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METHODOLOGY

Optimizing the maximum reported cluster 
size in the spatial scan statistic for survival data
Sujee Lee, Jisu Moon and Inkyung Jung*   

Abstract 

Background:  The spatial scan statistic is a useful tool for cluster detection analysis in geographical disease surveil-
lance. The method requires users to specify the maximum scanning window size or the maximum reported cluster 
size (MRCS), which is often set to 50% of the total population. It is important to optimize the maximum reported 
cluster size, keeping the maximum scanning window size at as large as 50% of the total population, to obtain valid 
and meaningful results.

Results:  We developed a measure, a Gini coefficient, to optimize the maximum reported cluster size for the expo-
nential-based spatial scan statistic. The simulation study showed that the proposed method mostly selected the 
optimal MRCS, similar to the true cluster size. The detection accuracy was higher for the best chosen MRCS than at 
the default setting. The application of the method to the Korea Community Health Survey data supported that the 
proposed method can optimize the MRCS in spatial cluster detection analysis for survival data.

Conclusions:  Using the Gini coefficient in the exponential-based spatial scan statistic can be very helpful for report-
ing more refined and informative clusters for survival data.
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Background
The spatial scan statistic is a useful and widely used tool 
for detecting spatial or space–time clusters in disease 
surveillance. The method has been developed for differ-
ent types of data such as count [1], ordinal [2, 3], survival 
[4], continuous [5–7], and multinomial [8]. The software 
SaTScan™ [9], available for free, enhances the ease of 
access to this method for researchers.

The spatial scan statistic is formulated based on the 
likelihood ratio test statistic. A large number of scanning 
windows of various sizes across all locations are first con-
structed on the entire study area. Each scanning window 
is a candidate for the most likely cluster. In SaTScan™, 
circular or elliptical scanning windows are considered. 

The likelihood ratio test statistic is calculated for each 
window to compare its inside and outside. The scan-
ning window with the maximum value of the likelihood 
ratio test statistic is defined as the most likely cluster. 
Secondary clusters with high test statistic values are also 
reported.

Cluster detection results can be sensitive to the maxi-
mum scanning window size (MSWS), as studied by 
Riberiro and Costa [10]. In SaTScan™, users can specify 
the MSWS, which is set to 50% of the total population 
by default. A high MSWS and a high maximum reported 
cluster size (MRCS) could result in an excessively large 
cluster. Some researchers try different MSWS values 
to obtain seemingly good results without knowing the 
MRCS. Repeatedly performing spatial cluster detection 
analyses using different values of MSWS leads to a mul-
tiple testing problem, as pointed out by Han et  al. [11]. 
We can consider different values of MRCS with a fixed 
MSWS to avoid this problem. Still, we need to choose 
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the optimal value of the MRCS. The clusters reported by 
subjectively chosen MRCS may be different from the true 
clusters.

Han et  al. [11] proposed a criterion measure to opti-
mize the MRCS for the Poisson-based spatial scan sta-
tistic. They defined the Gini coefficient to represent the 
degree of heterogeneity of disease clusters for count data. 
Their simulation study showed that the Gini coefficient 
can be useful for selecting the best MRCS to obtain a 
refined collection of clusters. Interestingly, by reporting 
an optimized and refined collection of clusters rather 
than a single large cluster, the Gini coefficient allows us 
to better identify irregularly shaped ones [12].

As the formulation of test statistics of the spatial scan 
statistic is different for different models, the Gini coef-
ficient should be clearly and distinctly defined for each 
model and thoroughly evaluated. The Gini coefficients for 
the ordinal- and normal-based spatial scan statistics were 
proposed by Kim and Jung [13] and by Yoo and Jung [14], 
respectively. In this paper, we defined the Gini coefficient 
for the exponential-based spatial scan statistic, which is 
used for survival data. Through an extensive simulation 
study under various scenarios, we showed that the pro-
posed method is very useful for optimizing the MRCS 
for the exponential-based spatial scan statistic. We illus-
trated the method using Community Health Survey data 
collected by the Korea Centers for Disease Control and 
Prevention.

