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Abstract

and meaningful results.

Background: The spatial scan statistic is a useful tool for cluster detection analysis in geographical disease surveil-
lance. The method requires users to specify the maximum scanning window size or the maximum reported cluster
size (MRCS), which is often set to 50% of the total population. It is important to optimize the maximum reported

cluster size, keeping the maximum scanning window size at as large as 50% of the total population, to obtain valid

Results: We developed a measure, a Gini coefficient, to optimize the maximum reported cluster size for the expo-
nential-based spatial scan statistic. The simulation study showed that the proposed method mostly selected the
optimal MRCS, similar to the true cluster size. The detection accuracy was higher for the best chosen MRCS than at
the default setting. The application of the method to the Korea Community Health Survey data supported that the
proposed method can optimize the MRCS in spatial cluster detection analysis for survival data.

Conclusions: Using the Gini coefficient in the exponential-based spatial scan statistic can be very helpful for report-
ing more refined and informative clusters for survival data.

Keywords: Spatial cluster detection, Exponential model, Gini coefficient, SaTScan

Background

The spatial scan statistic is a useful and widely used tool
for detecting spatial or space—time clusters in disease
surveillance. The method has been developed for differ-
ent types of data such as count [1], ordinal [2, 3], survival
[4], continuous [5-7], and multinomial [8]. The software
SaTScan"" [9], available for free, enhances the ease of
access to this method for researchers.

The spatial scan statistic is formulated based on the
likelihood ratio test statistic. A large number of scanning
windows of various sizes across all locations are first con-
structed on the entire study area. Each scanning window
is a candidate for the most likely cluster. In SaTScan'",
circular or elliptical scanning windows are considered.

*Correspondence: ijung@yuhs.ac

Division of Biostatistics, Department of Biomedical Systems Informatics,
Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu,
Seoul 03722, Korea

B BMC

The likelihood ratio test statistic is calculated for each
window to compare its inside and outside. The scan-
ning window with the maximum value of the likelihood
ratio test statistic is defined as the most likely cluster.
Secondary clusters with high test statistic values are also
reported.

Cluster detection results can be sensitive to the maxi-
mum scanning window size (MSWS), as studied by
Riberiro and Costa [10]. In SaTScan"", users can specify
the MSWS, which is set to 50% of the total population
by default. A high MSWS and a high maximum reported
cluster size (MRCS) could result in an excessively large
cluster. Some researchers try different MSWS values
to obtain seemingly good results without knowing the
MRCS. Repeatedly performing spatial cluster detection
analyses using different values of MSWS leads to a mul-
tiple testing problem, as pointed out by Han et al. [11].
We can consider different values of MRCS with a fixed
MSWS to avoid this problem. Still, we need to choose
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the optimal value of the MRCS. The clusters reported by
subjectively chosen MRCS may be different from the true
clusters.

Han et al. [11] proposed a criterion measure to opti-
mize the MRCS for the Poisson-based spatial scan sta-
tistic. They defined the Gini coefficient to represent the
degree of heterogeneity of disease clusters for count data.
Their simulation study showed that the Gini coefficient
can be useful for selecting the best MRCS to obtain a
refined collection of clusters. Interestingly, by reporting
an optimized and refined collection of clusters rather
than a single large cluster, the Gini coefficient allows us
to better identify irregularly shaped ones [12].

As the formulation of test statistics of the spatial scan
statistic is different for different models, the Gini coef-
ficient should be clearly and distinctly defined for each
model and thoroughly evaluated. The Gini coefficients for
the ordinal- and normal-based spatial scan statistics were
proposed by Kim and Jung [13] and by Yoo and Jung [14],
respectively. In this paper, we defined the Gini coefficient
for the exponential-based spatial scan statistic, which is
used for survival data. Through an extensive simulation
study under various scenarios, we showed that the pro-
posed method is very useful for optimizing the MRCS
for the exponential-based spatial scan statistic. We illus-
trated the method using Community Health Survey data
collected by the Korea Centers for Disease Control and
Prevention.

