Taubenberger J, Morens D. 1918 influenza: the mother of all pandemics. Emerg Infect Dis. 2006;12(1):15–22. doi:10.3201/eid1209.05-0979.

Article
PubMed
PubMed Central
Google Scholar

Leung G, Hedley A, Ho L, Chau P, Wong I, Thach T, Ghani A, Donnelly C, Fraser C, Riley S. The epidemiology of severe acute respiratory syndrome in the 2003 Hong Kong epidemic: an analysis of all 1755 patients. Ann Intern Med. 2004;141(9):662–73. doi:10.7326/0003-4819-141-9-200411020-00006.

Article
PubMed
Google Scholar

Fraser C, Donnelly C, Cauchemez S, Hanage W, Van Kerkhove M, Hollingsworth T, Griffin J, Baggaley R, Jenkins H, Lyons E. Pandemic potential of a strain of influenza A (H1N1): early findings. Science. 2009;324(5934):1557–61. doi:10.1126/science.1176062.

Article
CAS
PubMed
PubMed Central
Google Scholar

Anderson R, Fraser C, Ghani A, Donnelly C, Riley S, Ferguson N, Leung G, Lam T, Hedley A. Epidemiology, transmission dynamics and control of SARS: the 2002–2003 epidemic. Philos Trans R Soc B Biol Sci. 2004;359(1447):1091–105. doi:10.1098/rstb.2004.1490.

Article
Google Scholar

Meyers L, Pourbohloul B, Newman M, Skowronski D, Brunham R. Network theory and SARS: predicting outbreak diversity. J Theor Biol. 2005;232(1):71–81. doi:10.1016/j.jtbi.2004.07.026.

Article
PubMed
Google Scholar

Read J, Eames K, Edmunds W. Dynamic social networks and the implications for the spread of infectious disease. J R Soc Interface. 2008;5(26):1001–7. doi:10.1098/rsif.2008.0013.

Article
PubMed
PubMed Central
Google Scholar

Salathé M, Kazandjieva M, Lee JW, Levis P, Feldman MW, Jones JH. A high-resolution human contact network for infectious disease transmission. Proc Natl Acad Sci. 2010;107(51):22020–5. doi:10.1073/pnas.1009094108.

Article
PubMed
PubMed Central
Google Scholar

Meyers LA, Newman M, Martin M, Schrag S. Applying network theory to epidemics: control measures for *Mycoplasma pneumoniae* outbreaks. Emerg Infect Dis. 2003;9(2):204–10.

Article
PubMed Central
Google Scholar

Eubank S, Kumar VSA, Marathe MV, Srinivasan A, Wang N. Structure of social contact networks and their impact on epidemics. DIMACS Ser Discrete Math Theor Comput Sci. 2006;70:179–85.

Google Scholar

Guo D. Visual analytics of spatial interaction patterns for pandemic decision support. Int J Geogr Inf Sci. 2007;21(8):859–77. doi:10.1080/13658810701349037.

Article
Google Scholar

Luo W, MacEachren AM. Geo-social visual analytics. J Spat Inf Sci. 2014;8:27–66. doi:10.5311/JOSIS.2014.8.139.

Google Scholar

Lee VJ, Lye DC, Wilder-Smith A. Combination strategies for pandemic influenza response—a systematic review of mathematical modeling studies. BMC Med. 2009;7(1):76. doi:10.1186/1741-7015-7-76.

Article
PubMed
PubMed Central
Google Scholar

Broeck WV, Gioannini C, Gonçalves B, Quaggiotto M, Colizza V, Vespignani A. The GLEaMviz computational tool, a publicly available software to explore realistic epidemic spreading scenarios at the global scale. BMC Infect Dis. 2011;11(1):37. doi:10.1186/1471-2334-11-37.

Article
PubMed
PubMed Central
Google Scholar

Maciejewski R, Livengood P, Rudolph S, Collins TF, Ebert DS, Brigantic RT, Corley CD, Muller GA, Sanders SW. A pandemic influenza modeling and visualization tool. J Vis Lang Comput. 2011;22(4):268–78. doi:10.1016/j.jvlc.2011.04.002.

Article
Google Scholar

Meyers L. Contact network epidemiology: bond percolation applied to infectious disease prediction and control. Bull Am Math Soc. 2007;44(1):63–86. doi:10.1090/S0273-0979-06-01148-7.

Article
Google Scholar

Bian L, Liebner D. A network model for dispersion of communicable diseases. Trans GIS. 2007;11(2):155–73. doi:10.1111/j.1467-9671.2007.01039.x.