Methods
Poisson model and the Gini coefficient
When we have count data such as the number of certain 
disease occurrences according to an underlying popu-
lation at risk in a study region, we can use the Poisson-
based spatial scan statistic [1]. We are often interested in 
identifying areas with high disease incidence rates. The 
null and alternative hypotheses are written as 

where p and q are the intensities of the outcome variable 
inside and outside the scanning window z , respectively, 
and Z denotes the collection of all scanning windows. 
The likelihood ratio test statistic given window z is 
expressed as

 if cz/nz > (C − cz)/(N − nz) , and LR(z) = 1 otherwise. 
In the above equation, czand nz denote the observed 
number of cases and population within window z. C and 

H0 : p = q for all z ∈ Z vs. Ha : p > q for some z ∈ Z

LR(z) =

(
cz
nz

)cz( C−cz
N−nz

)C−cz

(
C
N

)C

N  denote the total number of cases and population in the 
whole study area, respectively.

The scanning window that maximizes the value of 
LR(z) is the most likely cluster. Statistical inference for 
the most likely cluster can be performed using Monte 
Carlo hypothesis testing. In addition, secondary clusters 
with high values of the likelihood ratio test statistic are 
often of interest. The p-values of the secondary clusters 
are typically obtained in the same manner as the null 
hypothesis is rejected on own strength.

When reporting the most likely and secondary clus-
ters, the Gini coefficient can be used to find a more 
refined collection of non-overlapping clusters. In eco-
nomics, the Gini coefficient was developed to indicate 
the degree of heterogeneity of wealth distribution [15]. 
As a summary measure of the Lorenz curve, the larger 
the Gini coefficient, the higher the heterogeneity in 
wealth. Han et al. [11] adopted the Gini coefficient in the 
spatial scan statistic for count data to measure the degree 
of heterogeneity in the spatial distribution of disease 
cases by defining the x-axis of the Lorenz curve as the 
cumulative proportion of the number of disease cases 
and the y-axis as the cumulative proportion of the popu-
lation. Its value is calculated as twice the area between 
the Lorenz curve and the 45° line, which indicates that 
the number of cases is proportional to the population of 
each region. When there is only one significant cluster, 
the Lorenz curve is constructed as a line graph connect-
ing the three points (0,0), ( x1, y1 ), and (1,1), where x1 and 
y1 are the proportions of observed cases and population 
(expected cases) in the cluster. As more cases are con-
centrated in the cluster than expected, x1 increases and 
the Lorenz curve moves farther away from the reference 
line. The Gini coefficient also increases. When we have K 
multiple clusters, the Lorenz curve connects K points 
between (0,0) and (1,1). The coordinates of each cluster 
(xk , yk) are defined as xk =

(
1
C

)∑k
j=1 cj and 

yk =

(
1
N

)∑k
j=1 nj where cj and nj are the number of 

cases and population in the j-th cluster. The Gini coeffi-
cient can be calculated as 

∑K+1
k=1 (ykxk−1 − yk−1xk) with 

x0 = y0 = 0 and xK+1 = yK+1 = 1. The Gini coefficient 
values range from 0 to 1. We select the best collection of 
clusters to report the highest Gini coefficient value from 
among several competing sets of clusters. Han et al. [11] 
included more detailed information. The Gini coefficient 
has been implemented in SaTScan™ for the Poisson and 
Bernoulli models.

Spatial scan statistic for survival data
Different spatial scan statistics for survival data have 
been proposed based on different models, includ-
ing Weibull and generalized life distributions [16, 17]. 
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Huang et al. [4] proposed a spatial scan statistic for sur-
vival data based on an exponential model. We focused 
on the exponential model. The exponential-based spa-
tial scan statistic has been used to examine geographic 
disparities in survival in cancer patients [18–20].