Methods

Poisson model and the Gini coefficient

When we have count data such as the number of certain
disease occurrences according to an underlying popu-
lation at risk in a study region, we can use the Poisson-
based spatial scan statistic [1]. We are often interested in
identifying areas with high disease incidence rates. The
null and alternative hypotheses are written as

Hy:p=gqforallze Zvs.H, :p > qforsomez e Z

where p and g are the intensities of the outcome variable
inside and outside the scanning window z, respectively,
and Z denotes the collection of all scanning windows.
The likelihood ratio test statistic given window z is
expressed as

LR(z) = (%)C (ACI%ZZZ)C_CZ

ifc,/n, > (C —c;)/(N — ny), and LR(z) = 1 otherwise.
In the above equation, c;and n, denote the observed
number of cases and population within window z. C and
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N denote the total number of cases and population in the
whole study area, respectively.

The scanning window that maximizes the value of
LR(z) is the most likely cluster. Statistical inference for
the most likely cluster can be performed using Monte
Carlo hypothesis testing. In addition, secondary clusters
with high values of the likelihood ratio test statistic are
often of interest. The p-values of the secondary clusters
are typically obtained in the same manner as the null
hypothesis is rejected on own strength.

When reporting the most likely and secondary clus-
ters, the Gini coefficient can be used to find a more
refined collection of non-overlapping clusters. In eco-
nomics, the Gini coefficient was developed to indicate
the degree of heterogeneity of wealth distribution [15].
As a summary measure of the Lorenz curve, the larger
the Gini coefficient, the higher the heterogeneity in
wealth. Han et al. [11] adopted the Gini coefficient in the
spatial scan statistic for count data to measure the degree
of heterogeneity in the spatial distribution of disease
cases by defining the x-axis of the Lorenz curve as the
cumulative proportion of the number of disease cases
and the y-axis as the cumulative proportion of the popu-
lation. Its value is calculated as twice the area between
the Lorenz curve and the 45° line, which indicates that
the number of cases is proportional to the population of
each region. When there is only one significant cluster,
the Lorenz curve is constructed as a line graph connect-
ing the three points (0,0), (x1,y1), and (1,1), where x; and
y1 are the proportions of observed cases and population
(expected cases) in the cluster. As more cases are con-
centrated in the cluster than expected, x; increases and
the Lorenz curve moves farther away from the reference
line. The Gini coefficient also increases. When we have K
multiple clusters, the Lorenz curve connects K points
between (0,0) and (1,1). The coordinates of each cluster
(xk,yx) are defined as x; = (%) Z]]le ¢ and
Vi = (%) le;l nj where ¢; and »; are the number of
cases and population in the j-th cluster. The Gini coeffi-
cient can be calculated as Zf:ll YVrxk—1 — Yk—1%k) with
x0 =0 =0 and xx+1 = yx+1 = 1. The Gini coefficient
values range from O to 1. We select the best collection of
clusters to report the highest Gini coefficient value from
among several competing sets of clusters. Han et al. [11]
included more detailed information. The Gini coefficient
has been implemented in SaTScan"" for the Poisson and
Bernoulli models.

Spatial scan statistic for survival data

Different spatial scan statistics for survival data have
been proposed based on different models, includ-
ing Weibull and generalized life distributions [16, 17].
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Huang et al. [4] proposed a spatial scan statistic for sur-
vival data based on an exponential model. We focused
on the exponential model. The exponential-based spa-
tial scan statistic has been used to examine geographic
disparities in survival in cancer patients [18—20].
Suppose we have survival data for I subjects in a
study area, such as time to death for cancer patients.
Let T; and L; be the survival time and fixed censoring
time for the i th subject, respectively. We assume that
T; is exponentially distyibuted with a probability density
function f(T;) = %e_#, 0 > 0. Parameter 6 represents
mean survival time. The observed time #; = min (T}, L;).
Let §;be the censoring indicator, that is, §; = 1if T; < L;
and §; =0if T; > L; To identify clusters of short sur-
vival, the null and alternative hypotheses are written as:

Hy : 0y = Oyt forall z € Z vs. H, 0i < oyt for some z € Z

where i, denotes the mean survival time for subjects
within zone z, and 6,y is the mean survival time for sub-
jects outside zone z. The exponential-based spatial scan
statistic is defined as

( fin )rin ( Fout )rout
max| << —
_ oz Ziez ti Ziéz ti

()

where rin =) ,, 8 and rout = Zi¢z 8; (the number of
non-censored subjects inside and outside zone z, respec-
tively). The total number of non-censored subjects in
the entire study area G is denoted by R = rin + rout.
When there are no censored observations, ri, and rout
are replaced by the total number of subjects inside and
outside zone z, nin and Moy, respectively, with R by
N = nj, + noyt in the above test statistic.