Article
Google Scholar

Bian L. A conceptual framework for an individual-based spatially explicit epidemiological model. Environ Plan B. 2004;31(3):381–96. doi:10.1068/b2833.

Article
Google Scholar

Keeling M, Eames K. Networks and epidemic models. J R Soc Interface. 2005;2(4):295–307. doi:10.1098/rsif.2005.0051.

Article
PubMed
PubMed Central
Google Scholar

Koopman J. Modeling infection transmission. Public Health. 2004;25:303–26. doi:10.1146/annurev.publhealth.25.102802.124353.

Article
Google Scholar

Longini IM, Halloran ME. Strategy for distribution of influenza vaccine to high-risk groups and children. Am J Epidemiol. 2005;161(4):303–6. doi:10.1093/aje/kwi053.

Article
PubMed
Google Scholar

Emanuel EJ, Wertheimer A. Who should get influenza vaccine when not all can? Science. 2010;312(5775):854–5. doi:10.1126/science.1125347.

Article
Google Scholar

Mao L, Bian L. A dynamic network with individual mobility for designing vaccination strategies. Trans GIS. 2010;14(4):533–45. doi:10.1111/j.1467-9671.2010.01201.x.

Article
Google Scholar

Masuda N. Immunization of networks with community structure. New J Phys. 2009;11:123018. doi:10.1088/1367-2630/11/12/123018.

Article
Google Scholar

Zanette DH, Kuperman M. Effects of immunization in small-world epidemics. Phys A. 2002;309(3–4):445–52. doi:10.1016/S0378-4371(02)00618-0.

Article
Google Scholar

Carrat F, Luong J, Lao H, Sallé AV, Lajaunie C, Wackernagel H. A ‘small-world-like’ model for comparing interventions aimed at preventing and controlling influenza pandemics. BMC Med. 2006;4(1):26.

Article
PubMed
PubMed Central
Google Scholar

Kiss IZ, Green DM, Kao RR. Disease contact tracing in random and clustered networks. Proc R Soc Lond B Biol Sci. 2005;272(1570):1407–14. doi:10.1098/rspb.2005.3092.

Article
Google Scholar

Rhodes C, Anderson RM. Epidemic thresholds and vaccination in a lattice model of disease spread. Theor Popul Biol. 1997;52(2):101–18. doi:10.1006/tpbi.1997.1323.

Article
CAS
PubMed
Google Scholar

Pastor-Satorras R, Vespignani A. Immunization of complex networks. Phys Rev E. 2002;65(3):036104. doi:10.1103/PhysRevE.65.036104.

Article
Google Scholar

Salathé M, Jones J. Dynamics and control of diseases in networks with community structure. PLoS Comput Biol. 2010;6(4):e1000736. doi:10.1371/journal.pcbi.1000736.

Article
PubMed
PubMed Central
Google Scholar

Zanette DH, Kuperman M. Effects of immunization in small-world epidemics. Phys A. 2002;309(3):445–52. doi:10.1016/S0378-4371(02)00618-0.

Article
Google Scholar

Burke DS, Epstein JM, Cummings DA, Parker JI, Cline KC, Singa RM, Chakravarty S. Individual-based computational modeling of smallpox epidemic control strategies. Acad Emerg Med. 2006;13(11):1142–9.

Article
PubMed
Google Scholar

Ferguson N, Cummings D, Fraser C, Cajka J, Cooley P, Burke D. Strategies for mitigating an influenza pandemic. Nature. 2006;442(7101):448–52. doi:10.1038/nature04795.

Article
CAS
PubMed
Google Scholar

Mao L, Bian L. Spatial-temporal transmission of influenza and its health risks in an urbanized area. Comput Environ Urban Syst. 2010;34(3):204–15. doi:10.1016/j.compenvurbsys.2010.03.004.

Article
Google Scholar

Thomas J, Cook K. Illuminating the path: the research and development agenda for visual analytics. Washington, DC: IEEE Computer Society; 2005.

Bisset KR, Chen J, Feng X, Kumar V, Marathe MV. EpiFast: a fast algorithm for large scale realistic epidemic simulations on distributed memory systems. In: Proceedings of the 23rd international conference on supercomputing, New York, NY, USA; 2009. ACM. p. 430–9. doi:10.1145/1542275.1542336.

Bisset K, Marathe M. A cyber environment to support pandemic planning and response. DOE SciDAC Rev Mag. 2009;13:36–47.