Suppose we have survival data for I subjects in a 
study area, such as time to death for cancer patients. 
Let Ti and Li be the survival time and fixed censoring 
time for the i th subject, respectively. We assume that 
Ti is exponentially distributed with a probability density 
function f (Ti) =

1
θ
e−

Ti
θ , θ > 0. Parameter θ represents 

mean survival time. The observed time ti = min (Ti, Li). 
Let δi be the censoring indicator, that is, δi = 1 if Ti � Li 
and δi = 0 if Ti > Li To identify clusters of short sur-
vival, the null and alternative hypotheses are written as: 

 where θin denotes the mean survival time for subjects 
within zone z , and θout is the mean survival time for sub-
jects outside zone z . The exponential-based spatial scan 
statistic is defined as

where rin =
∑

i∈z δi and rout =
∑

i/∈z δi (the number of 
non-censored subjects inside and outside zone z , respec-
tively). The total number of non-censored subjects in 
the entire study area G is denoted by R = rin + rout.

When there are no censored observations, rin and rout 
are replaced by the total number of subjects inside and 
outside zone z , nin and nout , respectively, with R by 
N = nin + nout in the above test statistic.

When searching for clusters of short survival time using 
SaTScan™, users can specify the maximum size for z. The 
default setting is 50% of the total population. When the 
size of the most likely cluster is very large, one may want 
to know if smaller clusters that are statistically significant 
are contained in the large cluster. We can try different val-
ues for the maximum reported cluster size (MRCS), not 
the maximum scanning window size (MSWS). The MRCS 
is also set to 50% of the total population by default. It is 
not clear how to select the best MRCS for the exponential 
model. In the next section, we propose a Gini coefficient 
to optimize the MRCS for the exponential model.

Gini coefficient for exponential model
To measure the disproportion of survival in each area, 
the Lorenz curve can be defined using the number of 
subjects and the sum of survival times. We define the 
x-axis as the cumulative proportion of the number of 
non-censored subjects and the y-axis as the cumulative 

H0 : θin = θout for all z ∈ Z vs. Ha θin < θout for some z ∈ Z

� =

max
z

(
rin∑
i∈z ti

)rin( rout∑
i/∈z ti

)rout

(
R∑
i∈G ti

)R

proportion of the sum of observed times. If there is 
only one significant cluster z∗, the Lorenz curve is con-
structed in the same way as that of the Poisson model. 
Specifically, the x- and y-coordinates of point P for the 
cluster are defined as:

and

Considering the maximum likelihood estimates for 
the parameter θ of the exponential distribution under 
the null and alternative hypotheses, that is, 
θ̂0 = R/

∑
i∈G ti and θ̂in = rin/

∑
i∈z ti , the cumulative 

proportion of the sum of the observed times would be 
proportional to the cumulative proportion of non-cen-
sored subjects in each region under the null hypothesis 
of no clusters. If there is a significant cluster z∗ of short 
survival, the proportion of the sum of observed times 
in the cluster to that in the whole study region G would 
be less than the proportion of the number of subjects. 
As the sum of the observed times in the cluster z∗ 
decreases, the y-coordinate y1 decreases and the Lorenz 
curve moves farther away from the reference line. Then, 
the value of the Gini coefficient, which is twice the area 
between the Lorenz curve and the reference line, 
increases. When there are K clusters  z∗1 , . . . , z

∗

K  
(ordered by their statistical significance), the coordi-
nates of each cluster (xk , yk) are defined as 
xk =

∑
i∈
{⋃k

j=1z
∗

j

} δi/R and yk =
∑

i∈
{⋃k

j=1z
∗

j

} ti/
∑

i∈G ti . 

The Lorenz curve connects K points of (xk , yk) , and the 
Gini coefficient is calculated in the same way as ∑K+1

k=1 (ykxk−1 − yk−1xk) with x0 = y0 = 0 and 
xK+1 = yK+1 = 1. Different values for the MRCS pro-
duces different sets of clusters with different values of 
the Gini coefficient. We can select the optimal collec-
tion of clusters with the highest dissimilarity in survival 
based on the Gini coefficient.