When searching for clusters of short survival time using
SaTScan", users can specify the maximum size for z. The
default setting is 50% of the total population. When the
size of the most likely cluster is very large, one may want
to know if smaller clusters that are statistically significant
are contained in the large cluster. We can try different val-
ues for the maximum reported cluster size (MRCS), not
the maximum scanning window size (MSWS). The MRCS
is also set to 50% of the total population by default. It is
not clear how to select the best MRCS for the exponential
model. In the next section, we propose a Gini coefficient
to optimize the MRCS for the exponential model.

Gini coefficient for exponential model

To measure the disproportion of survival in each area,
the Lorenz curve can be defined using the number of
subjects and the sum of survival times. We define the
x-axis as the cumulative proportion of the number of
non-censored subjects and the y-axis as the cumulative
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proportion of the sum of observed times. If there is
only one significant cluster z*, the Lorenz curve is con-
structed in the same way as that of the Poisson model.
Specifically, the x- and y-coordinates of point P for the
cluster are defined as:

X1

_ 2iezdi (_ Tin )
ZieG 8i R

and

yi = Ziez* Li
ZieG L

Considering the maximum likelihood estimates for
the parameter 6 of the exponential distribution under
the null and alternative hypotheses, that is,
o = R/ icqti and 0y = Yin/ Y e, bi» the cumulative
proportion of the sum of the observed times would be
proportional to the cumulative proportion of non-cen-
sored subjects in each region under the null hypothesis
of no clusters. If there is a significant cluster z* of short
survival, the proportion of the sum of observed times
in the cluster to that in the whole study region G would
be less than the proportion of the number of subjects.
As the sum of the observed times in the cluster z*
decreases, the y-coordinate y; decreases and the Lorenz
curve moves farther away from the reference line. Then,
the value of the Gini coefficient, which is twice the area
between the Lorenz curve and the reference line,
increases. When there are K clusters z, ..., zg
(ordered by their statistical significance), the coordi-
nates of each «cluster (xg,y;) are defined as
X = ZiE{U,ilzf} 8i/R and yx = Zie{ullgzlzf} ti/ Yiec bi-
The Lorenz curve connects K points of (xx, yx), and the
Gini coefficient is calculated in the same way as

i(=+11 ViXk—1 — Yk—1%k) with x =y =0 and
xx+1 = yx+1 = 1. Different values for the MRCS pro-
duces different sets of clusters with different values of
the Gini coefficient. We can select the optimal collec-
tion of clusters with the highest dissimilarity in survival
based on the Gini coefficient.

Simulation study

We conducted a simulation study to evaluate the perfor-
mance of the Gini coefficient in the exponential model.
We used six cluster models in Seoul and Gyeonggi Prov-
ince in South Korea as the whole study region. True clus-
ters of different shapes and sizes are assumed in the study
region, consisting of 67 districts, as shown in Fig. 1. Since
circular and elliptical windows are available in SaTScan",
we mainly considered these two shapes. We also included
an irregularly shaped cluster to examine whether the
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proposed method could possibly work better in identi-
fying irregular clusters than the default setting. Cluster
models A and B assumed a circular true cluster of 10% (6
districts) and 30% (20 districts) of the entire study region,
respectively. Cluster model C included two adjacent cir-
cular clusters, each of which accounts for 10% (6 dis-
tricts). Models D and E consisted of elliptical clusters of
10% (6 districts) and 30% (20 districts). Model F included
an irregularly shaped cluster of 20% (13 districts). For
each model, we considered 12 scenarios for the combina-
tion of mean survival time and censoring rate. We var-
ied the mean survival time for the true clusters as 2, 5,
and 7, compared to 10 for areas outside the clusters. We
adopted the parameter setting for the mean survival time
from the study by Huang et al. [4]. The censoring rates
were set to 10%, 30%, 50%, and 70% to examine how the
performance of the proposed method can be affected by
the censoring rate.