Google Scholar

Stehle J, Voirin N, Barrat A, Cattuto C, Isella L, Pinton JF, Quaggiotto M, Van Den Broeck W, Regis C, Lina B. High-resolution measurements of face-to-face contact patterns in a primary school. PLoS One. 2011;6(8):e23176. doi:10.1371/journal.pone.0023176.

Article
CAS
PubMed
PubMed Central
Google Scholar

Cattuto C, Van den Broeck W, Barrat A, Colizza V, Pinton J-F, Vespignani A. Dynamics of person-to-person interactions from distributed RFID sensor networks. PLoS One. 2010;5(7):e11596. doi:10.1371/journal.pone.0011596.

Article
PubMed
PubMed Central
Google Scholar

Gemmetto V, Barrat A, Cattuto C. Mitigation of infectious disease at school: targeted class closure vs school closure. BMC Infect Dis. 2014;14(1):1. doi:10.1186/s12879-014-0695-9.

Article
Google Scholar

Halloran ME, Ferguson NM, Eubank S, Longini IM, Cummings DAT, Lewis B, Xu S, Fraser C, Vullikanti A, Germann TC. Modeling targeted layered containment of an influenza pandemic in the United States. Proc Natl Acad Sci. 2008;105(12):4639–44. doi:10.1073/pnas.0706849105.

Article
CAS
PubMed
PubMed Central
Google Scholar

Di Battista G, Eades P, Tamassia R, Tollis IG. Graph drawing: algorithms for the visualization of graphs. Upper Saddle River: Prentice-Hall; 1998.

Google Scholar

Herman I, Melançon G, Marshall M. Graph visualization and navigation in information visualization: a survey. IEEE Trans Vis Comput Graph. 2000;6(1):24–43. doi:10.1109/2945.841119.

Article
Google Scholar

Henry N, Fekete J, McGuffin M. NodeTrix: a hybrid visualization of social networks. IEEE Trans Vis Comput Graph. 2007;13(6):1302–9. doi:10.1109/TVCG.2007.70582.

Article
PubMed
Google Scholar

Bertin J, Barbut M. Sémiologie graphique: les diagrammes, les réseaux, les cartes. Paris: Editions de l’Ecole des Hautes Etudes en Sciences; 1967.

Google Scholar

Anderson R, May R. Infectious diseases of humans: dynamics and control. Oxford: Oxford University Press; 1992.

Google Scholar

Mills CE, Robins JM, Lipsitch M. Transmissibility of 1918 pandemic influenza. Nature. 2004;432(7019):904–6. doi:10.1038/nature03063.

Article
CAS
PubMed
Google Scholar

Ferguson N, Cummings D, Cauchemez S, Fraser C, Riley S, Meeyai A, Iamsirithaworn S, Burke D. Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature. 2005;437(7056):209–14. doi:10.1038/nature04017.

Article
CAS
PubMed
Google Scholar

Diekmann O, Heesterbeek J, Metz JA. On the definition and the computation of the basic reproduction ratio R_{0} in models for infectious diseases in heterogeneous populations. J Math Biol. 1990;28(4):365–82. doi:10.1007/BF00178324.

Article
CAS
PubMed
Google Scholar

Heymann D. Control of communicable diseases manual. 18th ed. Washington, DC: American Public Health Association; 2004. doi:10.2105/CCDM.2745.

Google Scholar

Freeman LC. Centrality in social networks conceptual clarification. Soc Netw. 1978;1(3):215–39. doi:10.1016/0378-8733(78)90021-7.

Article
Google Scholar

Eubank S, Guclu H, Anil Kumar V, Marathe M, Srinivasan A, Toroczkai Z, Wang N. Modelling disease outbreaks in realistic urban social networks. Nature. 2004;429(6988):180–4. doi:10.1038/nature02541.

Article
CAS
PubMed
Google Scholar

Apolloni A, Kumar VSA, Marathe MV, Swarup S. Computational epidemiology in a connected world. Computer. 2009;42(12):83–6. doi:10.1109/MC.2009.386.

Article
Google Scholar

Gao P, Bian L. Scale effects on spatially embedded contact networks. Comput Environ Urban Syst. 2016;59:142–51. doi:10.1016/j.compenvurbsys.2016.06.002.

Article
PubMed
Google Scholar

Cliff A, Haggett P. Time, travel and infection. Br Med Bull. 2004;69(1):87–99. doi:10.1093/bmb/ldh011.

Article
PubMed
Google Scholar