Simulation study
We conducted a simulation study to evaluate the perfor-
mance of the Gini coefficient in the exponential model. 
We used six cluster models in Seoul and Gyeonggi Prov-
ince in South Korea as the whole study region. True clus-
ters of different shapes and sizes are assumed in the study 
region, consisting of 67 districts, as shown in Fig. 1. Since 
circular and elliptical windows are available in SaTScan™, 
we mainly considered these two shapes. We also included 
an irregularly shaped cluster to examine whether the 

x1 =

∑
i∈z∗ δi∑
i∈G δi

(
=

rin

R

)

y1 =

∑
i∈z∗ ti∑
i∈G ti

.
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proposed method could possibly work better in identi-
fying irregular clusters than the default setting. Cluster 
models A and B assumed a circular true cluster of 10% (6 
districts) and 30% (20 districts) of the entire study region, 
respectively. Cluster model C included two adjacent cir-
cular clusters, each of which accounts for 10% (6 dis-
tricts). Models D and E consisted of elliptical clusters of 
10% (6 districts) and 30% (20 districts). Model F included 
an irregularly shaped cluster of 20% (13 districts). For 
each model, we considered 12 scenarios for the combina-
tion of mean survival time and censoring rate. We var-
ied the mean survival time for the true clusters as 2, 5, 
and 7, compared to 10 for areas outside the clusters. We 
adopted the parameter setting for the mean survival time 
from the study by Huang et  al. [4]. The censoring rates 
were set to 10%, 30%, 50%, and 70% to examine how the 
performance of the proposed method can be affected by 
the censoring rate.

We generated 1,000 subjects and randomly assigned 
them to one of the 67 districts in the study region under 
each scenario. If a subject was in the districts of the true 
cluster, the survival time was generated from an expo-
nential distribution with a mean of 2, 5, and 7. Otherwise, 
the survival time was generated from an exponential 

distribution with a mean of 10. We censored the survival 
time for randomly selected subjects out of the 1,000 sub-
jects at a chosen censoring rate. We then searched for 
clusters with short survival using circular and elliptical 
scanning windows, with 15 MRCS values of 3%, 4%, 5%, 
6%, 8%, 10%, 12%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 
and 50% in the SaTScan™ software. Using these num-
bers can be thought of as a grid search. These candidate 
MRCS values are used for the Poisson and Bernoulli 
models in SaTScan™ and were used for consistency with 
the exponential model. We selected these numbers to be 
consistent for the exponential model as used in the Pois-
son and Bernoulli models in SaTScan™. The MSWS was 
fixed at 50%. The Gini coefficient was calculated for each 
MRCS value. We selected the optimal MRCS with the 
highest Gini coefficient. The reported clusters were then 
compared with the true clusters.

We repeated the simulation 1,000 times for each sce-
nario. We counted the number of times the Gini coeffi-
cient selected each of the 15 MRCS values as the optimal. 
The performance of the proposed method was summa-
rized using the sensitivity and positive predicted value 
(PPV). In the context of spatial cluster detection, sensitiv-
ity is the proportion of districts correctly detected among 

Fig. 1  Cluster models used in the simulation. A one circular cluster of 10%, B one circular cluster of 30%, C two circular clusters of 10% each, D one 
elliptical cluster of 10%, E one elliptical cluster of 30%, F one irregular cluster of 20%
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the districts in the true cluster, and PPV is the proportion 
of districts correctly detected among the districts in the 
detected cluster. Higher values of these measures indicate 
more accurate detection. Specifically, the sensitivity and 
PPV were estimated from 1,000 datasets as 

where S is the number of rejected datasets. We also cal-
culated the accuracy measures under the default MRCS 
setting of 50% in SaTScan™.

Korea community health survey data
To illustrate the proposed method, we used data from 
the Korea Community Health Survey (KCHS) conducted 
by the Korea Centers for Disease Control and Preven-
tion [21]. This community-based cross-sectional survey 
has been conducted at 253 community health centres 
annually since 2008. The survey questionnaire includes 
topics related to health behaviour and prevention. We 
used the age of first drinking for males as the survival 
time in the 2017 survey data. If a person had never had 
a drink, his survival time was censored at the age of the 
survey. The location information of each individual was 
available at the district level because each district in 
Korea has approximately one community health centre. 
In Seoul and Gyeonggi province, we searched for areas 
with low mean age of first drinking (i.e. spatial clusters of 
short survival time) using the exponential-based spatial 
scan statistic with both circular and elliptical scanning 
windows. The reported clusters selected optimally by 
the proposed method were compared with those at the 
default setting in SaTScan™.