We generated 1,000 subjects and randomly assigned
them to one of the 67 districts in the study region under
each scenario. If a subject was in the districts of the true
cluster, the survival time was generated from an expo-
nential distribution with a mean of 2, 5, and 7. Otherwise,
the survival time was generated from an exponential
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distribution with a mean of 10. We censored the survival
time for randomly selected subjects out of the 1,000 sub-
jects at a chosen censoring rate. We then searched for
clusters with short survival using circular and elliptical
scanning windows, with 15 MRCS values of 3%, 4%, 5%,
6%, 8%, 10%, 12%, 15%, 20%, 25%, 30%, 35%, 40%, 45%,
and 50% in the SaTScan"" software. Using these num-
bers can be thought of as a grid search. These candidate
MRCS values are used for the Poisson and Bernoulli
models in SaTScan'" and were used for consistency with
the exponential model. We selected these numbers to be
consistent for the exponential model as used in the Pois-
son and Bernoulli models in SaTScan"". The MSW'S was
fixed at 50%. The Gini coefficient was calculated for each
MRCS value. We selected the optimal MRCS with the
highest Gini coefficient. The reported clusters were then
compared with the true clusters.

We repeated the simulation 1,000 times for each sce-
nario. We counted the number of times the Gini coeffi-
cient selected each of the 15 MRCS values as the optimal.
The performance of the proposed method was summa-
rized using the sensitivity and positive predicted value
(PPV). In the context of spatial cluster detection, sensitiv-
ity is the proportion of districts correctly detected among

Fig. 1 Cluster models used in the simulation. A one circular cluster of 10%, B one circular cluster of 30%, C two circular clusters of 10% each, D one
elliptical cluster of 10%, E one elliptical cluster of 30%, F one irregular cluster of 20%
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the districts in the true cluster, and PPV is the proportion
of districts correctly detected among the districts in the
detected cluster. Higher values of these measures indicate
more accurate detection. Specifically, the sensitivity and
PPV were estimated from 1,000 datasets as

. 1 5 number of districts correctly detected
Sensitivity = — Z .
S = number of districts in the true cluster

PPV — 1 ES: number of districts correctly detected
S number of detected districts

S=
where S is the number of rejected datasets. We also cal-
culated the accuracy measures under the default MRCS
setting of 50% in SaTScan"".

Korea community health survey data

To illustrate the proposed method, we used data from
the Korea Community Health Survey (KCHS) conducted
by the Korea Centers for Disease Control and Preven-
tion [21]. This community-based cross-sectional survey
has been conducted at 253 community health centres
annually since 2008. The survey questionnaire includes
topics related to health behaviour and prevention. We
used the age of first drinking for males as the survival
time in the 2017 survey data. If a person had never had
a drink, his survival time was censored at the age of the
survey. The location information of each individual was
available at the district level because each district in
Korea has approximately one community health centre.
In Seoul and Gyeonggi province, we searched for areas
with low mean age of first drinking (i.e. spatial clusters of
short survival time) using the exponential-based spatial
scan statistic with both circular and elliptical scanning
windows. The reported clusters selected optimally by
the proposed method were compared with those at the

™

default setting in SaTScan .

Results

Simulation study results

Here, we have presented only a subset of all the sim-
ulation results. The other results are included in
Additional file 1. Tables 1 and 2 show that the Gini
coefficient most often selected the optimal MRCS as
the same as the size of the true cluster using circular
or elliptical windows when the true cluster was cir-
cular with a mean survival time of 5, regardless of the
censoring rate. The detection accuracy was very high
for the most frequently chosen MRCS. Both the sen-
sitivity and PPV were above 0.95, which is higher than
those at the default setting in most cases. The differ-
ence in the detection accuracy between the most often
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chosen MRCS and the default setting was larger when
the true cluster was smaller (10%). The difference in
PPV was even more pronounced. When the true clus-
ter was medium sized (30%), the PPV was higher in
every case at the most often chosen MRCS, while the
sensitivity was slightly higher or similar. These results
indicate that the spatial scan statistic without optimiz-
ing the MRCS tends to report a larger cluster than the
true cluster, especially when the true cluster is small.
A lower PPV implies that the detected cluster is larger
because the number of detected clusters is in the
denominator when calculating the PPV. We also sum-
marized the overall detection accuracy when using the
Gini coefficient over all the chosen MRCSs. Still, the
sensitivity and PPV were higher than or similar to those
at the default setting.

