encourage a serious analysis of the 
demography and morbidity trends in the given region to 
be conducted.

Finally, we recommend the usage of computer simula-
tion as a validation tool. The simulation model itself is 
not able to suggest the best station locations, however, it 
is useful in evaluating various scenarios that include not 
only the number and distribution of the EMS stations but 
also such factors as the types of ambulances, destination 
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hospitals, or dispatching policies. To get a credible out-
put, the model must capture all processes on the emer-
gency care pathway including reliable distributions of 
processing times. In the future, we will elaborate demo-
graphic prognoses for particular regions of the country 
and incorporate them into the model. Then the simula-
tion will allow us to predict the future performance of the 
EMS system, and to identify the resources necessary for 
ensuring a satisfactory quality of emergency care.

Conclusions
In this paper we present the utilization of different opera-
tions research techniques to support the decision mak-
ing process regarding placing the EMS stations over a 
large urban–rural area. A bi-criteria mathematical pro-
gramming model is proposed. The criteria include the 
coverage of high-priority patients and response time in 
relation to all patients. The model is compared to the 
p-median model with a single response time objective 
and to a hierarchical pq-median model that involves two 
types of emergency units. The following conclusions can 
be derived from our empirical study:

1.	 All mathematical models make EMS performance 
better than the current status is by relocating some 
stations.

2.	 The minimum average response time objective pro-
duces better results than the maximum coverage 
objective.
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