Results
Simulation study results
Here, we have presented only a subset of all the sim-
ulation results. The other results are included in 
Additional file  1. Tables  1 and 2 show that the Gini 
coefficient most often selected the optimal MRCS as 
the same as the size of the true cluster using circular 
or elliptical windows when the true cluster was cir-
cular with a mean survival time of 5, regardless of the 
censoring rate. The detection accuracy was very high 
for the most frequently chosen MRCS. Both the sen-
sitivity and PPV were above 0.95, which is higher than 
those at the default setting in most cases. The differ-
ence in the detection accuracy between the most often 

Sensitivity =
1

S

S∑

s=1

number of districts correctly detected

number of districts in the true cluster

PPV =
1

S

S∑

s=1

number of districts correctly detected

number of detected districts

chosen MRCS and the default setting was larger when 
the true cluster was smaller (10%). The difference in 
PPV was even more pronounced. When the true clus-
ter was medium sized (30%), the PPV was higher in 
every case at the most often chosen MRCS, while the 
sensitivity was slightly higher or similar. These results 
indicate that the spatial scan statistic without optimiz-
ing the MRCS tends to report a larger cluster than the 
true cluster, especially when the true cluster is small. 
A lower PPV implies that the detected cluster is larger 
because the number of detected clusters is in the 
denominator when calculating the PPV. We also sum-
marized the overall detection accuracy when using the 
Gini coefficient over all the chosen MRCSs. Still, the 
sensitivity and PPV were higher than or similar to those 
at the default setting.

In the case of two true clusters, which are close to 
each other, the proposed method often chose a slightly 
smaller MRCS than that of the true cluster. However, the 
PPV was always higher than that at the default setting, 
although the sensitivity was slightly lower only when the 
mean survival time in the true clusters was 5. This result 
again implied that the default setting reported rather 
a larger cluster than the true clusters. When the mean 
survival time was 7 in the true clusters, the frequency 
of chosen MRCS was spread over all possible MRCSs 
(Table 3). This might be attributable to the low detection 
power due to the small difference in mean survival time 
inside vs. outside the clusters. The promising indication 
here is that the overall sensitivity is much higher when 
using the Gini coefficient than without it.

In the case of elliptical clusters, the Gini coefficient 
with elliptical scanning windows most often picked the 
best MRCS of the same size as the true cluster when the 
mean survival time was 5 inside the true cluster (Tables 4 
and 5). When the cluster was small (10%), the detec-
tion accuracy at the most often chosen MRCS was much 
higher than that at the default setting. When the mean 
survival time was 2 inside the true cluster, similar pat-
terns were observed. The Gini coefficient with circular 
scanning windows most often selected a smaller MRCS 
than the true cluster size. Still, the overall sensitivity and 
PPV at the most often chosen MRCS were higher than 
those at the default setting. When the mean survival time 
was 7 inside the true cluster, the overall detection accu-
racy was higher than that at the default setting.

When the true cluster was irregularly shaped, the pro-
posed method seemed to choose smaller sizes of MRCS 
than the true cluster size. However, the overall sensitivity 
was always higher than that at the default setting. When 
the mean survival time was 7 in the true cluster, the dif-
ference in performance was clearer (Table 6). This might 
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be because refined sets of smaller clusters were reported 
by the Gini coefficient rather than a single larger cluster.

KCHS data analysis results
When using circular windows, the proposed method 
selected the default setting of 50% as the optimal MRCS. 
The most likely cluster was quite large, including 31 dis-
tricts, as shown in Fig.  2(a). A small secondary cluster 
consisting of three districts was also detected. When 
using elliptical windows, the proposed method selected 
25% as the optimal MRCS. The detected clusters were 
slightly different from those at the default setting. Infor-
mation on the detected clusters is presented in Table 7. A 
single large cluster consisting of 26 districts was detected 
at the default setting (Fig.  2(c)), while two smaller clus-
ters were detected using the Gini coefficients (Fig. 2(b)). 
Cluster 1 in Fig. 2(b) is part of cluster 1 in Fig. 2(c). Some 
districts of cluster 2 in Fig. 2(b) overlapped with cluster 
1 in Fig.  2(c), but the other districts were not included 
in the cluster in Fig. 2(c). The test statistic value for the 
cluster in Fig. 2(c) was much larger than that for cluster 
1 in Fig. 2(b). However, the mean survival time of cluster 
1 in Fig. 2(b) was lower than that of cluster 1 in Fig. 2(c). 
It is likely that the default setting detected a larger clus-
ter by including unnecessary neighbouring districts. 
Although the mean survival time of cluster 2 in Fig. 2(b) 
was higher than that of cluster 1 in Fig. 2(c), it was still 
lower than that outside the clusters and is statistically sig-
nificant. The clusters at the optimal MRCS chosen by the 
Gini coefficient in Fig. 2(b) appear to be more meaningful 
than cluster 1 in Fig. 2(c).