In the case of two true clusters, which are close to
each other, the proposed method often chose a slightly
smaller MRCS than that of the true cluster. However, the
PPV was always higher than that at the default setting,
although the sensitivity was slightly lower only when the
mean survival time in the true clusters was 5. This result
again implied that the default setting reported rather
a larger cluster than the true clusters. When the mean
survival time was 7 in the true clusters, the frequency
of chosen MRCS was spread over all possible MRCSs
(Table 3). This might be attributable to the low detection
power due to the small difference in mean survival time
inside vs. outside the clusters. The promising indication
here is that the overall sensitivity is much higher when
using the Gini coefficient than without it.

In the case of elliptical clusters, the Gini coefficient
with elliptical scanning windows most often picked the
best MRCS of the same size as the true cluster when the
mean survival time was 5 inside the true cluster (Tables 4
and 5). When the cluster was small (10%), the detec-
tion accuracy at the most often chosen MRCS was much
higher than that at the default setting. When the mean
survival time was 2 inside the true cluster, similar pat-
terns were observed. The Gini coefficient with circular
scanning windows most often selected a smaller MRCS
than the true cluster size. Still, the overall sensitivity and
PPV at the most often chosen MRCS were higher than
those at the default setting. When the mean survival time
was 7 inside the true cluster, the overall detection accu-
racy was higher than that at the default setting.

When the true cluster was irregularly shaped, the pro-
posed method seemed to choose smaller sizes of MRCS
than the true cluster size. However, the overall sensitivity
was always higher than that at the default setting. When
the mean survival time was 7 in the true cluster, the dif-
ference in performance was clearer (Table 6). This might
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be because refined sets of smaller clusters were reported
by the Gini coefficient rather than a single larger cluster.

KCHS data analysis results

When using circular windows, the proposed method
selected the default setting of 50% as the optimal MRCS.
The most likely cluster was quite large, including 31 dis-
tricts, as shown in Fig. 2(a). A small secondary cluster
consisting of three districts was also detected. When
using elliptical windows, the proposed method selected
25% as the optimal MRCS. The detected clusters were
slightly different from those at the default setting. Infor-
mation on the detected clusters is presented in Table 7. A
single large cluster consisting of 26 districts was detected
at the default setting (Fig. 2(c)), while two smaller clus-
ters were detected using the Gini coefficients (Fig. 2(b)).
Cluster 1 in Fig. 2(b) is part of cluster 1 in Fig. 2(c). Some
districts of cluster 2 in Fig. 2(b) overlapped with cluster
1 in Fig. 2(c), but the other districts were not included
in the cluster in Fig. 2(c). The test statistic value for the
cluster in Fig. 2(c) was much larger than that for cluster
1 in Fig. 2(b). However, the mean survival time of cluster
1 in Fig. 2(b) was lower than that of cluster 1 in Fig. 2(c).
It is likely that the default setting detected a larger clus-
ter by including unnecessary neighbouring districts.
Although the mean survival time of cluster 2 in Fig. 2(b)
was higher than that of cluster 1 in Fig. 2(c), it was still
lower than that outside the clusters and is statistically sig-
nificant. The clusters at the optimal MRCS chosen by the
Gini coefficient in Fig. 2(b) appear to be more meaningful
than cluster 1 in Fig. 2(c).

Discussion and conclusion
We have proposed the Gini coefficient in the exponen-
tial-based spatial scan statistic to optimize the MRCS
in cluster detection analysis for survival data. The pro-
posed method was defined to measure the degree of het-
erogeneity in the mean survival times of clusters. Our
simulation study showed that the Gini coefficient mostly
selected the optimal MRCS, similar to the true cluster
size. The detection accuracy was higher for the best cho-
sen MRCS than at the default setting. A lower PPV at
the default setting indicates that using the default value
of 50% of the total population for the MSWS and MRCS
tends to produce a larger cluster that hides smaller clus-
ters and includes non-informative areas. Even though the
Gini coefficient did not always select the optimal MRCS
the same as the true cluster size, the overall detection
accuracy when using the Gini coefficient was gener-
ally improved compared to when it was not used. This
improvement was greatly noticeable in some cases.

The application of the proposed method to the KCHS
data supported that the proposed method can optimize the
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MRCS in spatial cluster detection analysis for survival data.
We searched for a cluster with a short survival time. The
most likely cluster at the default setting was rather larger
with a higher mean survival time than that at the optimal
MRCS chosen by the Gini coefficient. Interestingly, the two
clusters at the optimal MRCS were contiguous and formed
an irregularly shaped cluster. As reported by Kim and Jung
[12], the Gini coefficient might also be useful for detecting
irregularly shaped clusters in the exponential model.

Here, we again emphasize that we optimize the MRCS
using the Gini coefficient, not the MSWS. Rerunning
the analyses with different MSWSs should be avoided
because of the multiple testing problem. Wang et al. [22]
presented their proposed method, called the maximum
clustering heterogeneous set proportion, as an indica-
tor to select the MSWS. As they described, different
MSWSs lead to different sets of windows and then differ-
ent detected clusters. Thus, even the same cluster under
different sets of windows can have different p-values. It is
incorrect to choose the result with the smallest p-value
because it is not appropriately adjusted for multiple test-
ing. Trying different values of MRCS to select clusters for
reporting is the correct way to do this.

The Gini coefficient was first developed for the Pois-
son and Bernoulli models and subsequently adopted for
the ordinal and normal-based models. The Gini coef-
ficient for the exponential model in this study was also
specifically defined for the specific probability model and
thoroughly evaluated. The option to optimize the MRCS
using the Gini coefficient in SaTScan" is available only
for the Poisson and Bernoulli models. It is easy to imple-
ment the Gini coefficient in the exponential model using
R with the ‘rsatscan’ package[23]. An R function to calcu-
late the Gini coefficient is available upon request.

Using the spatial scan statistic with the default set-
ting has been criticized because the detected most
likely cluster may be much larger than the true clusters
as they might include irrelevant neighbouring areas
[24-27]. Studies that proposed the Gini coefficient for
the Poisson, Bernoulli, ordinal, and normal models
revealed that using the Gini coefficient in spatial scan
statistics can resolve this problem to a certain extent
[11, 13, 14]. Using the Gini coefficient for the Pois-
son model can also be effective in detecting irregularly
shaped clusters [12]. The exponential model can be
used for spatial cluster detection analysis of time-to-
event type data such as cancer survival, time to disease
recurrence, or age at first smoking, with or without
censoring. We believe that using the Gini coefficient
in the exponential-based spatial scan statistic can be
very helpful for reporting more refined and informative
clusters for survival data.



Page 12 of 14

(2021) 20:33

Lee et al. Int J Health Geogr

SD1]e} Ul UMOYS 318 SOYIA [ewndo 3y} se pa3da]as U0 Isow s||3)