Discussion and conclusion
We have proposed the Gini coefficient in the exponen-
tial-based spatial scan statistic to optimize the MRCS 
in cluster detection analysis for survival data. The pro-
posed method was defined to measure the degree of het-
erogeneity in the mean survival times of clusters. Our 
simulation study showed that the Gini coefficient mostly 
selected the optimal MRCS, similar to the true cluster 
size. The detection accuracy was higher for the best cho-
sen MRCS than at the default setting. A lower PPV at 
the default setting indicates that using the default value 
of 50% of the total population for the MSWS and MRCS 
tends to produce a larger cluster that hides smaller clus-
ters and includes non-informative areas. Even though the 
Gini coefficient did not always select the optimal MRCS 
the same as the true cluster size, the overall detection 
accuracy when using the Gini coefficient was gener-
ally improved compared to when it was not used. This 
improvement was greatly noticeable in some cases.

The application of the proposed method to the KCHS 
data supported that the proposed method can optimize the 

MRCS in spatial cluster detection analysis for survival data. 
We searched for a cluster with a short survival time. The 
most likely cluster at the default setting was rather larger 
with a higher mean survival time than that at the optimal 
MRCS chosen by the Gini coefficient. Interestingly, the two 
clusters at the optimal MRCS were contiguous and formed 
an irregularly shaped cluster. As reported by Kim and Jung 
[12], the Gini coefficient might also be useful for detecting 
irregularly shaped clusters in the exponential model.

Here, we again emphasize that we optimize the MRCS 
using the Gini coefficient, not the MSWS. Rerunning 
the analyses with different MSWSs should be avoided 
because of the multiple testing problem. Wang et al. [22] 
presented their proposed method, called the maximum 
clustering heterogeneous set proportion, as an indica-
tor to select the MSWS. As they described, different 
MSWSs lead to different sets of windows and then differ-
ent detected clusters. Thus, even the same cluster under 
different sets of windows can have different p-values. It is 
incorrect to choose the result with the smallest p-value 
because it is not appropriately adjusted for multiple test-
ing. Trying different values of MRCS to select clusters for 
reporting is the correct way to do this.

The Gini coefficient was first developed for the Pois-
son and Bernoulli models and subsequently adopted for 
the ordinal and normal-based models. The Gini coef-
ficient for the exponential model in this study was also 
specifically defined for the specific probability model and 
thoroughly evaluated. The option to optimize the MRCS 
using the Gini coefficient in SaTScan™ is available only 
for the Poisson and Bernoulli models. It is easy to imple-
ment the Gini coefficient in the exponential model using 
R with the ‘rsatscan’ package[23]. An R function to calcu-
late the Gini coefficient is available upon request.

Using the spatial scan statistic with the default set-
ting has been criticized because the detected most 
likely cluster may be much larger than the true clusters 
as they might include irrelevant neighbouring areas 
[24–27]. Studies that proposed the Gini coefficient for 
the Poisson, Bernoulli, ordinal, and normal models 
revealed that using the Gini coefficient in spatial scan 
statistics can resolve this problem to a certain extent 
[11, 13, 14]. Using the Gini coefficient for the Pois-
son model can also be effective in detecting irregularly 
shaped clusters [12]. The exponential model can be 
used for spatial cluster detection analysis of time-to-
event type data such as cancer survival, time to disease 
recurrence, or age at first smoking, with or without 
censoring. We believe that using the Gini coefficient 
in the exponential-based spatial scan statistic can be 
very helpful for reporting more refined and informative 
clusters for survival data.
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