anjea aaipIpald aARIsod ‘Add ‘Butiosuad Jo abejuadiad ‘suad Jo %

1610 L6/0 S6€£0 TIFO PEFO ¥8Y0  S6¥0 $S90 0180 6980 9¥80 9S80 960 LLE0 000l 000l 000L Add
0670 8/50 TE60 8l60 /180 O0L80 /690 T9/0 $890 0090 08Y0 8SF0 ¢9€0 €0£0 /LC0 SOTO L0000  ANARIsusS
98 8l 6C 3 7l ve € 7 00l 67 0lz ¥8 Sl S 9 z1L Adouanbaly %0L
1200 9C/0 S6£0 9TF0 06¥0 PSSO  8/50 /990 85/0 €180 ¥060 €880 6680 8880 €€60 0001 000'L Add
20r0 0590 8960 60 €560 9060 SY80 T6L0 £990 £/50 10SO 96£0 CEEO LLE0  €CC0  ¥CC0 6000  ANARISUSS
€19 74 8l € 0S 69 68 €6 YL 59 9 w 8 ol 4! 0¢  Adusnbaiy %05
€040 S0L0 T6S0  LEFO  86Y0 8ESO  ¥650 9990 91/0 SE80 €60 1S60 ¥S60 000l €660 000l  ¥¥60
96€0 ¥0L0 ¥/60 TS60 1S60 6L60 S980 0080 [€90 S8S0 6150 6540 TSE0  SZEO  LETO  LECO  T000
19S 13 e 47 09 €9 0S 6/ 44 29 e vl 6 S S 6 Aousnbaig %0€
Y140 910 €8€0 1ZF0 /KO 1ZSO 1650 6590 IS/0 9180 6/80 6680 9960 TL60 6760 €£80 000 Add
Y1Y0 8990 G960 60 YE60 9060 7980 6LL0 €90 ¥/SO TLSO  vb0 V€0 €LE0  /¥TO0  ¥SLO 1000  AMARMISUSS
619 9 6C % 6 6€ 08  tol L 09 67 Lg 9l vl 9 ¥ Adusnbauy %0l  mopuim [edondyg
1890 1890 6650 ¥6E0 89Y0 SSFO  LTHFO  96¥0 7290 L0900 E€¥L0  9EL0  /8/0 ¥9L0 L6L0 - $860 Add
L1E0 €F0 Y60 6Y80 €760 6940 SL90  S090 €850 ¢SY0  LLFO ¢80 LE€0  80E€0  9¢C0 - 5100 AuApisuss
799 601 Le ol | L L€ T €z 90l 0¢ w07 4 9l 0 99  Adouanbaiy %0L
8690 0040 66£0 L0 L6¥0 88Y0 €S540 ¥ESO LSS0 LE90 S0 SSL0 /960 8€60 0v60 000l 000l Add
€970 86F0 0560 €060 6/60 1780 /990 <C090 0050 #/F0 +vO¥0 S8E0 09€0 L/C0 0ZC0 #SL0 8000  ANARISUSS
615 9 Sl 65 Sl ¢ 6¢ 0S 0f  gel Ll Le [T 9 l Ly Adusnbaiy %05
€990 0/90 86£0 LL¥FO +8Y0 78Y0 LSO /SSO T8S0 8/90 S//0 S8L0 €460 6/60 8/80 0001 0S60 Add
1920 S/50 €860 1€60 Y960 0l80 69,0 L¥90 #8S0 10S0 60¥0 ¥/€0 €/60 T8C0 9CC0 ¥SLO ¥000  AWAISUSS
09% o 61 34 L1 L 5S 6 3 0% 1z 39 4! Sl 4 0c  fousnbaiy %0€
€990 ¥/90 ¥6£0 PEFO L8Y0 650 09¥0 89S0 /950 €490 6LL0 880 9960 1S60 0£60 0SL0  0S60 Add
S8C°0 €950 8460 9960 €960 6L0 /690 9590 £¥SO  06¥0 8lLF0O €8E0 0960 6/T0 990 L¥L0  SO00  AWAMSUSS
96t St 143 L€ 0T L1 S €€ 8¢ as i3 69 [T €l 9 0z Aousnbayy %0l MOPUIM Je[ndID
IBIRAO  %0S %St %0t %SE  %0E  %ST  %0T %SL  %ZL  %O0L %8 %9 %S %t  %E
Bbumas )neyaqg (SDYIN) 9z1s 491sn> pariodas wnwixep SU3 JO 9%

/ JO 9WI1 [PAIAINS URSW B UM (Ble |R10] JO 9607 U21SN|D _m_j@mt_ QUO) 4 [9POW I31SN|D J0J S1jNSaJ UoneNWIS 9 3jgel



Lee et al. Int J Health Geogr (2021) 20:33 Page 13 of 14

= cluster 1
= cluster2

= cluster 1
= cluster 2 = cluster 1

Fig. 2 Spatial clusters with low mean age of first drinking in Seoul and Gyeonggi province using 2017 KCHS data. a circular windows, Gini or default
(50%), b elliptical windows, Gini (25%), ¢ elliptical windows, default (50%)

Table 7 Cluster detection results for 2017 KCHS data using elliptical windows with the Gini coefficient and default setting for MRCS

Cluster Districts® LLR p-value Mean survival Observations? Non-censored
time
Gini (25%) 1 16 26.73 0.001 21.34 6584 6313
2 15 9.88 0.001 22.10 7073 6706
Default 1 26 47.12 0.001 21.51 11,271 10,781

2 Districts- number of districts; LLR log-likelihood ratio; *Observations- number of observations; ?Non-censored- number of non-censored observations
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